You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2504 lines
74KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. //#define DEBUG
  20. #include "avcodec.h"
  21. #include "mpegaudio.h"
  22. /*
  23. * TODO:
  24. * - in low precision mode, use more 16 bit multiplies in synth filter
  25. * - test lsf / mpeg25 extensively.
  26. */
  27. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  28. audio decoder */
  29. #ifdef CONFIG_MPEGAUDIO_HP
  30. #define USE_HIGHPRECISION
  31. #endif
  32. #ifdef USE_HIGHPRECISION
  33. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  34. #define WFRAC_BITS 16 /* fractional bits for window */
  35. #else
  36. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  37. #define WFRAC_BITS 14 /* fractional bits for window */
  38. #endif
  39. #define FRAC_ONE (1 << FRAC_BITS)
  40. #define MULL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS)
  41. #define MUL64(a,b) ((INT64)(a) * (INT64)(b))
  42. #define FIX(a) ((int)((a) * FRAC_ONE))
  43. /* WARNING: only correct for posititive numbers */
  44. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  45. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  46. #if FRAC_BITS <= 15
  47. typedef INT16 MPA_INT;
  48. #else
  49. typedef INT32 MPA_INT;
  50. #endif
  51. /****************/
  52. #define HEADER_SIZE 4
  53. #define BACKSTEP_SIZE 512
  54. typedef struct MPADecodeContext {
  55. UINT8 inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  56. int inbuf_index;
  57. UINT8 *inbuf_ptr, *inbuf;
  58. int frame_size;
  59. int free_format_frame_size; /* frame size in case of free format
  60. (zero if currently unknown) */
  61. /* next header (used in free format parsing) */
  62. UINT32 free_format_next_header;
  63. int error_protection;
  64. int layer;
  65. int sample_rate;
  66. int sample_rate_index; /* between 0 and 8 */
  67. int bit_rate;
  68. int old_frame_size;
  69. GetBitContext gb;
  70. int nb_channels;
  71. int mode;
  72. int mode_ext;
  73. int lsf;
  74. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2];
  75. int synth_buf_offset[MPA_MAX_CHANNELS];
  76. INT32 sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT];
  77. INT32 mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  78. #ifdef DEBUG
  79. int frame_count;
  80. #endif
  81. } MPADecodeContext;
  82. /* layer 3 "granule" */
  83. typedef struct GranuleDef {
  84. UINT8 scfsi;
  85. int part2_3_length;
  86. int big_values;
  87. int global_gain;
  88. int scalefac_compress;
  89. UINT8 block_type;
  90. UINT8 switch_point;
  91. int table_select[3];
  92. int subblock_gain[3];
  93. UINT8 scalefac_scale;
  94. UINT8 count1table_select;
  95. int region_size[3]; /* number of huffman codes in each region */
  96. int preflag;
  97. int short_start, long_end; /* long/short band indexes */
  98. UINT8 scale_factors[40];
  99. INT32 sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  100. } GranuleDef;
  101. #define MODE_EXT_MS_STEREO 2
  102. #define MODE_EXT_I_STEREO 1
  103. /* layer 3 huffman tables */
  104. typedef struct HuffTable {
  105. int xsize;
  106. const UINT8 *bits;
  107. const UINT16 *codes;
  108. } HuffTable;
  109. #include "mpegaudiodectab.h"
  110. /* vlc structure for decoding layer 3 huffman tables */
  111. static VLC huff_vlc[16];
  112. static UINT8 *huff_code_table[16];
  113. static VLC huff_quad_vlc[2];
  114. /* computed from band_size_long */
  115. static UINT16 band_index_long[9][23];
  116. /* XXX: free when all decoders are closed */
  117. #define TABLE_4_3_SIZE (8191 + 16)
  118. static INT8 *table_4_3_exp;
  119. #if FRAC_BITS <= 15
  120. static UINT16 *table_4_3_value;
  121. #else
  122. static UINT32 *table_4_3_value;
  123. #endif
  124. /* intensity stereo coef table */
  125. static INT32 is_table[2][16];
  126. static INT32 is_table_lsf[2][2][16];
  127. static INT32 csa_table[8][2];
  128. static INT32 mdct_win[8][36];
  129. /* lower 2 bits: modulo 3, higher bits: shift */
  130. static UINT16 scale_factor_modshift[64];
  131. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  132. static INT32 scale_factor_mult[15][3];
  133. /* mult table for layer 2 group quantization */
  134. #define SCALE_GEN(v) \
  135. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  136. static INT32 scale_factor_mult2[3][3] = {
  137. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  138. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  139. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  140. };
  141. /* 2^(n/4) */
  142. static UINT32 scale_factor_mult3[4] = {
  143. FIXR(1.0),
  144. FIXR(1.18920711500272106671),
  145. FIXR(1.41421356237309504880),
  146. FIXR(1.68179283050742908605),
  147. };
  148. static MPA_INT window[512];
  149. /* layer 1 unscaling */
  150. /* n = number of bits of the mantissa minus 1 */
  151. static inline int l1_unscale(int n, int mant, int scale_factor)
  152. {
  153. int shift, mod;
  154. INT64 val;
  155. shift = scale_factor_modshift[scale_factor];
  156. mod = shift & 3;
  157. shift >>= 2;
  158. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  159. shift += n;
  160. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  161. return (int)((val + (1LL << (shift - 1))) >> shift);
  162. }
  163. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  164. {
  165. int shift, mod, val;
  166. shift = scale_factor_modshift[scale_factor];
  167. mod = shift & 3;
  168. shift >>= 2;
  169. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  170. /* NOTE: at this point, 0 <= shift <= 21 */
  171. if (shift > 0)
  172. val = (val + (1 << (shift - 1))) >> shift;
  173. return val;
  174. }
  175. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  176. static inline int l3_unscale(int value, int exponent)
  177. {
  178. #if FRAC_BITS <= 15
  179. unsigned int m;
  180. #else
  181. UINT64 m;
  182. #endif
  183. int e;
  184. e = table_4_3_exp[value];
  185. e += (exponent >> 2);
  186. e = FRAC_BITS - e;
  187. #if FRAC_BITS <= 15
  188. if (e > 31)
  189. e = 31;
  190. #endif
  191. m = table_4_3_value[value];
  192. #if FRAC_BITS <= 15
  193. m = (m * scale_factor_mult3[exponent & 3]);
  194. m = (m + (1 << (e-1))) >> e;
  195. return m;
  196. #else
  197. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  198. m = (m + (UINT64_C(1) << (e-1))) >> e;
  199. return m;
  200. #endif
  201. }
  202. /* all integer n^(4/3) computation code */
  203. #define DEV_ORDER 13
  204. #define POW_FRAC_BITS 24
  205. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  206. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  207. #define POW_MULL(a,b) (((INT64)(a) * (INT64)(b)) >> POW_FRAC_BITS)
  208. static int dev_4_3_coefs[DEV_ORDER];
  209. static int pow_mult3[3] = {
  210. POW_FIX(1.0),
  211. POW_FIX(1.25992104989487316476),
  212. POW_FIX(1.58740105196819947474),
  213. };
  214. static void int_pow_init(void)
  215. {
  216. int i, a;
  217. a = POW_FIX(1.0);
  218. for(i=0;i<DEV_ORDER;i++) {
  219. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  220. dev_4_3_coefs[i] = a;
  221. }
  222. }
  223. /* return the mantissa and the binary exponent */
  224. static int int_pow(int i, int *exp_ptr)
  225. {
  226. int e, er, eq, j;
  227. int a, a1;
  228. /* renormalize */
  229. a = i;
  230. e = POW_FRAC_BITS;
  231. while (a < (1 << (POW_FRAC_BITS - 1))) {
  232. a = a << 1;
  233. e--;
  234. }
  235. a -= (1 << POW_FRAC_BITS);
  236. a1 = 0;
  237. for(j = DEV_ORDER - 1; j >= 0; j--)
