| 
							- /*
 -  * AMR narrowband decoder
 -  * Copyright (c) 2006-2007 Robert Swain
 -  * Copyright (c) 2009 Colin McQuillan
 -  *
 -  * This file is part of Libav.
 -  *
 -  * Libav is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * Libav is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with Libav; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - 
 - /**
 -  * @file
 -  * AMR narrowband decoder
 -  *
 -  * This decoder uses floats for simplicity and so is not bit-exact. One
 -  * difference is that differences in phase can accumulate. The test sequences
 -  * in 3GPP TS 26.074 can still be useful.
 -  *
 -  * - Comparing this file's output to the output of the ref decoder gives a
 -  *   PSNR of 30 to 80. Plotting the output samples shows a difference in
 -  *   phase in some areas.
 -  *
 -  * - Comparing both decoders against their input, this decoder gives a similar
 -  *   PSNR. If the test sequence homing frames are removed (this decoder does
 -  *   not detect them), the PSNR is at least as good as the reference on 140
 -  *   out of 169 tests.
 -  */
 - 
 - 
 - #include <string.h>
 - #include <math.h>
 - 
 - #include "avcodec.h"
 - #include "get_bits.h"
 - #include "libavutil/common.h"
 - #include "celp_math.h"
 - #include "celp_filters.h"
 - #include "acelp_filters.h"
 - #include "acelp_vectors.h"
 - #include "acelp_pitch_delay.h"
 - #include "lsp.h"
 - #include "amr.h"
 - 
 - #include "amrnbdata.h"
 - 
 - #define AMR_BLOCK_SIZE              160   ///< samples per frame
 - #define AMR_SAMPLE_BOUND        32768.0   ///< threshold for synthesis overflow
 - 
 - /**
 -  * Scale from constructed speech to [-1,1]
 -  *
 -  * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
 -  * upscales by two (section 6.2.2).
 -  *
 -  * Fundamentally, this scale is determined by energy_mean through
 -  * the fixed vector contribution to the excitation vector.
 -  */
 - #define AMR_SAMPLE_SCALE  (2.0 / 32768.0)
 - 
 - /** Prediction factor for 12.2kbit/s mode */
 - #define PRED_FAC_MODE_12k2             0.65
 - 
 - #define LSF_R_FAC          (8000.0 / 32768.0) ///< LSF residual tables to Hertz
 - #define MIN_LSF_SPACING    (50.0488 / 8000.0) ///< Ensures stability of LPC filter
 - #define PITCH_LAG_MIN_MODE_12k2          18   ///< Lower bound on decoded lag search in 12.2kbit/s mode
 - 
 - /** Initial energy in dB. Also used for bad frames (unimplemented). */
 - #define MIN_ENERGY -14.0
 - 
 - /** Maximum sharpening factor
 -  *
 -  * The specification says 0.8, which should be 13107, but the reference C code
 -  * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in bitexact G.729.)
 -  */
 - #define SHARP_MAX 0.79449462890625
 - 
 - /** Number of impulse response coefficients used for tilt factor */
 - #define AMR_TILT_RESPONSE   22
 - /** Tilt factor = 1st reflection coefficient * gamma_t */
 - #define AMR_TILT_GAMMA_T   0.8
 - /** Adaptive gain control factor used in post-filter */
 - #define AMR_AGC_ALPHA      0.9
 - 
 - typedef struct AMRContext {
 -     AVFrame                         avframe; ///< AVFrame for decoded samples
 -     AMRNBFrame                        frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
 -     uint8_t             bad_frame_indicator; ///< bad frame ? 1 : 0
 -     enum Mode                cur_frame_mode;
 - 
 -     int16_t     prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
 -     double          lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
 -     double   prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
 - 
 -     float         lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
 -     float          lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
 - 
 -     float           lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
 - 
 -     uint8_t                   pitch_lag_int; ///< integer part of pitch lag from current subframe
 - 
 -     float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
 -     float                       *excitation; ///< pointer to the current excitation vector in excitation_buf
 - 
 -     float   pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
 -     float   fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
 - 
 -     float               prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
 -     float                     pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
 -     float                     fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
 - 
 -     float                              beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
 -     uint8_t                      diff_count; ///< the number of subframes for which diff has been above 0.65
 -     uint8_t                      hang_count; ///< the number of subframes since a hangover period started
 - 
 -     float            prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
 -     uint8_t               prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
 -     uint8_t                 ir_filter_onset; ///< flag for impulse response filter strength
 - 
 -     float                postfilter_mem[10]; ///< previous intermediate values in the formant filter
 -     float                          tilt_mem; ///< previous input to tilt compensation filter
 -     float                    postfilter_agc; ///< previous factor used for adaptive gain control
