You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

886 lines
39KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  81. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 30 , PARAM },
  82. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  83. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  84. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  85. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  86. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  87. {"precision" , "set soxr resampling precision (in bits)"
  88. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  89. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  90. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  91. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  92. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  93. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  94. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  95. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  96. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  97. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  98. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  99. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  100. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  101. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  102. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  103. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  104. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  105. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  106. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  107. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  108. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  109. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  110. {0}
  111. };
  112. static const char* context_to_name(void* ptr) {
  113. return "SWR";
  114. }
  115. static const AVClass av_class = {
  116. .class_name = "SWResampler",
  117. .item_name = context_to_name,
  118. .option = options,
  119. .version = LIBAVUTIL_VERSION_INT,
  120. .log_level_offset_offset = OFFSET(log_level_offset),
  121. .parent_log_context_offset = OFFSET(log_ctx),
  122. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  123. };
  124. unsigned swresample_version(void)
  125. {
  126. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  127. return LIBSWRESAMPLE_VERSION_INT;
  128. }
  129. const char *swresample_configuration(void)
  130. {
  131. return FFMPEG_CONFIGURATION;
  132. }
  133. const char *swresample_license(void)
  134. {
  135. #define LICENSE_PREFIX "libswresample license: "
  136. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  137. }
  138. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  139. if(!s || s->in_convert) // s needs to be allocated but not initialized
  140. return AVERROR(EINVAL);
  141. s->channel_map = channel_map;
  142. return 0;
  143. }
  144. const AVClass *swr_get_class(void)
  145. {
  146. return &av_class;
  147. }
  148. av_cold struct SwrContext *swr_alloc(void){
  149. SwrContext *s= av_mallocz(sizeof(SwrContext));
  150. if(s){
  151. s->av_class= &av_class;
  152. av_opt_set_defaults(s);
  153. }
  154. return s;
  155. }
  156. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  157. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  158. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  159. int log_offset, void *log_ctx){
  160. if(!s) s= swr_alloc();
  161. if(!s) return NULL;
  162. s->log_level_offset= log_offset;
  163. s->log_ctx= log_ctx;
  164. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  165. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  166. av_opt_set_int(s, "osr", out_sample_rate, 0);
  167. av_opt_set_int(s, "icl", in_ch_layout, 0);
  168. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  169. av_opt_set_int(s, "isr", in_sample_rate, 0);
  170. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  171. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  172. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  173. av_opt_set_int(s, "uch", 0, 0);
  174. return s;
  175. }
  176. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  177. a->fmt = fmt;
  178. a->bps = av_get_bytes_per_sample(fmt);
  179. a->planar= av_sample_fmt_is_planar(fmt);
  180. }
  181. static void free_temp(AudioData *a){
  182. av_free(a->data);
  183. memset(a, 0, sizeof(*a));
  184. }
  185. av_cold void swr_free(SwrContext **ss){
  186. SwrContext *s= *ss;
  187. if(s){
  188. free_temp(&s->postin);
  189. free_temp(&s->midbuf);
  190. free_temp(&s->preout);
  191. free_temp(&s->in_buffer);
  192. free_temp(&s->dither.noise);
  193. swri_audio_convert_free(&s-> in_convert);
  194. swri_audio_convert_free(&s->out_convert);
  195. swri_audio_convert_free(&s->full_convert);
  196. if (s->resampler)
  197. s->resampler->free(&s->resample);
  198. swri_rematrix_free(s);
  199. }
  200. av_freep(ss);
  201. }
  202. av_cold int swr_init(struct SwrContext *s){
  203. int ret;
  204. s->in_buffer_index= 0;
  205. s->in_buffer_count= 0;
  206. s->resample_in_constraint= 0;
  207. free_temp(&s->postin);
  208. free_temp(&s->midbuf);
  209. free_temp(&s->preout);
  210. free_temp(&s->in_buffer);
  211. free_temp(&s->dither.noise);
  212. memset(s->in.ch, 0, sizeof(s->in.ch));
  213. memset(s->out.ch, 0, sizeof(s->out.ch));
  214. swri_audio_convert_free(&s-> in_convert);
  215. swri_audio_convert_free(&s->out_convert);
  216. swri_audio_convert_free(&s->full_convert);
  217. swri_rematrix_free(s);
  218. s->flushed = 0;
  219. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  220. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  221. return AVERROR(EINVAL);
  222. }
  223. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  224. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  225. return AVERROR(EINVAL);
  226. }
  227. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  228. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  229. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  230. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  231. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  232. }else{