  238. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  239. a = (1 << POW_FRAC_BITS) + a1;
  240. /* exponent compute (exact) */
  241. e = e * 4;
  242. er = e % 3;
  243. eq = e / 3;
  244. a = POW_MULL(a, pow_mult3[er]);
  245. while (a >= 2 * POW_FRAC_ONE) {
  246. a = a >> 1;
  247. eq++;
  248. }
  249. /* convert to float */
  250. while (a < POW_FRAC_ONE) {
  251. a = a << 1;
  252. eq--;
  253. }
  254. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  255. #if POW_FRAC_BITS > FRAC_BITS
  256. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  257. /* correct overflow */
  258. if (a >= 2 * (1 << FRAC_BITS)) {
  259. a = a >> 1;
  260. eq++;
  261. }
  262. #endif
  263. *exp_ptr = eq;
  264. return a;
  265. }
  266. static int decode_init(AVCodecContext * avctx)
  267. {
  268. MPADecodeContext *s = avctx->priv_data;
  269. static int init;
  270. int i, j, k;
  271. if(!init) {
  272. /* scale factors table for layer 1/2 */
  273. for(i=0;i<64;i++) {
  274. int shift, mod;
  275. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  276. shift = (i / 3);
  277. mod = i % 3;
  278. scale_factor_modshift[i] = mod | (shift << 2);
  279. }
  280. /* scale factor multiply for layer 1 */
  281. for(i=0;i<15;i++) {
  282. int n, norm;
  283. n = i + 2;
  284. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  285. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  286. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  287. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  288. dprintf("%d: norm=%x s=%x %x %x\n",
  289. i, norm,
  290. scale_factor_mult[i][0],
  291. scale_factor_mult[i][1],
  292. scale_factor_mult[i][2]);
  293. }
  294. /* window */
  295. /* max = 18760, max sum over all 16 coefs : 44736 */
  296. for(i=0;i<257;i++) {
  297. int v;
  298. v = mpa_enwindow[i];
  299. #if WFRAC_BITS < 16
  300. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  301. #endif
  302. window[i] = v;
  303. if ((i & 63) != 0)
  304. v = -v;
  305. if (i != 0)
  306. window[512 - i] = v;
  307. }
  308. /* huffman decode tables */
  309. huff_code_table[0] = NULL;
  310. for(i=1;i<16;i++) {
  311. const HuffTable *h = &mpa_huff_tables[i];
  312. int xsize, n, x, y;
  313. UINT8 *code_table;
  314. xsize = h->xsize;
  315. n = xsize * xsize;
  316. /* XXX: fail test */
  317. init_vlc(&huff_vlc[i], 8, n,
  318. h->bits, 1, 1, h->codes, 2, 2);
  319. code_table = av_mallocz(n);
  320. j = 0;
  321. for(x=0;x<xsize;x++) {
  322. for(y=0;y<xsize;y++)
  323. code_table[j++] = (x << 4) | y;
  324. }
  325. huff_code_table[i] = code_table;
  326. }
  327. for(i=0;i<2;i++) {
  328. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  329. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
  330. }
  331. for(i=0;i<9;i++) {
  332. k = 0;
  333. for(j=0;j<22;j++) {
  334. band_index_long[i][j] = k;
  335. k += band_size_long[i][j];
  336. }
  337. band_index_long[i][22] = k;
  338. }
  339. /* compute n ^ (4/3) and store it in mantissa/exp format */
  340. table_4_3_exp = av_mallocz(TABLE_4_3_SIZE *
  341. sizeof(table_4_3_exp[0]));
  342. if (!table_4_3_exp)
  343. return -1;
  344. table_4_3_value = av_mallocz(TABLE_4_3_SIZE *
  345. sizeof(table_4_3_value[0]));
  346. if (!table_4_3_value) {
  347. av_free(table_4_3_exp);
  348. return -1;
  349. }
  350. int_pow_init();
  351. for(i=1;i<TABLE_4_3_SIZE;i++) {
  352. int e, m;
  353. m = int_pow(i, &e);
  354. #if 0
  355. /* test code */
  356. {
  357. double f, fm;
  358. int e1, m1;
  359. f = pow((double)i, 4.0 / 3.0);
  360. fm = frexp(f, &e1);
  361. m1 = FIXR(2 * fm);
  362. #if FRAC_BITS <= 15
  363. if ((unsigned short)m1 != m1) {
  364. m1 = m1 >> 1;
  365. e1++;
  366. }
  367. #endif
  368. e1--;
  369. if (m != m1 || e != e1) {
  370. printf("%4d: m=%x m1=%x e=%d e1=%d\n",
  371. i, m, m1, e, e1);
  372. }
  373. }
  374. #endif
  375. /* normalized to FRAC_BITS */
  376. table_4_3_value[i] = m;
  377. table_4_3_exp[i] = e;
  378. }
  379. for(i=0;i<7;i++) {
  380. float f;
  381. int v;
  382. if (i != 6) {
  383. f = tan((double)i * M_PI / 12.0);
  384. v = FIXR(f / (1.0 + f));
  385. } else {
  386. v = FIXR(1.0);
  387. }
  388. is_table[0][i] = v;
  389. is_table[1][6 - i] = v;
  390. }
  391. /* invalid values */
  392. for(i=7;i<16;i++)
  393. is_table[0][i] = is_table[1][i] = 0.0;
  394. for(i=0;i<16;i++) {
  395. double f;
  396. int e, k;
  397. for(j=0;j<2;j++) {
  398. e = -(j + 1) * ((i + 1) >> 1);
  399. f = pow(2.0, e / 4.0);
  400. k = i & 1;
  401. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  402. is_table_lsf[j][k][i] = FIXR(1.0);
  403. dprintf("is_table_lsf %d %d: %x %x\n",
  404. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  405. }
  406. }
  407. for(i=0;i<8;i++) {
  408. float ci, cs, ca;
  409. ci = ci_table[i];
  410. cs = 1.0 / sqrt(1.0 + ci * ci);
  411. ca = cs * ci;
  412. csa_table[i][0] = FIX(cs);
  413. csa_table[i][1] = FIX(ca);
  414. }
  415. /* compute mdct windows */
  416. for(i=0;i<36;i++) {
  417. int v;
  418. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  419. mdct_win[0][i] = v;
  420. mdct_win[1][i] = v;
  421. mdct_win[3][i] = v;
  422. }
  423. for(i=0;i<6;i++) {
  424. mdct_win[1][18 + i] = FIXR(1.0);
  425. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  426. mdct_win[1][30 + i] = FIXR(0.0);
  427. mdct_win[3][i] = FIXR(0.0);
  428. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  429. mdct_win[3][12 + i] = FIXR(1.0);
  430. }
  431. for(i=0;i<12;i++)
  432. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  433. /* NOTE: we do frequency inversion adter the MDCT by changing
  434. the sign of the right window coefs */
  435. for(j=0;j<4;j++) {
  436. for(i=0;i<36;i+=2) {
  437. mdct_win[j + 4][i] = mdct_win[j][i];
  438. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  439. }
  440. }
  441. #if defined(DEBUG)
  442. for(j=0;j<8;j++) {
  443. printf("win%d=\n", j);
  444. for(i=0;i<36;i++)
  445. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  446. printf("\n");
  447. }
  448. #endif
  449. init = 1;
  450. }
  451. s->inbuf_index = 0;
  452. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  453. s->inbuf_ptr = s->inbuf;
  454. #ifdef DEBUG
  455. s->frame_count = 0;
  456. #endif
  457. return 0;
  458. }
  459. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */;
  460. /* cos(i*pi/64) */
  461. #define COS0_0 FIXR(0.50060299823519630134)
  462. #define COS0_1 FIXR(0.50547095989754365998)
  463. #define COS0_2 FIXR(0.51544730992262454697)
  464. #define COS0_3 FIXR(0.53104259108978417447)
  465. #define COS0_4 FIXR(0.55310389603444452782)
  466. #define COS0_5 FIXR(0.58293496820613387367)
  467. #define COS0_6 FIXR(0.62250412303566481615)
  468. #define COS0_7 FIXR(0.67480834145500574602)
  469. #define COS0_8 FIXR(0.74453627100229844977)
  470. #define COS0_9 FIXR(0.83934964541552703873)
  471. #define COS0_10 FIXR(0.97256823786196069369)
  472. #define COS0_11 FIXR(1.16943993343288495515)
  473. #define COS0_12 FIXR(1.48416461631416627724)
  474. #define COS0_13 FIXR(2.05778100995341155085)
  475. #define COS0_14 FIXR(3.40760841846871878570)
  476. #define COS0_15 FIXR(10.19000812354805681150)
  477. #define COS1_0 FIXR(0.50241928618815570551)
  478. #define COS1_1 FIXR(0.52249861493968888062)
  479. #define COS1_2 FIXR(0.56694403481635770368)
  480. #define COS1_3 FIXR(0.64682178335999012954)
  481. #define COS1_4 FIXR(0.78815462345125022473)
  482. #define COS1_5 FIXR(1.06067768599034747134)
  483. #define COS1_6 FIXR(1.72244709823833392782)