 -     float                  high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
 - 
 -     float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
 - 
 - } AMRContext;
 - 
 - /** Double version of ff_weighted_vector_sumf() */
 - static void weighted_vector_sumd(double *out, const double *in_a,
 -                                  const double *in_b, double weight_coeff_a,
 -                                  double weight_coeff_b, int length)
 - {
 -     int i;
 - 
 -     for (i = 0; i < length; i++)
 -         out[i] = weight_coeff_a * in_a[i]
 -                + weight_coeff_b * in_b[i];
 - }
 - 
 - static av_cold int amrnb_decode_init(AVCodecContext *avctx)
 - {
 -     AMRContext *p = avctx->priv_data;
 -     int i;
 - 
 -     avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
 - 
 -     // p->excitation always points to the same position in p->excitation_buf
 -     p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
 - 
 -     for (i = 0; i < LP_FILTER_ORDER; i++) {
 -         p->prev_lsp_sub4[i] =    lsp_sub4_init[i] * 1000 / (float)(1 << 15);
 -         p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
 -     }
 - 
 -     for (i = 0; i < 4; i++)
 -         p->prediction_error[i] = MIN_ENERGY;
 - 
 -     avcodec_get_frame_defaults(&p->avframe);
 -     avctx->coded_frame = &p->avframe;
 - 
 -     return 0;
 - }
 - 
 - 
 - /**
 -  * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
 -  *
 -  * The order of speech bits is specified by 3GPP TS 26.101.
 -  *
 -  * @param p the context
 -  * @param buf               pointer to the input buffer
 -  * @param buf_size          size of the input buffer
 -  *
 -  * @return the frame mode
 -  */
 - static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
 -                                   int buf_size)
 - {
 -     GetBitContext gb;
 -     enum Mode mode;
 - 
 -     init_get_bits(&gb, buf, buf_size * 8);
 - 
 -     // Decode the first octet.
 -     skip_bits(&gb, 1);                        // padding bit
 -     mode = get_bits(&gb, 4);                  // frame type
 -     p->bad_frame_indicator = !get_bits1(&gb); // quality bit
 -     skip_bits(&gb, 2);                        // two padding bits
 - 
 -     if (mode < MODE_DTX)
 -         ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
 -                            amr_unpacking_bitmaps_per_mode[mode]);
 - 
 -     return mode;
 - }
 - 
 - 
 - /// @name AMR pitch LPC coefficient decoding functions
 - /// @{
 - 
 - /**
 -  * Interpolate the LSF vector (used for fixed gain smoothing).
 -  * The interpolation is done over all four subframes even in MODE_12k2.
 -  *
 -  * @param[in,out] lsf_q     LSFs in [0,1] for each subframe
 -  * @param[in]     lsf_new   New LSFs in [0,1] for subframe 4
 -  */
 - static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
 - {
 -     int i;
 - 
 -     for (i = 0; i < 4; i++)
 -         ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
 -                                 0.25 * (3 - i), 0.25 * (i + 1),
 -                                 LP_FILTER_ORDER);
 - }
 - 
 - /**
 -  * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
 -  *
 -  * @param p the context
 -  * @param lsp output LSP vector
 -  * @param lsf_no_r LSF vector without the residual vector added
 -  * @param lsf_quantizer pointers to LSF dictionary tables
 -  * @param quantizer_offset offset in tables
 -  * @param sign for the 3 dictionary table
 -  * @param update store data for computing the next frame's LSFs
 -  */
 - static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
 -                                  const float lsf_no_r[LP_FILTER_ORDER],
 -                                  const int16_t *lsf_quantizer[5],
 -                                  const int quantizer_offset,
 -                                  const int sign, const int update)
 - {
 -     int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
 -     float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
 -     int i;
 - 
 -     for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
 -         memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
 -                2 * sizeof(*lsf_r));
 - 
 -     if (sign) {
 -         lsf_r[4] *= -1;
 -         lsf_r[5] *= -1;
 -     }
 - 
 -     if (update)
 -         memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
 - 
 -     for (i = 0; i < LP_FILTER_ORDER; i++)
 -         lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
 - 
 -     ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
 - 
 -     if (update)
 -         interpolate_lsf(p->lsf_q, lsf_q);
 - 
 -     ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
 - }
 - 
 - /**
 -  * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
 -  *
 -  * @param p                 pointer to the AMRContext
 -  */
 - static void lsf2lsp_5(AMRContext *p)
 - {
 -     const uint16_t *lsf_param = p->frame.lsf;
 -     float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
 -     const int16_t *lsf_quantizer[5];
 -     int i;
 - 
 -     lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
 -     lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
 -     lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
 -     lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