  233. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  234. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  235. }
  236. }
  237. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  238. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  239. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  240. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  241. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  242. return AVERROR(EINVAL);
  243. }
  244. switch(s->engine){
  245. #if CONFIG_LIBSOXR
  246. extern struct Resampler const soxr_resampler;
  247. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  248. #endif
  249. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  250. default:
  251. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  252. return AVERROR(EINVAL);
  253. }
  254. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  255. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  256. if (s->async) {
  257. if (s->min_compensation >= FLT_MAX/2)
  258. s->min_compensation = 0.001;
  259. if (s->async > 1.0001) {
  260. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  261. }
  262. }
  263. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  264. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  265. }else
  266. s->resampler->free(&s->resample);
  267. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  268. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  269. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  270. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  271. && s->resample){
  272. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  273. return -1;
  274. }
  275. if(!s->used_ch_count)
  276. s->used_ch_count= s->in.ch_count;
  277. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  278. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  279. s-> in_ch_layout= 0;
  280. }
  281. if(!s-> in_ch_layout)
  282. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  283. if(!s->out_ch_layout)
  284. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  285. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  286. s->rematrix_custom;
  287. #define RSC 1 //FIXME finetune
  288. if(!s-> in.ch_count)
  289. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  290. if(!s->used_ch_count)
  291. s->used_ch_count= s->in.ch_count;
  292. if(!s->out.ch_count)
  293. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  294. if(!s-> in.ch_count){
  295. av_assert0(!s->in_ch_layout);
  296. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  297. return -1;
  298. }
  299. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  300. char l1[1024], l2[1024];
  301. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  302. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  303. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  304. "but there is not enough information to do it\n", l1, l2);
  305. return -1;
  306. }
  307. av_assert0(s->used_ch_count);
  308. av_assert0(s->out.ch_count);
  309. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  310. s->in_buffer= s->in;
  311. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  312. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  313. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  314. return 0;
  315. }
  316. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  317. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  318. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  319. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  320. s->postin= s->in;
  321. s->preout= s->out;
  322. s->midbuf= s->in;
  323. if(s->channel_map){
  324. s->postin.ch_count=
  325. s->midbuf.ch_count= s->used_ch_count;
  326. if(s->resample)
  327. s->in_buffer.ch_count= s->used_ch_count;
  328. }
  329. if(!s->resample_first){
  330. s->midbuf.ch_count= s->out.ch_count;
  331. if(s->resample)
  332. s->in_buffer.ch_count = s->out.ch_count;
  333. }
  334. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  335. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  336. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  337. if(s->resample){
  338. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  339. }
  340. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  341. return ret;
  342. if(s->rematrix || s->dither.method)
  343. return swri_rematrix_init(s);
  344. return 0;
  345. }
  346. int swri_realloc_audio(AudioData *a, int count){
  347. int i, countb;
  348. AudioData old;
  349. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  350. return AVERROR(EINVAL);
  351. if(a->count >= count)
  352. return 0;
  353. count*=2;
  354. countb= FFALIGN(count*a->bps, ALIGN);
  355. old= *a;
  356. av_assert0(a->bps);
  357. av_assert0(a->ch_count);
  358. a->data= av_mallocz(countb*a->ch_count);
  359. if(!a->data)
  360. return AVERROR(ENOMEM);
  361. for(i=0; i<a->ch_count; i++){
  362. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  363. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  364. }
  365. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  366. av_free(old.data);
  367. a->count= count;
  368. return 1;
  369. }
  370. static void copy(AudioData *out, AudioData *in,
  371. int count){
  372. av_assert0(out->planar == in->planar);
  373. av_assert0(out->bps == in->bps);
  374. av_assert0(out->ch_count == in->ch_count);
  375. if(out->planar){
  376. int ch;
  377. for(ch=0; ch<out->ch_count; ch++)
  378. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  379. }else
  380. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  381. }
  382. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  383. int i;
  384. if(!in_arg){
  385. memset(out->ch, 0, sizeof(out->ch));
  386. }else if(out->planar){
  387. for(i=0; i<out->ch_count; i++)
  388. out->ch[i]= in_arg[i];
  389. }else{
  390. for(i=0; i<out->ch_count; i++)
  391. out->ch[i]= in_arg[0] + i*out->bps;
  392. }
  393. }
  394. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  395. int i;
  396. if(out->planar){
  397. for(i=0; i<out->ch_count; i++)
  398. in_arg[i]= out->ch[i];
  399. }else{
  400. in_arg[0]= out->ch[0];
  401. }
  402. }
  403. /**
  404. *
  405. * out may be equal in.