  484. #define COS1_7 FIXR(5.10114861868916385802)
  485. #define COS2_0 FIXR(0.50979557910415916894)
  486. #define COS2_1 FIXR(0.60134488693504528054)
  487. #define COS2_2 FIXR(0.89997622313641570463)
  488. #define COS2_3 FIXR(2.56291544774150617881)
  489. #define COS3_0 FIXR(0.54119610014619698439)
  490. #define COS3_1 FIXR(1.30656296487637652785)
  491. #define COS4_0 FIXR(0.70710678118654752439)
  492. /* butterfly operator */
  493. #define BF(a, b, c)\
  494. {\
  495. tmp0 = tab[a] + tab[b];\
  496. tmp1 = tab[a] - tab[b];\
  497. tab[a] = tmp0;\
  498. tab[b] = MULL(tmp1, c);\
  499. }
  500. #define BF1(a, b, c, d)\
  501. {\
  502. BF(a, b, COS4_0);\
  503. BF(c, d, -COS4_0);\
  504. tab[c] += tab[d];\
  505. }
  506. #define BF2(a, b, c, d)\
  507. {\
  508. BF(a, b, COS4_0);\
  509. BF(c, d, -COS4_0);\
  510. tab[c] += tab[d];\
  511. tab[a] += tab[c];\
  512. tab[c] += tab[b];\
  513. tab[b] += tab[d];\
  514. }
  515. #define ADD(a, b) tab[a] += tab[b]
  516. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  517. static void dct32(INT32 *out, INT32 *tab)
  518. {
  519. int tmp0, tmp1;
  520. /* pass 1 */
  521. BF(0, 31, COS0_0);
  522. BF(1, 30, COS0_1);
  523. BF(2, 29, COS0_2);
  524. BF(3, 28, COS0_3);
  525. BF(4, 27, COS0_4);
  526. BF(5, 26, COS0_5);
  527. BF(6, 25, COS0_6);
  528. BF(7, 24, COS0_7);
  529. BF(8, 23, COS0_8);
  530. BF(9, 22, COS0_9);
  531. BF(10, 21, COS0_10);
  532. BF(11, 20, COS0_11);
  533. BF(12, 19, COS0_12);
  534. BF(13, 18, COS0_13);
  535. BF(14, 17, COS0_14);
  536. BF(15, 16, COS0_15);
  537. /* pass 2 */
  538. BF(0, 15, COS1_0);
  539. BF(1, 14, COS1_1);
  540. BF(2, 13, COS1_2);
  541. BF(3, 12, COS1_3);
  542. BF(4, 11, COS1_4);
  543. BF(5, 10, COS1_5);
  544. BF(6, 9, COS1_6);
  545. BF(7, 8, COS1_7);
  546. BF(16, 31, -COS1_0);
  547. BF(17, 30, -COS1_1);
  548. BF(18, 29, -COS1_2);
  549. BF(19, 28, -COS1_3);
  550. BF(20, 27, -COS1_4);
  551. BF(21, 26, -COS1_5);
  552. BF(22, 25, -COS1_6);
  553. BF(23, 24, -COS1_7);
  554. /* pass 3 */
  555. BF(0, 7, COS2_0);
  556. BF(1, 6, COS2_1);
  557. BF(2, 5, COS2_2);
  558. BF(3, 4, COS2_3);
  559. BF(8, 15, -COS2_0);
  560. BF(9, 14, -COS2_1);
  561. BF(10, 13, -COS2_2);
  562. BF(11, 12, -COS2_3);
  563. BF(16, 23, COS2_0);
  564. BF(17, 22, COS2_1);
  565. BF(18, 21, COS2_2);
  566. BF(19, 20, COS2_3);
  567. BF(24, 31, -COS2_0);
  568. BF(25, 30, -COS2_1);
  569. BF(26, 29, -COS2_2);
  570. BF(27, 28, -COS2_3);
  571. /* pass 4 */
  572. BF(0, 3, COS3_0);
  573. BF(1, 2, COS3_1);
  574. BF(4, 7, -COS3_0);
  575. BF(5, 6, -COS3_1);
  576. BF(8, 11, COS3_0);
  577. BF(9, 10, COS3_1);
  578. BF(12, 15, -COS3_0);
  579. BF(13, 14, -COS3_1);
  580. BF(16, 19, COS3_0);
  581. BF(17, 18, COS3_1);
  582. BF(20, 23, -COS3_0);
  583. BF(21, 22, -COS3_1);
  584. BF(24, 27, COS3_0);
  585. BF(25, 26, COS3_1);
  586. BF(28, 31, -COS3_0);
  587. BF(29, 30, -COS3_1);
  588. /* pass 5 */
  589. BF1(0, 1, 2, 3);
  590. BF2(4, 5, 6, 7);
  591. BF1(8, 9, 10, 11);
  592. BF2(12, 13, 14, 15);
  593. BF1(16, 17, 18, 19);
  594. BF2(20, 21, 22, 23);
  595. BF1(24, 25, 26, 27);
  596. BF2(28, 29, 30, 31);
  597. /* pass 6 */
  598. ADD( 8, 12);
  599. ADD(12, 10);
  600. ADD(10, 14);
  601. ADD(14, 9);
  602. ADD( 9, 13);
  603. ADD(13, 11);
  604. ADD(11, 15);
  605. out[ 0] = tab[0];
  606. out[16] = tab[1];
  607. out[ 8] = tab[2];
  608. out[24] = tab[3];
  609. out[ 4] = tab[4];
  610. out[20] = tab[5];
  611. out[12] = tab[6];
  612. out[28] = tab[7];
  613. out[ 2] = tab[8];
  614. out[18] = tab[9];
  615. out[10] = tab[10];
  616. out[26] = tab[11];
  617. out[ 6] = tab[12];
  618. out[22] = tab[13];
  619. out[14] = tab[14];
  620. out[30] = tab[15];
  621. ADD(24, 28);
  622. ADD(28, 26);
  623. ADD(26, 30);
  624. ADD(30, 25);
  625. ADD(25, 29);
  626. ADD(29, 27);
  627. ADD(27, 31);
  628. out[ 1] = tab[16] + tab[24];
  629. out[17] = tab[17] + tab[25];
  630. out[ 9] = tab[18] + tab[26];
  631. out[25] = tab[19] + tab[27];
  632. out[ 5] = tab[20] + tab[28];
  633. out[21] = tab[21] + tab[29];
  634. out[13] = tab[22] + tab[30];
  635. out[29] = tab[23] + tab[31];
  636. out[ 3] = tab[24] + tab[20];
  637. out[19] = tab[25] + tab[21];
  638. out[11] = tab[26] + tab[22];
  639. out[27] = tab[27] + tab[23];
  640. out[ 7] = tab[28] + tab[18];
  641. out[23] = tab[29] + tab[19];
  642. out[15] = tab[30] + tab[17];
  643. out[31] = tab[31];
  644. }
  645. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  646. #if FRAC_BITS <= 15
  647. #define OUT_SAMPLE(sum)\
  648. {\
  649. int sum1;\
  650. sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\
  651. if (sum1 < -32768)\
  652. sum1 = -32768;\
  653. else if (sum1 > 32767)\
  654. sum1 = 32767;\
  655. *samples = sum1;\
  656. samples += incr;\
  657. }
  658. #define SUM8(off, op) \
  659. { \
  660. sum op w[0 * 64 + off] * p[0 * 64];\
  661. sum op w[1 * 64 + off] * p[1 * 64];\
  662. sum op w[2 * 64 + off] * p[2 * 64];\
  663. sum op w[3 * 64 + off] * p[3 * 64];\
  664. sum op w[4 * 64 + off] * p[4 * 64];\
  665. sum op w[5 * 64 + off] * p[5 * 64];\
  666. sum op w[6 * 64 + off] * p[6 * 64];\
  667. sum op w[7 * 64 + off] * p[7 * 64];\
  668. }
  669. #else
  670. #define OUT_SAMPLE(sum)\
  671. {\
  672. int sum1;\
  673. sum1 = (int)((sum + (INT64_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\
  674. if (sum1 < -32768)\
  675. sum1 = -32768;\
  676. else if (sum1 > 32767)\
  677. sum1 = 32767;\
  678. *samples = sum1;\
  679. samples += incr;\
  680. }
  681. #define SUM8(off, op) \
  682. { \
  683. sum op MUL64(w[0 * 64 + off], p[0 * 64]);\
  684. sum op MUL64(w[1 * 64 + off], p[1 * 64]);\
  685. sum op MUL64(w[2 * 64 + off], p[2 * 64]);\
  686. sum op MUL64(w[3 * 64 + off], p[3 * 64]);\
  687. sum op MUL64(w[4 * 64 + off], p[4 * 64]);\
  688. sum op MUL64(w[5 * 64 + off], p[5 * 64]);\
  689. sum op MUL64(w[6 * 64 + off], p[6 * 64]);\
  690. sum op MUL64(w[7 * 64 + off], p[7 * 64]);\
  691. }
  692. #endif
  693. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  694. 32 samples. */
  695. /* XXX: optimize by avoiding ring buffer usage */
  696. static void synth_filter(MPADecodeContext *s1,
  697. int ch, INT16 *samples, int incr,
  698. INT32 sb_samples[SBLIMIT])
  699. {
  700. INT32 tmp[32];
  701. register MPA_INT *synth_buf, *p;
  702. register MPA_INT *w;
  703. int j, offset, v;
  704. #if FRAC_BITS <= 15
  705. int sum;
  706. #else
  707. INT64 sum;
  708. #endif
  709. dct32(tmp, sb_samples);
  710. offset = s1->synth_buf_offset[ch];
  711. synth_buf = s1->synth_buf[ch] + offset;
  712. for(j=0;j<32;j++) {
  713. v = tmp[j];
  714. #if FRAC_BITS <= 15
  715. /* NOTE: can cause a loss in precision if very high amplitude
  716. sound */
  717. if (v > 32767)
  718. v = 32767;
  719. else if (v < -32768)
  720. v = -32768;
  721. #endif
  722. synth_buf[j] = v;
  723. }
  724. /* copy to avoid wrap */
  725. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  726. w = window;
  727. for(j=0;j<16;j++) {
  728. sum = 0;
  729. p = synth_buf + 16 + j; /* 0-15 */
  730. SUM8(0, +=);
  731. p = synth_buf + 48 - j; /* 32-47 */
  732. SUM8(32, -=);
  733. OUT_SAMPLE(sum);
  734. w++;
  735. }
  736. p = synth_buf + 32; /* 48 */
  737. sum = 0;
  738. SUM8(32, -=);
  739. OUT_SAMPLE(sum);
  740. w++;
  741. for(j=17;j<32;j++) {
  742. sum = 0;
  743. p = synth_buf + 48 - j; /* 17-31 */
  744. SUM8(0, -=);
  745. p = synth_buf + 16 + j; /* 49-63 */
  746. SUM8(32, -=);
  747. OUT_SAMPLE(sum);
  748. w++;
  749. }