 -     lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
 - 
 -     for (i = 0; i < LP_FILTER_ORDER; i++)
 -         lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
 - 
 -     lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
 -     lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
 - 
 -     // interpolate LSP vectors at subframes 1 and 3
 -     weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
 -     weighted_vector_sumd(p->lsp[2], p->lsp[1]       , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
 - }
 - 
 - /**
 -  * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
 -  *
 -  * @param p                 pointer to the AMRContext
 -  */
 - static void lsf2lsp_3(AMRContext *p)
 - {
 -     const uint16_t *lsf_param = p->frame.lsf;
 -     int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
 -     float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
 -     const int16_t *lsf_quantizer;
 -     int i, j;
 - 
 -     lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
 -     memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
 - 
 -     lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
 -     memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
 - 
 -     lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
 -     memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
 - 
 -     // calculate mean-removed LSF vector and add mean
 -     for (i = 0; i < LP_FILTER_ORDER; i++)
 -         lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
 - 
 -     ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
 - 
 -     // store data for computing the next frame's LSFs
 -     interpolate_lsf(p->lsf_q, lsf_q);
 -     memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
 - 
 -     ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
 - 
 -     // interpolate LSP vectors at subframes 1, 2 and 3
 -     for (i = 1; i <= 3; i++)
 -         for(j = 0; j < LP_FILTER_ORDER; j++)
 -             p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
 -                 (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
 - }
 - 
 - /// @}
 - 
 - 
 - /// @name AMR pitch vector decoding functions
 - /// @{
 - 
 - /**
 -  * Like ff_decode_pitch_lag(), but with 1/6 resolution
 -  */
 - static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
 -                                  const int prev_lag_int, const int subframe)
 - {
 -     if (subframe == 0 || subframe == 2) {
 -         if (pitch_index < 463) {
 -             *lag_int  = (pitch_index + 107) * 10923 >> 16;
 -             *lag_frac = pitch_index - *lag_int * 6 + 105;
 -         } else {
 -             *lag_int  = pitch_index - 368;
 -             *lag_frac = 0;
 -         }
 -     } else {
 -         *lag_int  = ((pitch_index + 5) * 10923 >> 16) - 1;
 -         *lag_frac = pitch_index - *lag_int * 6 - 3;
 -         *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
 -                             PITCH_DELAY_MAX - 9);
 -     }
 - }
 - 
 - static void decode_pitch_vector(AMRContext *p,
 -                                 const AMRNBSubframe *amr_subframe,
 -                                 const int subframe)
 - {
 -     int pitch_lag_int, pitch_lag_frac;
 -     enum Mode mode = p->cur_frame_mode;
 - 
 -     if (p->cur_frame_mode == MODE_12k2) {
 -         decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
 -                              amr_subframe->p_lag, p->pitch_lag_int,
 -                              subframe);
 -     } else
 -         ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
 -                             amr_subframe->p_lag,
 -                             p->pitch_lag_int, subframe,
 -                             mode != MODE_4k75 && mode != MODE_5k15,
 -                             mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
 - 
 -     p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
 - 
 -     pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
 - 
 -     pitch_lag_int += pitch_lag_frac > 0;
 - 
 -     /* Calculate the pitch vector by interpolating the past excitation at the
 -        pitch lag using a b60 hamming windowed sinc function.   */
 -     ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
 -                           ff_b60_sinc, 6,
 -                           pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
 -                           10, AMR_SUBFRAME_SIZE);
 - 
 -     memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
 - }
 - 
 - /// @}
 - 
 - 
 - /// @name AMR algebraic code book (fixed) vector decoding functions
 - /// @{
 - 
 - /**
 -  * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
 -  */
 - static void decode_10bit_pulse(int code, int pulse_position[8],
 -                                int i1, int i2, int i3)
 - {
 -     // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
 -     // the 3 pulses and the upper 7 bits being coded in base 5
 -     const uint8_t *positions = base_five_table[code >> 3];
 -     pulse_position[i1] = (positions[2] << 1) + ( code       & 1);
 -     pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
 -     pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
 - }
 - 
 - /**
 -  * Decode the algebraic codebook index to pulse positions and signs and
 -  * construct the algebraic codebook vector for MODE_10k2.