  406. */
  407. static void buf_set(AudioData *out, AudioData *in, int count){
  408. int ch;
  409. if(in->planar){
  410. for(ch=0; ch<out->ch_count; ch++)
  411. out->ch[ch]= in->ch[ch] + count*out->bps;
  412. }else{
  413. for(ch=out->ch_count-1; ch>=0; ch--)
  414. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  415. }
  416. }
  417. /**
  418. *
  419. * @return number of samples output per channel
  420. */
  421. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  422. const AudioData * in_param, int in_count){
  423. AudioData in, out, tmp;
  424. int ret_sum=0;
  425. int border=0;
  426. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  427. av_assert1(s->in_buffer.planar == in_param->planar);
  428. av_assert1(s->in_buffer.fmt == in_param->fmt);
  429. tmp=out=*out_param;
  430. in = *in_param;
  431. do{
  432. int ret, size, consumed;
  433. if(!s->resample_in_constraint && s->in_buffer_count){
  434. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  435. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  436. out_count -= ret;
  437. ret_sum += ret;
  438. buf_set(&out, &out, ret);
  439. s->in_buffer_count -= consumed;
  440. s->in_buffer_index += consumed;
  441. if(!in_count)
  442. break;
  443. if(s->in_buffer_count <= border){
  444. buf_set(&in, &in, -s->in_buffer_count);
  445. in_count += s->in_buffer_count;
  446. s->in_buffer_count=0;
  447. s->in_buffer_index=0;
  448. border = 0;
  449. }
  450. }
  451. if((s->flushed || in_count) && !s->in_buffer_count){
  452. s->in_buffer_index=0;
  453. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  454. out_count -= ret;
  455. ret_sum += ret;
  456. buf_set(&out, &out, ret);
  457. in_count -= consumed;
  458. buf_set(&in, &in, consumed);
  459. }
  460. //TODO is this check sane considering the advanced copy avoidance below
  461. size= s->in_buffer_index + s->in_buffer_count + in_count;
  462. if( size > s->in_buffer.count
  463. && s->in_buffer_count + in_count <= s->in_buffer_index){
  464. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  465. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  466. s->in_buffer_index=0;
  467. }else
  468. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  469. return ret;
  470. if(in_count){
  471. int count= in_count;
  472. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  473. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  474. copy(&tmp, &in, /*in_*/count);
  475. s->in_buffer_count += count;
  476. in_count -= count;
  477. border += count;
  478. buf_set(&in, &in, count);
  479. s->resample_in_constraint= 0;
  480. if(s->in_buffer_count != count || in_count)
  481. continue;
  482. }
  483. break;
  484. }while(1);
  485. s->resample_in_constraint= !!out_count;
  486. return ret_sum;
  487. }
  488. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  489. AudioData *in , int in_count){
  490. AudioData *postin, *midbuf, *preout;
  491. int ret/*, in_max*/;
  492. AudioData preout_tmp, midbuf_tmp;
  493. if(s->full_convert){
  494. av_assert0(!s->resample);
  495. swri_audio_convert(s->full_convert, out, in, in_count);
  496. return out_count;
  497. }
  498. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  499. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  500. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  501. return ret;
  502. if(s->resample_first){
  503. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  504. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  505. return ret;
  506. }else{
  507. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  508. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  509. return ret;
  510. }
  511. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  512. return ret;
  513. postin= &s->postin;
  514. midbuf_tmp= s->midbuf;
  515. midbuf= &midbuf_tmp;
  516. preout_tmp= s->preout;
  517. preout= &preout_tmp;
  518. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  519. postin= in;
  520. if(s->resample_first ? !s->resample : !s->rematrix)
  521. midbuf= postin;
  522. if(s->resample_first ? !s->rematrix : !s->resample)
  523. preout= midbuf;
  524. if (preout == in && s->dither.method) {
  525. av_assert1(postin == midbuf && midbuf == preout);
  526. postin = midbuf = preout = &preout_tmp;
  527. }