  750. offset = (offset - 32) & 511;
  751. s1->synth_buf_offset[ch] = offset;
  752. }
  753. /* cos(pi*i/24) */
  754. #define C1 FIXR(0.99144486137381041114)
  755. #define C3 FIXR(0.92387953251128675612)
  756. #define C5 FIXR(0.79335334029123516458)
  757. #define C7 FIXR(0.60876142900872063941)
  758. #define C9 FIXR(0.38268343236508977173)
  759. #define C11 FIXR(0.13052619222005159154)
  760. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  761. cases. */
  762. static void imdct12(int *out, int *in)
  763. {
  764. int tmp;
  765. INT64 in1_3, in1_9, in4_3, in4_9;
  766. in1_3 = MUL64(in[1], C3);
  767. in1_9 = MUL64(in[1], C9);
  768. in4_3 = MUL64(in[4], C3);
  769. in4_9 = MUL64(in[4], C9);
  770. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  771. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  772. out[0] = tmp;
  773. out[5] = -tmp;
  774. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  775. MUL64(in[2] + in[5], C3) - in4_9);
  776. out[1] = tmp;
  777. out[4] = -tmp;
  778. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  779. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  780. out[2] = tmp;
  781. out[3] = -tmp;
  782. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  783. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  784. out[6] = tmp;
  785. out[11] = tmp;
  786. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  787. MUL64(in[2] + in[5], C9) + in4_3);
  788. out[7] = tmp;
  789. out[10] = tmp;
  790. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  791. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  792. out[8] = tmp;
  793. out[9] = tmp;
  794. }
  795. #undef C1
  796. #undef C3
  797. #undef C5
  798. #undef C7
  799. #undef C9
  800. #undef C11
  801. /* cos(pi*i/18) */
  802. #define C1 FIXR(0.98480775301220805936)
  803. #define C2 FIXR(0.93969262078590838405)
  804. #define C3 FIXR(0.86602540378443864676)
  805. #define C4 FIXR(0.76604444311897803520)
  806. #define C5 FIXR(0.64278760968653932632)
  807. #define C6 FIXR(0.5)
  808. #define C7 FIXR(0.34202014332566873304)
  809. #define C8 FIXR(0.17364817766693034885)
  810. /* 0.5 / cos(pi*(2*i+1)/36) */
  811. static const int icos36[9] = {
  812. FIXR(0.50190991877167369479),
  813. FIXR(0.51763809020504152469),
  814. FIXR(0.55168895948124587824),
  815. FIXR(0.61038729438072803416),
  816. FIXR(0.70710678118654752439),
  817. FIXR(0.87172339781054900991),
  818. FIXR(1.18310079157624925896),
  819. FIXR(1.93185165257813657349),
  820. FIXR(5.73685662283492756461),
  821. };
  822. static const int icos72[18] = {
  823. /* 0.5 / cos(pi*(2*i+19)/72) */
  824. FIXR(0.74009361646113053152),
  825. FIXR(0.82133981585229078570),
  826. FIXR(0.93057949835178895673),
  827. FIXR(1.08284028510010010928),
  828. FIXR(1.30656296487637652785),
  829. FIXR(1.66275476171152078719),
  830. FIXR(2.31011315767264929558),
  831. FIXR(3.83064878777019433457),
  832. FIXR(11.46279281302667383546),
  833. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  834. FIXR(-0.67817085245462840086),
  835. FIXR(-0.63023620700513223342),
  836. FIXR(-0.59284452371708034528),
  837. FIXR(-0.56369097343317117734),
  838. FIXR(-0.54119610014619698439),
  839. FIXR(-0.52426456257040533932),
  840. FIXR(-0.51213975715725461845),
  841. FIXR(-0.50431448029007636036),
  842. FIXR(-0.50047634258165998492),
  843. };
  844. /* using Lee like decomposition followed by hand coded 9 points DCT */
  845. static void imdct36(int *out, int *in)
  846. {
  847. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  848. int tmp[18], *tmp1, *in1;
  849. INT64 in3_3, in6_6;
  850. for(i=17;i>=1;i--)
  851. in[i] += in[i-1];
  852. for(i=17;i>=3;i-=2)
  853. in[i] += in[i-2];
  854. for(j=0;j<2;j++) {
  855. tmp1 = tmp + j;
  856. in1 = in + j;
  857. in3_3 = MUL64(in1[2*3], C3);
  858. in6_6 = MUL64(in1[2*6], C6);
  859. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  860. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  861. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  862. MUL64(in1[2*4], C4) + in6_6 +
  863. MUL64(in1[2*8], C8));
  864. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  865. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  866. in1[2*6] + in1[2*0];
  867. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  868. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  869. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  870. MUL64(in1[2*4], C2) + in6_6 +
  871. MUL64(in1[2*8], C4));
  872. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  873. MUL64(in1[2*5], C1) -
  874. MUL64(in1[2*7], C5));
  875. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  876. MUL64(in1[2*4], C8) + in6_6 -
  877. MUL64(in1[2*8], C2));
  878. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  879. }
  880. i = 0;
  881. for(j=0;j<4;j++) {
  882. t0 = tmp[i];
  883. t1 = tmp[i + 2];
  884. s0 = t1 + t0;
  885. s2 = t1 - t0;
  886. t2 = tmp[i + 1];
  887. t3 = tmp[i + 3];
  888. s1 = MULL(t3 + t2, icos36[j]);
  889. s3 = MULL(t3 - t2, icos36[8 - j]);
  890. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  891. t1 = MULL(s0 - s1, icos72[8 - j]);
  892. out[18 + 9 + j] = t0;
  893. out[18 + 8 - j] = t0;
  894. out[9 + j] = -t1;
  895. out[8 - j] = t1;
  896. t0 = MULL(s2 + s3, icos72[9+j]);
  897. t1 = MULL(s2 - s3, icos72[j]);
  898. out[18 + 9 + (8 - j)] = t0;
  899. out[18 + j] = t0;
  900. out[9 + (8 - j)] = -t1;
  901. out[j] = t1;
  902. i += 4;
  903. }
  904. s0 = tmp[16];
  905. s1 = MULL(tmp[17], icos36[4]);
  906. t0 = MULL(s0 + s1, icos72[9 + 4]);
  907. t1 = MULL(s0 - s1, icos72[4]);
  908. out[18 + 9 + 4] = t0;
  909. out[18 + 8 - 4] = t0;
  910. out[9 + 4] = -t1;
  911. out[8 - 4] = t1;
  912. }
  913. /* fast header check for resync */
  914. static int check_header(UINT32 header)
  915. {
  916. /* header */
  917. if ((header & 0xffe00000) != 0xffe00000)
  918. return -1;
  919. /* layer check */
  920. if (((header >> 17) & 3) == 0)
  921. return -1;
  922. /* bit rate */
  923. if (((header >> 12) & 0xf) == 0xf)
  924. return -1;
  925. /* frequency */
  926. if (((header >> 10) & 3) == 3)
  927. return -1;
  928. return 0;
  929. }
  930. /* header + layer + bitrate + freq + lsf/mpeg25 */
  931. #define SAME_HEADER_MASK \
  932. (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
  933. /* header decoding. MUST check the header before because no
  934. consistency check is done there. Return 1 if free format found and
  935. that the frame size must be computed externally */
  936. static int decode_header(MPADecodeContext *s, UINT32 header)
  937. {
  938. int sample_rate, frame_size, mpeg25, padding;
  939. int sample_rate_index, bitrate_index;
  940. if (header & (1<<20)) {
  941. s->lsf = (header & (1<<19)) ? 0 : 1;
  942. mpeg25 = 0;
  943. } else {
  944. s->lsf = 1;
  945. mpeg25 = 1;
  946. }
  947. s->layer = 4 - ((header >> 17) & 3);
  948. /* extract frequency */
  949. sample_rate_index = (header >> 10) & 3;
  950. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  951. sample_rate_index += 3 * (s->lsf + mpeg25);
  952. s->sample_rate_index = sample_rate_index;
  953. s->error_protection = ((header >> 16) & 1) ^ 1;
  954. s->sample_rate = sample_rate;
  955. bitrate_index = (header >> 12) & 0xf;
  956. padding = (header >> 9) & 1;
  957. //extension = (header >> 8) & 1;
  958. s->mode = (header >> 6) & 3;
  959. s->mode_ext = (header >> 4) & 3;
  960. //copyright = (header >> 3) & 1;
  961. //original = (header >> 2) & 1;
  962. //emphasis = header & 3;