 -  *
 -  * @param fixed_index          positions of the eight pulses
 -  * @param fixed_sparse         pointer to the algebraic codebook vector
 -  */
 - static void decode_8_pulses_31bits(const int16_t *fixed_index,
 -                                    AMRFixed *fixed_sparse)
 - {
 -     int pulse_position[8];
 -     int i, temp;
 - 
 -     decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
 -     decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
 - 
 -     // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
 -     // the 2 pulses and the upper 5 bits being coded in base 5
 -     temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
 -     pulse_position[3] = temp % 5;
 -     pulse_position[7] = temp / 5;
 -     if (pulse_position[7] & 1)
 -         pulse_position[3] = 4 - pulse_position[3];
 -     pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6]       & 1);
 -     pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
 - 
 -     fixed_sparse->n = 8;
 -     for (i = 0; i < 4; i++) {
 -         const int pos1   = (pulse_position[i]     << 2) + i;
 -         const int pos2   = (pulse_position[i + 4] << 2) + i;
 -         const float sign = fixed_index[i] ? -1.0 : 1.0;
 -         fixed_sparse->x[i    ] = pos1;
 -         fixed_sparse->x[i + 4] = pos2;
 -         fixed_sparse->y[i    ] = sign;
 -         fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
 -     }
 - }
 - 
 - /**
 -  * Decode the algebraic codebook index to pulse positions and signs,
 -  * then construct the algebraic codebook vector.
 -  *
 -  *                              nb of pulses | bits encoding pulses
 -  * For MODE_4k75 or MODE_5k15,             2 | 1-3, 4-6, 7
 -  *                  MODE_5k9,              2 | 1,   2-4, 5-6, 7-9
 -  *                  MODE_6k7,              3 | 1-3, 4,   5-7, 8,  9-11
 -  *      MODE_7k4 or MODE_7k95,             4 | 1-3, 4-6, 7-9, 10, 11-13
 -  *
 -  * @param fixed_sparse pointer to the algebraic codebook vector
 -  * @param pulses       algebraic codebook indexes
 -  * @param mode         mode of the current frame
 -  * @param subframe     current subframe number
 -  */
 - static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
 -                                 const enum Mode mode, const int subframe)
 - {
 -     assert(MODE_4k75 <= mode && mode <= MODE_12k2);
 - 
 -     if (mode == MODE_12k2) {
 -         ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
 -     } else if (mode == MODE_10k2) {
 -         decode_8_pulses_31bits(pulses, fixed_sparse);
 -     } else {
 -         int *pulse_position = fixed_sparse->x;
 -         int i, pulse_subset;
 -         const int fixed_index = pulses[0];
 - 
 -         if (mode <= MODE_5k15) {
 -             pulse_subset      = ((fixed_index >> 3) & 8)     + (subframe << 1);
 -             pulse_position[0] = ( fixed_index       & 7) * 5 + track_position[pulse_subset];
 -             pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
 -             fixed_sparse->n = 2;
 -         } else if (mode == MODE_5k9) {
 -             pulse_subset      = ((fixed_index & 1) << 1) + 1;
 -             pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
 -             pulse_subset      = (fixed_index  >> 4) & 3;
 -             pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
 -             fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
 -         } else if (mode == MODE_6k7) {
 -             pulse_position[0] = (fixed_index        & 7) * 5;
 -             pulse_subset      = (fixed_index  >> 2) & 2;
 -             pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
 -             pulse_subset      = (fixed_index  >> 6) & 2;
 -             pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
 -             fixed_sparse->n = 3;
 -         } else { // mode <= MODE_7k95
 -             pulse_position[0] = gray_decode[ fixed_index        & 7];
 -             pulse_position[1] = gray_decode[(fixed_index >> 3)  & 7] + 1;
 -             pulse_position[2] = gray_decode[(fixed_index >> 6)  & 7] + 2;
 -             pulse_subset      = (fixed_index >> 9) & 1;
 -             pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
 -             fixed_sparse->n = 4;
 -         }
 -         for (i = 0; i < fixed_sparse->n; i++)
 -             fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
 -     }
 - }
 - 
 - /**
 -  * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
 -  *
 -  * @param p the context
 -  * @param subframe unpacked amr subframe
 -  * @param mode mode of the current frame
 -  * @param fixed_sparse sparse respresentation of the fixed vector
 -  */
 - static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
 -                              AMRFixed *fixed_sparse)
 - {
 -     // The spec suggests the current pitch gain is always used, but in other
 -     // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
 -     // so the codebook gain cannot depend on the quantized pitch gain.