  528. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  529. if(preout==in){
  530. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  531. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  532. copy(out, in, out_count);
  533. return out_count;
  534. }
  535. else if(preout==postin) preout= midbuf= postin= out;
  536. else if(preout==midbuf) preout= midbuf= out;
  537. else preout= out;
  538. }
  539. if(in != postin){
  540. swri_audio_convert(s->in_convert, postin, in, in_count);
  541. }
  542. if(s->resample_first){
  543. if(postin != midbuf)
  544. out_count= resample(s, midbuf, out_count, postin, in_count);
  545. if(midbuf != preout)
  546. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  547. }else{
  548. if(postin != midbuf)
  549. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  550. if(midbuf != preout)
  551. out_count= resample(s, preout, out_count, midbuf, in_count);
  552. }
  553. if(preout != out && out_count){
  554. if(s->dither.method){
  555. int ch;
  556. int dither_count= FFMAX(out_count, 1<<16);
  557. av_assert0(preout != in);
  558. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  559. return ret;
  560. if(ret)
  561. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  562. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  563. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  564. if(s->dither.dither_pos + out_count > s->dither.noise.count)
  565. s->dither.dither_pos = 0;
  566. if (s->dither.method < SWR_DITHER_NS){
  567. if (s->mix_2_1_simd) {
  568. int len1= out_count&~15;
  569. int off = len1 * preout->bps;
  570. if(len1)
  571. for(ch=0; ch<preout->ch_count; ch++)
  572. s->mix_2_1_simd(preout->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.dither_pos, s->native_one, 0, 0, len1);
  573. if(out_count != len1)
  574. for(ch=0; ch<preout->ch_count; ch++)
  575. s->mix_2_1_f(preout->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.dither_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  576. } else {
  577. for(ch=0; ch<preout->ch_count; ch++)
  578. s->mix_2_1_f(preout->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.dither_pos, s->native_one, 0, 0, out_count);
  579. }
  580. } else {
  581. switch(s->int_sample_fmt) {
  582. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, preout, &s->dither.noise, out_count); break;
  583. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, preout, &s->dither.noise, out_count); break;
  584. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, preout, &s->dither.noise, out_count); break;
  585. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,preout, &s->dither.noise, out_count); break;
  586. }
  587. }
  588. s->dither.dither_pos += out_count;
  589. }
  590. //FIXME packed doesnt need more than 1 chan here!
  591. swri_audio_convert(s->out_convert, out, preout, out_count);
  592. }
  593. return out_count;
  594. }
  595. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  596. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  597. AudioData * in= &s->in;
  598. AudioData *out= &s->out;
  599. if(s->drop_output > 0){
  600. int ret;
  601. AudioData tmp = s->out;
  602. uint8_t *tmp_arg[SWR_CH_MAX];
  603. tmp.count = 0;
  604. tmp.data = NULL;
  605. if((ret=swri_realloc_audio(&tmp, s->drop_output))<0)
  606. return ret;
  607. reversefill_audiodata(&tmp, tmp_arg);
  608. s->drop_output *= -1; //FIXME find a less hackish solution
  609. ret = swr_convert(s, tmp_arg, -s->drop_output, in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  610. s->drop_output *= -1;
  611. if(ret>0)
  612. s->drop_output -= ret;
  613. av_freep(&tmp.data);
  614. if(s->drop_output || !out_arg)
  615. return 0;
  616. in_count = 0;
  617. }
  618. if(!in_arg){
  619. if(s->resample){
  620. if (!s->flushed)
  621. s->resampler->flush(s);
  622. s->resample_in_constraint = 0;
  623. s->flushed = 1;
  624. }else if(!s->in_buffer_count){
  625. return 0;
  626. }
  627. }else
  628. fill_audiodata(in , (void*)in_arg);
  629. fill_audiodata(out, out_arg);
  630. if(s->resample){
  631. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  632. if(ret>0 && !s->drop_output)
  633. s->outpts += ret * (int64_t)s->in_sample_rate;
  634. return ret;
  635. }else{
  636. AudioData tmp= *in;
  637. int ret2=0;
  638. int ret, size;
  639. size = FFMIN(out_count, s->in_buffer_count);
  640. if(size){