  963. if (s->mode == MPA_MONO)
  964. s->nb_channels = 1;
  965. else
  966. s->nb_channels = 2;
  967. if (bitrate_index != 0) {
  968. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  969. s->bit_rate = frame_size * 1000;
  970. switch(s->layer) {
  971. case 1:
  972. frame_size = (frame_size * 12000) / sample_rate;
  973. frame_size = (frame_size + padding) * 4;
  974. break;
  975. case 2:
  976. frame_size = (frame_size * 144000) / sample_rate;
  977. frame_size += padding;
  978. break;
  979. default:
  980. case 3:
  981. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  982. frame_size += padding;
  983. break;
  984. }
  985. s->frame_size = frame_size;
  986. } else {
  987. /* if no frame size computed, signal it */
  988. if (!s->free_format_frame_size)
  989. return 1;
  990. /* free format: compute bitrate and real frame size from the
  991. frame size we extracted by reading the bitstream */
  992. s->frame_size = s->free_format_frame_size;
  993. switch(s->layer) {
  994. case 1:
  995. s->frame_size += padding * 4;
  996. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  997. break;
  998. case 2:
  999. s->frame_size += padding;
  1000. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1001. break;
  1002. default:
  1003. case 3:
  1004. s->frame_size += padding;
  1005. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1006. break;
  1007. }
  1008. }
  1009. #if defined(DEBUG)
  1010. printf("layer%d, %d Hz, %d kbits/s, ",
  1011. s->layer, s->sample_rate, s->bit_rate);
  1012. if (s->nb_channels == 2) {
  1013. if (s->layer == 3) {
  1014. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1015. printf("ms-");
  1016. if (s->mode_ext & MODE_EXT_I_STEREO)
  1017. printf("i-");
  1018. }
  1019. printf("stereo");
  1020. } else {
  1021. printf("mono");
  1022. }
  1023. printf("\n");
  1024. #endif
  1025. return 0;
  1026. }
  1027. /* return the number of decoded frames */
  1028. static int mp_decode_layer1(MPADecodeContext *s)
  1029. {
  1030. int bound, i, v, n, ch, j, mant;
  1031. UINT8 allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1032. UINT8 scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1033. if (s->mode == MPA_JSTEREO)
  1034. bound = (s->mode_ext + 1) * 4;
  1035. else
  1036. bound = SBLIMIT;
  1037. /* allocation bits */
  1038. for(i=0;i<bound;i++) {
  1039. for(ch=0;ch<s->nb_channels;ch++) {
  1040. allocation[ch][i] = get_bits(&s->gb, 4);
  1041. }
  1042. }
  1043. for(i=bound;i<SBLIMIT;i++) {
  1044. allocation[0][i] = get_bits(&s->gb, 4);
  1045. }
  1046. /* scale factors */
  1047. for(i=0;i<bound;i++) {
  1048. for(ch=0;ch<s->nb_channels;ch++) {
  1049. if (allocation[ch][i])
  1050. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1051. }
  1052. }
  1053. for(i=bound;i<SBLIMIT;i++) {
  1054. if (allocation[0][i]) {
  1055. scale_factors[0][i] = get_bits(&s->gb, 6);
  1056. scale_factors[1][i] = get_bits(&s->gb, 6);
  1057. }
  1058. }
  1059. /* compute samples */
  1060. for(j=0;j<12;j++) {
  1061. for(i=0;i<bound;i++) {
  1062. for(ch=0;ch<s->nb_channels;ch++) {
  1063. n = allocation[ch][i];
  1064. if (n) {
  1065. mant = get_bits(&s->gb, n + 1);
  1066. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1067. } else {
  1068. v = 0;
  1069. }
  1070. s->sb_samples[ch][j][i] = v;
  1071. }
  1072. }
  1073. for(i=bound;i<SBLIMIT;i++) {
  1074. n = allocation[0][i];
  1075. if (n) {
  1076. mant = get_bits(&s->gb, n + 1);
  1077. v = l1_unscale(n, mant, scale_factors[0][i]);
  1078. s->sb_samples[0][j][i] = v;
  1079. v = l1_unscale(n, mant, scale_factors[1][i]);
  1080. s->sb_samples[1][j][i] = v;
  1081. } else {
  1082. s->sb_samples[0][j][i] = 0;
  1083. s->sb_samples[1][j][i] = 0;
  1084. }
  1085. }
  1086. }
  1087. return 12;
  1088. }
  1089. /* bitrate is in kb/s */
  1090. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1091. {
  1092. int ch_bitrate, table;
  1093. ch_bitrate = bitrate / nb_channels;
  1094. if (!lsf) {
  1095. if ((freq == 48000 && ch_bitrate >= 56) ||
  1096. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1097. table = 0;
  1098. else if (freq != 48000 && ch_bitrate >= 96)
  1099. table = 1;
  1100. else if (freq != 32000 && ch_bitrate <= 48)
  1101. table = 2;
  1102. else
  1103. table = 3;
  1104. } else {
  1105. table = 4;
  1106. }
  1107. return table;
  1108. }
  1109. static int mp_decode_layer2(MPADecodeContext *s)
  1110. {
  1111. int sblimit; /* number of used subbands */
  1112. const unsigned char *alloc_table;
  1113. int table, bit_alloc_bits, i, j, ch, bound, v;
  1114. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1115. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1116. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1117. int scale, qindex, bits, steps, k, l, m, b;
  1118. /* select decoding table */
  1119. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1120. s->sample_rate, s->lsf);
  1121. sblimit = sblimit_table[table];
  1122. alloc_table = alloc_tables[table];
  1123. if (s->mode == MPA_JSTEREO)
  1124. bound = (s->mode_ext + 1) * 4;
  1125. else
  1126. bound = sblimit;
  1127. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1128. /* parse bit allocation */
  1129. j = 0;
  1130. for(i=0;i<bound;i++) {
  1131. bit_alloc_bits = alloc_table[j];
  1132. for(ch=0;ch<s->nb_channels;ch++) {
  1133. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1134. }
  1135. j += 1 << bit_alloc_bits;
  1136. }
  1137. for(i=bound;i<sblimit;i++) {
  1138. bit_alloc_bits = alloc_table[j];
  1139. v = get_bits(&s->gb, bit_alloc_bits);
  1140. bit_alloc[0][i] = v;
  1141. bit_alloc[1][i] = v;
  1142. j += 1 << bit_alloc_bits;
  1143. }
  1144. #ifdef DEBUG
  1145. {
  1146. for(ch=0;ch<s->nb_channels;ch++) {
  1147. for(i=0;i<sblimit;i++)
  1148. printf(" %d", bit_alloc[ch][i]);
  1149. printf("\n");
  1150. }
  1151. }
  1152. #endif
  1153. /* scale codes */
  1154. for(i=0;i<sblimit;i++) {
  1155. for(ch=0;ch<s->nb_channels;ch++) {
  1156. if (bit_alloc[ch][i])
  1157. scale_code[ch][i] = get_bits(&s->gb, 2);
  1158. }
  1159. }
  1160. /* scale factors */
  1161. for(i=0;i<sblimit;i++) {
  1162. for(ch=0;ch<s->nb_channels;ch++) {
  1163. if (bit_alloc[ch][i]) {
  1164. sf = scale_factors[ch][i];
  1165. switch(scale_code[ch][i]) {
  1166. default:
  1167. case 0:
  1168. sf[0] = get_bits(&s->gb, 6);
  1169. sf[1] = get_bits(&s->gb, 6);
  1170. sf[2] = get_bits(&s->gb, 6);
  1171. break;
  1172. case 2:
  1173. sf[0] = get_bits(&s->gb, 6);
  1174. sf[1] = sf[0];
  1175. sf[2] = sf[0];
  1176. break;
  1177. case 1:
  1178. sf[0] = get_bits(&s->gb, 6);
  1179. sf[2] = get_bits(&s->gb, 6);
  1180. sf[1] = sf[0];
  1181. break;
  1182. case 3:
  1183. sf[0] = get_bits(&s->gb, 6);
  1184. sf[2] = get_bits(&s->gb, 6);
  1185. sf[1] = sf[2];
  1186. break;
  1187. }
  1188. }
  1189. }
  1190. }
  1191. #ifdef DEBUG
  1192. for(ch=0;ch<s->nb_channels;ch++) {
  1193. for(i=0;i<sblimit;i++) {
  1194. if (bit_alloc[ch][i]) {
  1195. sf = scale_factors[ch][i];
  1196. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1197. } else {
  1198. printf(" -");
  1199. }
  1200. }
  1201. printf("\n");
  1202. }
  1203. #endif
  1204. /* samples */
  1205. for(k=0;k<3;k++) {
  1206. for(l=0;l<12;l+=3) {
  1207. j = 0;
  1208. for(i=0;i<bound;i++) {
  1209. bit_alloc_bits = alloc_table[j];
  1210. for(ch=0;ch<s->nb_channels;ch++) {
  1211. b = bit_alloc[ch][i];
  1212. if (b) {
  1213. scale = scale_factors[ch][i][k];
  1214. qindex = alloc_table[j+b];
  1215. bits = quant_bits[qindex];