 -     if (mode == MODE_12k2)
 -         p->beta = FFMIN(p->pitch_gain[4], 1.0);
 - 
 -     fixed_sparse->pitch_lag  = p->pitch_lag_int;
 -     fixed_sparse->pitch_fac  = p->beta;
 - 
 -     // Save pitch sharpening factor for the next subframe
 -     // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
 -     // the fact that the gains for two subframes are jointly quantized.
 -     if (mode != MODE_4k75 || subframe & 1)
 -         p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
 - }
 - /// @}
 - 
 - 
 - /// @name AMR gain decoding functions
 - /// @{
 - 
 - /**
 -  * fixed gain smoothing
 -  * Note that where the spec specifies the "spectrum in the q domain"
 -  * in section 6.1.4, in fact frequencies should be used.
 -  *
 -  * @param p the context
 -  * @param lsf LSFs for the current subframe, in the range [0,1]
 -  * @param lsf_avg averaged LSFs
 -  * @param mode mode of the current frame
 -  *
 -  * @return fixed gain smoothed
 -  */
 - static float fixed_gain_smooth(AMRContext *p , const float *lsf,
 -                                const float *lsf_avg, const enum Mode mode)
 - {
 -     float diff = 0.0;
 -     int i;
 - 
 -     for (i = 0; i < LP_FILTER_ORDER; i++)
 -         diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
 - 
 -     // If diff is large for ten subframes, disable smoothing for a 40-subframe
 -     // hangover period.
 -     p->diff_count++;
 -     if (diff <= 0.65)
 -         p->diff_count = 0;
 - 
 -     if (p->diff_count > 10) {
 -         p->hang_count = 0;
 -         p->diff_count--; // don't let diff_count overflow
 -     }
 - 
 -     if (p->hang_count < 40) {
 -         p->hang_count++;
 -     } else if (mode < MODE_7k4 || mode == MODE_10k2) {
 -         const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
 -         const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
 -                                        p->fixed_gain[2] + p->fixed_gain[3] +
 -                                        p->fixed_gain[4]) * 0.2;
 -         return smoothing_factor * p->fixed_gain[4] +
 -                (1.0 - smoothing_factor) * fixed_gain_mean;
 -     }
 -     return p->fixed_gain[4];
 - }
 - 
 - /**
 -  * Decode pitch gain and fixed gain factor (part of section 6.1.3).
 -  *
 -  * @param p the context
 -  * @param amr_subframe unpacked amr subframe
 -  * @param mode mode of the current frame
 -  * @param subframe current subframe number
 -  * @param fixed_gain_factor decoded gain correction factor
 -  */
 - static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
 -                          const enum Mode mode, const int subframe,
 -                          float *fixed_gain_factor)
 - {
 -     if (mode == MODE_12k2 || mode == MODE_7k95) {
 -         p->pitch_gain[4]   = qua_gain_pit [amr_subframe->p_gain    ]
 -             * (1.0 / 16384.0);
 -         *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
 -             * (1.0 /  2048.0);
 -     } else {
 -         const uint16_t *gains;
 - 
 -         if (mode >= MODE_6k7) {
 -             gains = gains_high[amr_subframe->p_gain];
 -         } else if (mode >= MODE_5k15) {
 -             gains = gains_low [amr_subframe->p_gain];
 -         } else {
 -             // gain index is only coded in subframes 0,2 for MODE_4k75
 -             gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
 -         }
 - 
 -         p->pitch_gain[4]   = gains[0] * (1.0 / 16384.0);
 -         *fixed_gain_factor = gains[1] * (1.0 /  4096.0);
 -     }
 - }
 - 
 - /// @}
 - 
 - 
 - /// @name AMR preprocessing functions
 - /// @{
 - 
 - /**
 -  * Circularly convolve a sparse fixed vector with a phase dispersion impulse
 -  * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
 -  *
 -  * @param out vector with filter applied
 -  * @param in source vector
 -  * @param filter phase filter coefficients
 -  *
 -  *  out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
 -  */
 - static void apply_ir_filter(float *out, const AMRFixed *in,
 -                             const float *filter)
 - {
 -     float filter1[AMR_SUBFRAME_SIZE],     ///< filters at pitch lag*1 and *2
 -           filter2[AMR_SUBFRAME_SIZE];
 -     int   lag = in->pitch_lag;
 -     float fac = in->pitch_fac;
 -     int i;
 - 
 -     if (lag < AMR_SUBFRAME_SIZE) {
 -         ff_celp_circ_addf(filter1, filter, filter, lag, fac,
 -                           AMR_SUBFRAME_SIZE);
 - 
 -         if (lag < AMR_SUBFRAME_SIZE >> 1)
 -             ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
 -                               AMR_SUBFRAME_SIZE);
 -     }
 - 
 -     memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
 -     for (i = 0; i < in->n; i++) {
 -         int   x = in->x[i];
 -         float y = in->y[i];
 -         const float *filterp;
 - 
 -         if (x >= AMR_SUBFRAME_SIZE - lag) {
 -             filterp = filter;
 -         } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
 -             filterp = filter1;
 -         } else
 -             filterp = filter2;
 - 
 -         ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
 -     }
 - }
 - 
 - /**
 -  * Reduce fixed vector sparseness by smoothing with one of three IR filters.