  641. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  642. ret= swr_convert_internal(s, out, size, &tmp, size);
  643. if(ret<0)
  644. return ret;
  645. ret2= ret;
  646. s->in_buffer_count -= ret;
  647. s->in_buffer_index += ret;
  648. buf_set(out, out, ret);
  649. out_count -= ret;
  650. if(!s->in_buffer_count)
  651. s->in_buffer_index = 0;
  652. }
  653. if(in_count){
  654. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  655. if(in_count > out_count) { //FIXME move after swr_convert_internal
  656. if( size > s->in_buffer.count
  657. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  658. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  659. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  660. s->in_buffer_index=0;
  661. }else
  662. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  663. return ret;
  664. }
  665. if(out_count){
  666. size = FFMIN(in_count, out_count);
  667. ret= swr_convert_internal(s, out, size, in, size);
  668. if(ret<0)
  669. return ret;
  670. buf_set(in, in, ret);
  671. in_count -= ret;
  672. ret2 += ret;
  673. }
  674. if(in_count){
  675. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  676. copy(&tmp, in, in_count);
  677. s->in_buffer_count += in_count;
  678. }
  679. }
  680. if(ret2>0 && !s->drop_output)
  681. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  682. return ret2;
  683. }
  684. }
  685. int swr_drop_output(struct SwrContext *s, int count){
  686. s->drop_output += count;
  687. if(s->drop_output <= 0)
  688. return 0;
  689. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  690. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  691. }
  692. int swr_inject_silence(struct SwrContext *s, int count){
  693. int ret, i;
  694. AudioData silence = s->in;
  695. uint8_t *tmp_arg[SWR_CH_MAX];
  696. if(count <= 0)
  697. return 0;
  698. silence.count = 0;
  699. silence.data = NULL;
  700. if((ret=swri_realloc_audio(&silence, count))<0)
  701. return ret;
  702. if(silence.planar) for(i=0; i<silence.ch_count; i++) {
  703. memset(silence.ch[i], silence.bps==1 ? 0x80 : 0, count*silence.bps);
  704. } else
  705. memset(silence.ch[0], silence.bps==1 ? 0x80 : 0, count*silence.bps*silence.ch_count);
  706. reversefill_audiodata(&silence, tmp_arg);
  707. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  708. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  709. av_freep(&silence.data);
  710. return ret;
  711. }
  712. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  713. if (s->resampler && s->resample){
  714. return s->resampler->get_delay(s, base);
  715. }else{
  716. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  717. }
  718. }
  719. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  720. int ret;
  721. if (!s || compensation_distance < 0)
  722. return AVERROR(EINVAL);
  723. if (!compensation_distance && sample_delta)
  724. return AVERROR(EINVAL);
  725. if (!s->resample) {
  726. s->flags |= SWR_FLAG_RESAMPLE;
  727. ret = swr_init(s);
  728. if (ret < 0)
  729. return ret;
  730. }
  731. if (!s->resampler->set_compensation){
  732. return AVERROR(EINVAL);
  733. }else{
  734. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  735. }
  736. }
  737. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  738. if(pts == INT64_MIN)
  739. return s->outpts;
  740. if(s->min_compensation >= FLT_MAX) {
  741. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  742. } else {
  743. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts;
  744. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  745. if(fabs(fdelta) > s->min_compensation) {
  746. if(!s->outpts || fabs(fdelta) > s->min_hard_compensation){
  747. int ret;
  748. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  749. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  750. if(ret<0){
  751. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  752. }
  753. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  754. int duration = s->out_sample_rate * s->soft_compensation_duration;
  755. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  756. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  757. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  758. swr_set_compensation(s, comp, duration);
  759. }
  760. }
  761. return s->outpts;
  762. }
  763. }