  1216. if (bits < 0) {
  1217. /* 3 values at the same time */
  1218. v = get_bits(&s->gb, -bits);
  1219. steps = quant_steps[qindex];
  1220. s->sb_samples[ch][k * 12 + l + 0][i] =
  1221. l2_unscale_group(steps, v % steps, scale);
  1222. v = v / steps;
  1223. s->sb_samples[ch][k * 12 + l + 1][i] =
  1224. l2_unscale_group(steps, v % steps, scale);
  1225. v = v / steps;
  1226. s->sb_samples[ch][k * 12 + l + 2][i] =
  1227. l2_unscale_group(steps, v, scale);
  1228. } else {
  1229. for(m=0;m<3;m++) {
  1230. v = get_bits(&s->gb, bits);
  1231. v = l1_unscale(bits - 1, v, scale);
  1232. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1233. }
  1234. }
  1235. } else {
  1236. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1237. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1238. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1239. }
  1240. }
  1241. /* next subband in alloc table */
  1242. j += 1 << bit_alloc_bits;
  1243. }
  1244. /* XXX: find a way to avoid this duplication of code */
  1245. for(i=bound;i<sblimit;i++) {
  1246. bit_alloc_bits = alloc_table[j];
  1247. b = bit_alloc[0][i];
  1248. if (b) {
  1249. int mant, scale0, scale1;
  1250. scale0 = scale_factors[0][i][k];
  1251. scale1 = scale_factors[1][i][k];
  1252. qindex = alloc_table[j+b];
  1253. bits = quant_bits[qindex];
  1254. if (bits < 0) {
  1255. /* 3 values at the same time */
  1256. v = get_bits(&s->gb, -bits);
  1257. steps = quant_steps[qindex];
  1258. mant = v % steps;
  1259. v = v / steps;
  1260. s->sb_samples[0][k * 12 + l + 0][i] =
  1261. l2_unscale_group(steps, mant, scale0);
  1262. s->sb_samples[1][k * 12 + l + 0][i] =
  1263. l2_unscale_group(steps, mant, scale1);
  1264. mant = v % steps;
  1265. v = v / steps;
  1266. s->sb_samples[0][k * 12 + l + 1][i] =
  1267. l2_unscale_group(steps, mant, scale0);
  1268. s->sb_samples[1][k * 12 + l + 1][i] =
  1269. l2_unscale_group(steps, mant, scale1);
  1270. s->sb_samples[0][k * 12 + l + 2][i] =
  1271. l2_unscale_group(steps, v, scale0);
  1272. s->sb_samples[1][k * 12 + l + 2][i] =
  1273. l2_unscale_group(steps, v, scale1);
  1274. } else {
  1275. for(m=0;m<3;m++) {
  1276. mant = get_bits(&s->gb, bits);
  1277. s->sb_samples[0][k * 12 + l + m][i] =
  1278. l1_unscale(bits - 1, mant, scale0);
  1279. s->sb_samples[1][k * 12 + l + m][i] =
  1280. l1_unscale(bits - 1, mant, scale1);
  1281. }
  1282. }
  1283. } else {
  1284. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1285. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1286. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1287. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1288. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1289. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1290. }
  1291. /* next subband in alloc table */
  1292. j += 1 << bit_alloc_bits;
  1293. }
  1294. /* fill remaining samples to zero */
  1295. for(i=sblimit;i<SBLIMIT;i++) {
  1296. for(ch=0;ch<s->nb_channels;ch++) {
  1297. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1298. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1299. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1300. }
  1301. }
  1302. }
  1303. }
  1304. return 3 * 12;
  1305. }
  1306. /*
  1307. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1308. */
  1309. static void seek_to_maindata(MPADecodeContext *s, long backstep)
  1310. {
  1311. UINT8 *ptr;
  1312. /* compute current position in stream */
  1313. ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1314. /* copy old data before current one */
  1315. ptr -= backstep;
  1316. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1317. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1318. /* init get bits again */
  1319. init_get_bits(&s->gb, ptr, s->frame_size + backstep);
  1320. /* prepare next buffer */
  1321. s->inbuf_index ^= 1;
  1322. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1323. s->old_frame_size = s->frame_size;
  1324. }
  1325. static inline void lsf_sf_expand(int *slen,
  1326. int sf, int n1, int n2, int n3)
  1327. {
  1328. if (n3) {
  1329. slen[3] = sf % n3;
  1330. sf /= n3;
  1331. } else {
  1332. slen[3] = 0;
  1333. }
  1334. if (n2) {
  1335. slen[2] = sf % n2;
  1336. sf /= n2;
  1337. } else {
  1338. slen[2] = 0;
  1339. }
  1340. slen[1] = sf % n1;
  1341. sf /= n1;
  1342. slen[0] = sf;
  1343. }
  1344. static void exponents_from_scale_factors(MPADecodeContext *s,
  1345. GranuleDef *g,
  1346. INT16 *exponents)
  1347. {
  1348. const UINT8 *bstab, *pretab;
  1349. int len, i, j, k, l, v0, shift, gain, gains[3];
  1350. INT16 *exp_ptr;
  1351. exp_ptr = exponents;
  1352. gain = g->global_gain - 210;
  1353. shift = g->scalefac_scale + 1;
  1354. bstab = band_size_long[s->sample_rate_index];
  1355. pretab = mpa_pretab[g->preflag];
  1356. for(i=0;i<g->long_end;i++) {
  1357. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1358. len = bstab[i];
  1359. for(j=len;j>0;j--)
  1360. *exp_ptr++ = v0;
  1361. }
  1362. if (g->short_start < 13) {
  1363. bstab = band_size_short[s->sample_rate_index];
  1364. gains[0] = gain - (g->subblock_gain[0] << 3);
  1365. gains[1] = gain - (g->subblock_gain[1] << 3);
  1366. gains[2] = gain - (g->subblock_gain[2] << 3);
  1367. k = g->long_end;
  1368. for(i=g->short_start;i<13;i++) {
  1369. len = bstab[i];
  1370. for(l=0;l<3;l++) {
  1371. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1372. for(j=len;j>0;j--)
  1373. *exp_ptr++ = v0;
  1374. }
  1375. }
  1376. }
  1377. }
  1378. /* handle n = 0 too */
  1379. static inline int get_bitsz(GetBitContext *s, int n)
  1380. {
  1381. if (n == 0)
  1382. return 0;
  1383. else
  1384. return get_bits(s, n);
  1385. }
  1386. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1387. INT16 *exponents, int end_pos)
  1388. {
  1389. int s_index;
  1390. int linbits, code, x, y, l, v, i, j, k, pos;
  1391. GetBitContext last_gb;
  1392. VLC *vlc;
  1393. UINT8 *code_table;
  1394. /* low frequencies (called big values) */
  1395. s_index = 0;
  1396. for(i=0;i<3;i++) {
  1397. j = g->region_size[i];
  1398. if (j == 0)
  1399. continue;
  1400. /* select vlc table */
  1401. k = g->table_select[i];
  1402. l = mpa_huff_data[k][0];
  1403. linbits = mpa_huff_data[k][1];
  1404. vlc = &huff_vlc[l];
  1405. code_table = huff_code_table[l];
  1406. /* read huffcode and compute each couple */
  1407. for(;j>0;j--) {
  1408. if (get_bits_count(&s->gb) >= end_pos)
  1409. break;
  1410. if (code_table) {
  1411. code = get_vlc(&s->gb, vlc);
  1412. if (code < 0)
  1413. return -1;
  1414. y = code_table[code];
  1415. x = y >> 4;
  1416. y = y & 0x0f;
  1417. } else {
  1418. x = 0;
  1419. y = 0;
  1420. }
  1421. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1422. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1423. if (x) {
  1424. if (x == 15)
  1425. x += get_bitsz(&s->gb, linbits);
  1426. v = l3_unscale(x, exponents[s_index]);
  1427. if (get_bits1(&s->gb))
  1428. v = -v;
  1429. } else {
  1430. v = 0;
  1431. }
  1432. g->sb_hybrid[s_index++] = v;
  1433. if (y) {
  1434. if (y == 15)
  1435. y += get_bitsz(&s->gb, linbits);
  1436. v = l3_unscale(y, exponents[s_index]);
  1437. if (get_bits1(&s->gb))
  1438. v = -v;
  1439. } else {
  1440. v = 0;
  1441. }
  1442. g->sb_hybrid[s_index++] = v;
  1443. }
  1444. }
  1445. /* high frequencies */
  1446. vlc = &huff_quad_vlc[g->count1table_select];
  1447. last_gb.buffer = NULL;
  1448. while (s_index <= 572) {
  1449. pos = get_bits_count(&s->gb);