 -  * Also know as "adaptive phase dispersion".
 -  *
 -  * This implements 3GPP TS 26.090 section 6.1(5).
 -  *
 -  * @param p the context
 -  * @param fixed_sparse algebraic codebook vector
 -  * @param fixed_vector unfiltered fixed vector
 -  * @param fixed_gain smoothed gain
 -  * @param out space for modified vector if necessary
 -  */
 - static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
 -                                     const float *fixed_vector,
 -                                     float fixed_gain, float *out)
 - {
 -     int ir_filter_nr;
 - 
 -     if (p->pitch_gain[4] < 0.6) {
 -         ir_filter_nr = 0;      // strong filtering
 -     } else if (p->pitch_gain[4] < 0.9) {
 -         ir_filter_nr = 1;      // medium filtering
 -     } else
 -         ir_filter_nr = 2;      // no filtering
 - 
 -     // detect 'onset'
 -     if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
 -         p->ir_filter_onset = 2;
 -     } else if (p->ir_filter_onset)
 -         p->ir_filter_onset--;
 - 
 -     if (!p->ir_filter_onset) {
 -         int i, count = 0;
 - 
 -         for (i = 0; i < 5; i++)
 -             if (p->pitch_gain[i] < 0.6)
 -                 count++;
 -         if (count > 2)
 -             ir_filter_nr = 0;
 - 
 -         if (ir_filter_nr > p->prev_ir_filter_nr + 1)
 -             ir_filter_nr--;
 -     } else if (ir_filter_nr < 2)
 -         ir_filter_nr++;
 - 
 -     // Disable filtering for very low level of fixed_gain.
 -     // Note this step is not specified in the technical description but is in
 -     // the reference source in the function Ph_disp.
 -     if (fixed_gain < 5.0)
 -         ir_filter_nr = 2;
 - 
 -     if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
 -          && ir_filter_nr < 2) {
 -         apply_ir_filter(out, fixed_sparse,
 -                         (p->cur_frame_mode == MODE_7k95 ?
 -                              ir_filters_lookup_MODE_7k95 :
 -                              ir_filters_lookup)[ir_filter_nr]);
 -         fixed_vector = out;
 -     }
 - 
 -     // update ir filter strength history
 -     p->prev_ir_filter_nr       = ir_filter_nr;
 -     p->prev_sparse_fixed_gain  = fixed_gain;
 - 
 -     return fixed_vector;
 - }
 - 
 - /// @}
 - 
 - 
 - /// @name AMR synthesis functions
 - /// @{
 - 
 - /**
 -  * Conduct 10th order linear predictive coding synthesis.
 -  *
 -  * @param p             pointer to the AMRContext
 -  * @param lpc           pointer to the LPC coefficients
 -  * @param fixed_gain    fixed codebook gain for synthesis
 -  * @param fixed_vector  algebraic codebook vector
 -  * @param samples       pointer to the output speech samples
 -  * @param overflow      16-bit overflow flag
 -  */
 - static int synthesis(AMRContext *p, float *lpc,
 -                      float fixed_gain, const float *fixed_vector,
 -                      float *samples, uint8_t overflow)
 - {
 -     int i;
 -     float excitation[AMR_SUBFRAME_SIZE];
 - 
 -     // if an overflow has been detected, the pitch vector is scaled down by a
 -     // factor of 4
 -     if (overflow)
 -         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
 -             p->pitch_vector[i] *= 0.25;
 - 
 -     ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
 -                             p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
 - 
 -     // emphasize pitch vector contribution
 -     if (p->pitch_gain[4] > 0.5 && !overflow) {
 -         float energy = ff_dot_productf(excitation, excitation,
 -                                        AMR_SUBFRAME_SIZE);
 -         float pitch_factor =
 -             p->pitch_gain[4] *
 -             (p->cur_frame_mode == MODE_12k2 ?