  1450. if (pos >= end_pos) {
  1451. if (pos > end_pos && last_gb.buffer != NULL) {
  1452. /* some encoders generate an incorrect size for this
  1453. part. We must go back into the data */
  1454. s_index -= 4;
  1455. s->gb = last_gb;
  1456. }
  1457. break;
  1458. }
  1459. last_gb= s->gb;
  1460. code = get_vlc(&s->gb, vlc);
  1461. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1462. if (code < 0)
  1463. return -1;
  1464. for(i=0;i<4;i++) {
  1465. if (code & (8 >> i)) {
  1466. /* non zero value. Could use a hand coded function for
  1467. 'one' value */
  1468. v = l3_unscale(1, exponents[s_index]);
  1469. if(get_bits1(&s->gb))
  1470. v = -v;
  1471. } else {
  1472. v = 0;
  1473. }
  1474. g->sb_hybrid[s_index++] = v;
  1475. }
  1476. }
  1477. while (s_index < 576)
  1478. g->sb_hybrid[s_index++] = 0;
  1479. return 0;
  1480. }
  1481. /* Reorder short blocks from bitstream order to interleaved order. It
  1482. would be faster to do it in parsing, but the code would be far more
  1483. complicated */
  1484. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1485. {
  1486. int i, j, k, len;
  1487. INT32 *ptr, *dst, *ptr1;
  1488. INT32 tmp[576];
  1489. if (g->block_type != 2)
  1490. return;
  1491. if (g->switch_point) {
  1492. if (s->sample_rate_index != 8) {
  1493. ptr = g->sb_hybrid + 36;
  1494. } else {
  1495. ptr = g->sb_hybrid + 48;
  1496. }
  1497. } else {
  1498. ptr = g->sb_hybrid;
  1499. }
  1500. for(i=g->short_start;i<13;i++) {
  1501. len = band_size_short[s->sample_rate_index][i];
  1502. ptr1 = ptr;
  1503. for(k=0;k<3;k++) {
  1504. dst = tmp + k;
  1505. for(j=len;j>0;j--) {
  1506. *dst = *ptr++;
  1507. dst += 3;
  1508. }
  1509. }
  1510. memcpy(ptr1, tmp, len * 3 * sizeof(INT32));
  1511. }
  1512. }
  1513. #define ISQRT2 FIXR(0.70710678118654752440)
  1514. static void compute_stereo(MPADecodeContext *s,
  1515. GranuleDef *g0, GranuleDef *g1)
  1516. {
  1517. int i, j, k, l;
  1518. INT32 v1, v2;
  1519. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1520. INT32 (*is_tab)[16];
  1521. INT32 *tab0, *tab1;
  1522. int non_zero_found_short[3];
  1523. /* intensity stereo */
  1524. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1525. if (!s->lsf) {
  1526. is_tab = is_table;
  1527. sf_max = 7;
  1528. } else {
  1529. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1530. sf_max = 16;
  1531. }
  1532. tab0 = g0->sb_hybrid + 576;
  1533. tab1 = g1->sb_hybrid + 576;
  1534. non_zero_found_short[0] = 0;
  1535. non_zero_found_short[1] = 0;
  1536. non_zero_found_short[2] = 0;
  1537. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1538. for(i = 12;i >= g1->short_start;i--) {
  1539. /* for last band, use previous scale factor */
  1540. if (i != 11)
  1541. k -= 3;
  1542. len = band_size_short[s->sample_rate_index][i];
  1543. for(l=2;l>=0;l--) {
  1544. tab0 -= len;
  1545. tab1 -= len;
  1546. if (!non_zero_found_short[l]) {
  1547. /* test if non zero band. if so, stop doing i-stereo */
  1548. for(j=0;j<len;j++) {
  1549. if (tab1[j] != 0) {
  1550. non_zero_found_short[l] = 1;
  1551. goto found1;
  1552. }
  1553. }
  1554. sf = g1->scale_factors[k + l];
  1555. if (sf >= sf_max)
  1556. goto found1;
  1557. v1 = is_tab[0][sf];
  1558. v2 = is_tab[1][sf];
  1559. for(j=0;j<len;j++) {
  1560. tmp0 = tab0[j];
  1561. tab0[j] = MULL(tmp0, v1);
  1562. tab1[j] = MULL(tmp0, v2);
  1563. }
  1564. } else {
  1565. found1:
  1566. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1567. /* lower part of the spectrum : do ms stereo
  1568. if enabled */
  1569. for(j=0;j<len;j++) {
  1570. tmp0 = tab0[j];
  1571. tmp1 = tab1[j];
  1572. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1573. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1574. }
  1575. }
  1576. }
  1577. }
  1578. }
  1579. non_zero_found = non_zero_found_short[0] |
  1580. non_zero_found_short[1] |
  1581. non_zero_found_short[2];
  1582. for(i = g1->long_end - 1;i >= 0;i--) {
  1583. len = band_size_long[s->sample_rate_index][i];
  1584. tab0 -= len;
  1585. tab1 -= len;
  1586. /* test if non zero band. if so, stop doing i-stereo */
  1587. if (!non_zero_found) {
  1588. for(j=0;j<len;j++) {
  1589. if (tab1[j] != 0) {
  1590. non_zero_found = 1;
  1591. goto found2;
  1592. }
  1593. }
  1594. /* for last band, use previous scale factor */
  1595. k = (i == 21) ? 20 : i;
  1596. sf = g1->scale_factors[k];
  1597. if (sf >= sf_max)
  1598. goto found2;
  1599. v1 = is_tab[0][sf];
  1600. v2 = is_tab[1][sf];
  1601. for(j=0;j<len;j++) {
  1602. tmp0 = tab0[j];
  1603. tab0[j] = MULL(tmp0, v1);
  1604. tab1[j] = MULL(tmp0, v2);
  1605. }
  1606. } else {
  1607. found2:
  1608. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1609. /* lower part of the spectrum : do ms stereo
  1610. if enabled */
  1611. for(j=0;j<len;j++) {
  1612. tmp0 = tab0[j];
  1613. tmp1 = tab1[j];
  1614. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1615. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1616. }
  1617. }
  1618. }
  1619. }
  1620. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1621. /* ms stereo ONLY */
  1622. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1623. global gain */
  1624. tab0 = g0->sb_hybrid;
  1625. tab1 = g1->sb_hybrid;
  1626. for(i=0;i<576;i++) {
  1627. tmp0 = tab0[i];
  1628. tmp1 = tab1[i];
  1629. tab0[i] = tmp0 + tmp1;
  1630. tab1[i] = tmp0 - tmp1;
  1631. }
  1632. }
  1633. }
  1634. static void compute_antialias(MPADecodeContext *s,
  1635. GranuleDef *g)
  1636. {
  1637. INT32 *ptr, *p0, *p1, *csa;
  1638. int n, tmp0, tmp1, i, j;
  1639. /* we antialias only "long" bands */
  1640. if (g->block_type == 2) {
  1641. if (!g->switch_point)
  1642. return;
  1643. /* XXX: check this for 8000Hz case */
  1644. n = 1;
  1645. } else {
  1646. n = SBLIMIT - 1;
  1647. }
  1648. ptr = g->sb_hybrid + 18;
  1649. for(i = n;i > 0;i--) {
  1650. p0 = ptr - 1;
  1651. p1 = ptr;
  1652. csa = &csa_table[0][0];
  1653. for(j=0;j<8;j++) {
  1654. tmp0 = *p0;
  1655. tmp1 = *p1;
  1656. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1657. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1658. p0--;
  1659. p1++;
  1660. csa += 2;
  1661. }
  1662. ptr += 18;
  1663. }
  1664. }
  1665. static void compute_imdct(MPADecodeContext *s,
  1666. GranuleDef *g,
  1667. INT32 *sb_samples,
  1668. INT32 *mdct_buf)
  1669. {
  1670. INT32 *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1671. INT32 in[6];
  1672. INT32 out[36];
  1673. INT32 out2[12];
  1674. int i, j, k, mdct_long_end, v, sblimit;
  1675. /* find last non zero block */
  1676. ptr = g->sb_hybrid + 576;
  1677. ptr1 = g->sb_hybrid + 2 * 18;
  1678. while (ptr >= ptr1) {
  1679. ptr -= 6;
  1680. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1681. if (v != 0)
  1682. break;
  1683. }
  1684. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1685. if (g->block_type == 2) {
  1686. /* XXX: check for 8000 Hz */
  1687. if (g->switch_point)
  1688. mdct_long_end = 2;
  1689. else
  1690. mdct_long_end = 0;
  1691. } else {
  1692. mdct_long_end = sblimit;
  1693. }
  1694. buf = mdct_buf;
  1695. ptr = g->sb_hybrid;
  1696. for(j=0;j<mdct_long_end;j++) {
  1697. imdct36(out, ptr);
  1698. /* apply window & overlap with previous buffer */
  1699. out_ptr = sb_samples + j;
  1700. /* select window */
  1701. if (g->switch_point && j < 2)
  1702. win1 = mdct_win[0];
  1703. else
  1704. win1 = mdct_win[g->block_type];
  1705. /* select frequency inversion */