 -                 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
 -                 0.5  * FFMIN(p->pitch_gain[4], SHARP_MAX));
 - 
 -         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
 -             excitation[i] += pitch_factor * p->pitch_vector[i];
 - 
 -         ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
 -                                                 AMR_SUBFRAME_SIZE);
 -     }
 - 
 -     ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
 -                                  LP_FILTER_ORDER);
 - 
 -     // detect overflow
 -     for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
 -         if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
 -             return 1;
 -         }
 - 
 -     return 0;
 - }
 - 
 - /// @}
 - 
 - 
 - /// @name AMR update functions
 - /// @{
 - 
 - /**
 -  * Update buffers and history at the end of decoding a subframe.
 -  *
 -  * @param p             pointer to the AMRContext
 -  */
 - static void update_state(AMRContext *p)
 - {
 -     memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
 - 
 -     memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
 -             (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
 - 
 -     memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
 -     memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
 - 
 -     memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
 -             LP_FILTER_ORDER * sizeof(float));
 - }
 - 
 - /// @}
 - 
 - 
 - /// @name AMR Postprocessing functions
 - /// @{
 - 
 - /**
 -  * Get the tilt factor of a formant filter from its transfer function
 -  *
 -  * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
 -  * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
 -  */
 - static float tilt_factor(float *lpc_n, float *lpc_d)
 - {
 -     float rh0, rh1; // autocorrelation at lag 0 and 1
 - 
 -     // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
 -     float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
 -     float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
 - 
 -     hf[0] = 1.0;
 -     memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
 -     ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
 -                                  LP_FILTER_ORDER);
 - 
 -     rh0 = ff_dot_productf(hf, hf,     AMR_TILT_RESPONSE);
 -     rh1 = ff_dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
 - 
 -     // The spec only specifies this check for 12.2 and 10.2 kbit/s
 -     // modes. But in the ref source the tilt is always non-negative.
 -     return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
 - }
 - 
 - /**
 -  * Perform adaptive post-filtering to enhance the quality of the speech.
 -  * See section 6.2.1.
 -  *
 -  * @param p             pointer to the AMRContext
 -  * @param lpc           interpolated LP coefficients for this subframe
 -  * @param buf_out       output of the filter
 -  */
 - static void postfilter(AMRContext *p, float *lpc, float *buf_out)
 - {
 -     int i;
 -     float *samples          = p->samples_in + LP_FILTER_ORDER; // Start of input
 - 
 -     float speech_gain       = ff_dot_productf(samples, samples,
 -                                               AMR_SUBFRAME_SIZE);
 - 
 -     float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER];  // Output of pole filter
 -     const float *gamma_n, *gamma_d;                       // Formant filter factor table
 -     float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
 - 
 -     if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
 -         gamma_n = ff_pow_0_7;
 -         gamma_d = ff_pow_0_75;
 -     } else {
 -         gamma_n = ff_pow_0_55;
 -         gamma_d = ff_pow_0_7;
 -     }
 - 
 -     for (i = 0; i < LP_FILTER_ORDER; i++) {
 -          lpc_n[i] = lpc[i] * gamma_n[i];
 -          lpc_d[i] = lpc[i] * gamma_d[i];
 -     }
 - 
 -     memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
 -     ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
 -                                  AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
 -     memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
 -            sizeof(float) * LP_FILTER_ORDER);
 - 
 -     ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
 -                                       pole_out + LP_FILTER_ORDER,
 -                                       AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
 - 
 -     ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
 -                          AMR_SUBFRAME_SIZE);
 - 
 -     ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
 -                              AMR_AGC_ALPHA, &p->postfilter_agc);
 - }
 - 
 - /// @}
 - 
 - static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
 -                               int *got_frame_ptr, AVPacket *avpkt)
 - {
 - 
 -     AMRContext *p = avctx->priv_data;        // pointer to private data
 -     const uint8_t *buf = avpkt->data;
 -     int buf_size       = avpkt->size;
 -     float *buf_out;                          // pointer to the output data buffer
 -     int i, subframe, ret;
 -     float fixed_gain_factor;
 -     AMRFixed fixed_sparse = {0};             // fixed vector up to anti-sparseness processing
 -     float spare_vector[AMR_SUBFRAME_SIZE];   // extra stack space to hold result from anti-sparseness processing
 -     float synth_fixed_gain;                  // the fixed gain that synthesis should use
 -     const float *synth_fixed_vector;         // pointer to the fixed vector that synthesis should use
 - 
 -     /* get output buffer */
 -     p->avframe.nb_samples = AMR_BLOCK_SIZE;
 -     if ((ret = avctx->get_buffer(avctx, &p->avframe)) < 0) {
 -         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 -         return ret;
 -     }
 -     buf_out = (float *)p->avframe.data[0];
 - 
 -     p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
 -     if (p->cur_frame_mode == MODE_DTX) {
 -         av_log_missing_feature(avctx, "dtx mode", 1);
 -         return -1;
 -     }
 - 
 -     if (p->cur_frame_mode == MODE_12k2) {
 -         lsf2lsp_5(p);
 -     } else
 -         lsf2lsp_3(p);
 - 
 -     for (i = 0; i < 4; i++)
 -         ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
 - 
 -     for (subframe = 0; subframe < 4; subframe++) {
 -         const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
 - 
 -         decode_pitch_vector(p, amr_subframe, subframe);
 - 
 -         decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
 -                             p->cur_frame_mode, subframe);
 - 
 -         // The fixed gain (section 6.1.3) depends on the fixed vector
 -         // (section 6.1.2), but the fixed vector calculation uses
 -         // pitch sharpening based on the on the pitch gain (section 6.1.3).
 -         // So the correct order is: pitch gain, pitch sharpening, fixed gain.
 -         decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
 -                      &fixed_gain_factor);
 - 
 -         pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
 - 
 -         if (fixed_sparse.pitch_lag == 0) {
 -             av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
 -             return AVERROR_INVALIDDATA;
 -         }
 -         ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
 -                             AMR_SUBFRAME_SIZE);
 - 
 -         p->fixed_gain[4] =
 -             ff_amr_set_fixed_gain(fixed_gain_factor,
 -                        ff_dot_productf(p->fixed_vector, p->fixed_vector,
 -                                        AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
 -                        p->prediction_error,
 -                        energy_mean[p->cur_frame_mode], energy_pred_fac);
 - 
 -         // The excitation feedback is calculated without any processing such
 -         // as fixed gain smoothing. This isn't mentioned in the specification.
 -         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
 -             p->excitation[i] *= p->pitch_gain[4];
 -         ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
 -                             AMR_SUBFRAME_SIZE);
 - 
 -         // In the ref decoder, excitation is stored with no fractional bits.
 -         // This step prevents buzz in silent periods. The ref encoder can
 -         // emit long sequences with pitch factor greater than one. This
 -         // creates unwanted feedback if the excitation vector is nonzero.
 -         // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
 -         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
 -             p->excitation[i] = truncf(p->excitation[i]);
 - 
 -         // Smooth fixed gain.
 -         // The specification is ambiguous, but in the reference source, the
 -         // smoothed value is NOT fed back into later fixed gain smoothing.
 -         synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
 -                                              p->lsf_avg, p->cur_frame_mode);
 - 
 -         synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
 -                                              synth_fixed_gain, spare_vector);
 - 
 -         if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
 -                       synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
 -             // overflow detected -> rerun synthesis scaling pitch vector down
 -             // by a factor of 4, skipping pitch vector contribution emphasis
 -             // and adaptive gain control
 -             synthesis(p, p->lpc[subframe], synth_fixed_gain,
 -                       synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
 - 
 -         postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
 - 
 -         // update buffers and history
 -         ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
 -         update_state(p);
 -     }
 - 
 -     ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
 -                                              highpass_poles,
 -                                              highpass_gain * AMR_SAMPLE_SCALE,
 -                                              p->high_pass_mem, AMR_BLOCK_SIZE);
 - 
 -     /* Update averaged lsf vector (used for fixed gain smoothing).
 -      *
 -      * Note that lsf_avg should not incorporate the current frame's LSFs
 -      * for fixed_gain_smooth.
 -      * The specification has an incorrect formula: the reference decoder uses
 -      * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
 -     ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
 -                             0.84, 0.16, LP_FILTER_ORDER);
 - 
 -     *got_frame_ptr   = 1;
 -     *(AVFrame *)data = p->avframe;
 - 
 -     /* return the amount of bytes consumed if everything was OK */
 -     return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
 - }
 - 
 - 
 - AVCodec ff_amrnb_decoder = {
 -     .name           = "amrnb",
 -     .type           = AVMEDIA_TYPE_AUDIO,
 -     .id             = CODEC_ID_AMR_NB,
 -     .priv_data_size = sizeof(AMRContext),
 -     .init           = amrnb_decode_init,
 -     .decode         = amrnb_decode_frame,
 -     .capabilities   = CODEC_CAP_DR1,
 -     .long_name      = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
 -     .sample_fmts    = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
 - };
 
 
  |