  1706. win = win1 + ((4 * 36) & -(j & 1));
  1707. for(i=0;i<18;i++) {
  1708. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1709. buf[i] = MULL(out[i + 18], win[i + 18]);
  1710. out_ptr += SBLIMIT;
  1711. }
  1712. ptr += 18;
  1713. buf += 18;
  1714. }
  1715. for(j=mdct_long_end;j<sblimit;j++) {
  1716. for(i=0;i<6;i++) {
  1717. out[i] = 0;
  1718. out[6 + i] = 0;
  1719. out[30+i] = 0;
  1720. }
  1721. /* select frequency inversion */
  1722. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1723. buf2 = out + 6;
  1724. for(k=0;k<3;k++) {
  1725. /* reorder input for short mdct */
  1726. ptr1 = ptr + k;
  1727. for(i=0;i<6;i++) {
  1728. in[i] = *ptr1;
  1729. ptr1 += 3;
  1730. }
  1731. imdct12(out2, in);
  1732. /* apply 12 point window and do small overlap */
  1733. for(i=0;i<6;i++) {
  1734. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1735. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1736. }
  1737. buf2 += 6;
  1738. }
  1739. /* overlap */
  1740. out_ptr = sb_samples + j;
  1741. for(i=0;i<18;i++) {
  1742. *out_ptr = out[i] + buf[i];
  1743. buf[i] = out[i + 18];
  1744. out_ptr += SBLIMIT;
  1745. }
  1746. ptr += 18;
  1747. buf += 18;
  1748. }
  1749. /* zero bands */
  1750. for(j=sblimit;j<SBLIMIT;j++) {
  1751. /* overlap */
  1752. out_ptr = sb_samples + j;
  1753. for(i=0;i<18;i++) {
  1754. *out_ptr = buf[i];
  1755. buf[i] = 0;
  1756. out_ptr += SBLIMIT;
  1757. }
  1758. buf += 18;
  1759. }
  1760. }
  1761. #if defined(DEBUG)
  1762. void sample_dump(int fnum, INT32 *tab, int n)
  1763. {
  1764. static FILE *files[16], *f;
  1765. char buf[512];
  1766. int i;
  1767. INT32 v;
  1768. f = files[fnum];
  1769. if (!f) {
  1770. sprintf(buf, "/tmp/out%d.%s.pcm",
  1771. fnum,
  1772. #ifdef USE_HIGHPRECISION
  1773. "hp"
  1774. #else
  1775. "lp"
  1776. #endif
  1777. );
  1778. f = fopen(buf, "w");
  1779. if (!f)
  1780. return;
  1781. files[fnum] = f;
  1782. }
  1783. if (fnum == 0) {
  1784. static int pos = 0;
  1785. printf("pos=%d\n", pos);
  1786. for(i=0;i<n;i++) {
  1787. printf(" %0.4f", (double)tab[i] / FRAC_ONE);
  1788. if ((i % 18) == 17)
  1789. printf("\n");
  1790. }
  1791. pos += n;
  1792. }
  1793. for(i=0;i<n;i++) {
  1794. /* normalize to 23 frac bits */
  1795. v = tab[i] << (23 - FRAC_BITS);
  1796. fwrite(&v, 1, sizeof(INT32), f);
  1797. }
  1798. }
  1799. #endif
  1800. /* main layer3 decoding function */
  1801. static int mp_decode_layer3(MPADecodeContext *s)
  1802. {
  1803. int nb_granules, main_data_begin, private_bits;
  1804. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1805. GranuleDef granules[2][2], *g;
  1806. INT16 exponents[576];
  1807. /* read side info */
  1808. if (s->lsf) {
  1809. main_data_begin = get_bits(&s->gb, 8);
  1810. if (s->nb_channels == 2)
  1811. private_bits = get_bits(&s->gb, 2);
  1812. else
  1813. private_bits = get_bits(&s->gb, 1);
  1814. nb_granules = 1;
  1815. } else {
  1816. main_data_begin = get_bits(&s->gb, 9);
  1817. if (s->nb_channels == 2)
  1818. private_bits = get_bits(&s->gb, 3);
  1819. else
  1820. private_bits = get_bits(&s->gb, 5);
  1821. nb_granules = 2;
  1822. for(ch=0;ch<s->nb_channels;ch++) {
  1823. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1824. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1825. }
  1826. }
  1827. for(gr=0;gr<nb_granules;gr++) {
  1828. for(ch=0;ch<s->nb_channels;ch++) {
  1829. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1830. g = &granules[ch][gr];
  1831. g->part2_3_length = get_bits(&s->gb, 12);
  1832. g->big_values = get_bits(&s->gb, 9);
  1833. g->global_gain = get_bits(&s->gb, 8);
  1834. /* if MS stereo only is selected, we precompute the
  1835. 1/sqrt(2) renormalization factor */
  1836. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1837. MODE_EXT_MS_STEREO)
  1838. g->global_gain -= 2;
  1839. if (s->lsf)
  1840. g->scalefac_compress = get_bits(&s->gb, 9);
  1841. else
  1842. g->scalefac_compress = get_bits(&s->gb, 4);
  1843. blocksplit_flag = get_bits(&s->gb, 1);
  1844. if (blocksplit_flag) {
  1845. g->block_type = get_bits(&s->gb, 2);
  1846. if (g->block_type == 0)
  1847. return -1;
  1848. g->switch_point = get_bits(&s->gb, 1);
  1849. for(i=0;i<2;i++)
  1850. g->table_select[i] = get_bits(&s->gb, 5);
  1851. for(i=0;i<3;i++)
  1852. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1853. /* compute huffman coded region sizes */
  1854. if (g->block_type == 2)
  1855. g->region_size[0] = (36 / 2);
  1856. else {
  1857. if (s->sample_rate_index <= 2)
  1858. g->region_size[0] = (36 / 2);
  1859. else if (s->sample_rate_index != 8)
  1860. g->region_size[0] = (54 / 2);
  1861. else
  1862. g->region_size[0] = (108 / 2);
  1863. }
  1864. g->region_size[1] = (576 / 2);
  1865. } else {
  1866. int region_address1, region_address2, l;
  1867. g->block_type = 0;
  1868. g->switch_point = 0;
  1869. for(i=0;i<3;i++)
  1870. g->table_select[i] = get_bits(&s->gb, 5);
  1871. /* compute huffman coded region sizes */
  1872. region_address1 = get_bits(&s->gb, 4);
  1873. region_address2 = get_bits(&s->gb, 3);
  1874. dprintf("region1=%d region2=%d\n",
  1875. region_address1, region_address2);
  1876. g->region_size[0] =
  1877. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1878. l = region_address1 + region_address2 + 2;
  1879. /* should not overflow */
  1880. if (l > 22)
  1881. l = 22;
  1882. g->region_size[1] =
  1883. band_index_long[s->sample_rate_index][l] >> 1;
  1884. }
  1885. /* convert region offsets to region sizes and truncate
  1886. size to big_values */
  1887. g->region_size[2] = (576 / 2);
  1888. j = 0;
  1889. for(i=0;i<3;i++) {
  1890. k = g->region_size[i];
  1891. if (k > g->big_values)
  1892. k = g->big_values;
  1893. g->region_size[i] = k - j;
  1894. j = k;
  1895. }
  1896. /* compute band indexes */
  1897. if (g->block_type == 2) {
  1898. if (g->switch_point) {
  1899. /* if switched mode, we handle the 36 first samples as
  1900. long blocks. For 8000Hz, we handle the 48 first
  1901. exponents as long blocks (XXX: check this!) */
  1902. if (s->sample_rate_index <= 2)
  1903. g->long_end = 8;
  1904. else if (s->sample_rate_index != 8)
  1905. g->long_end = 6;
  1906. else
  1907. g->long_end = 4; /* 8000 Hz */
  1908. if (s->sample_rate_index != 8)
  1909. g->short_start = 3;
  1910. else
  1911. g->short_start = 2;
  1912. } else {
  1913. g->long_end = 0;
  1914. g->short_start = 0;
  1915. }
  1916. } else {
  1917. g->short_start = 13;
  1918. g->long_end = 22;
  1919. }
  1920. g->preflag = 0;
  1921. if (!s->lsf)
  1922. g->preflag = get_bits(&s->gb, 1);
  1923. g->scalefac_scale = get_bits(&s->gb, 1);
  1924. g->count1table_select = get_bits(&s->gb, 1);
  1925. dprintf("block_type=%d switch_point=%d\n",
  1926. g->block_type, g->switch_point);
  1927. }
  1928. }
  1929. /* now we get bits from the main_data_begin offset */
  1930. dprintf("seekback: %d\n", main_data_begin);
  1931. seek_to_maindata(s, main_data_begin);
  1932. for(gr=0;gr<nb_granules;gr++) {
  1933. for(ch=0;ch<s->nb_channels;ch++) {
  1934. g = &granules[ch][gr];
  1935. bits_pos = get_bits_count(&s->gb);
  1936. if (!s->lsf) {
  1937. UINT8 *sc;
  1938. int slen, slen1, slen2;
  1939. /* MPEG1 scale factors */
  1940. slen1 = slen_table[0][g->scalefac_compress];
  1941. slen2 = slen_table[1][g->scalefac_compress];
  1942. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  1943. if (g->block_type == 2) {
  1944. n = g->switch_point ? 17 : 18;
  1945. j = 0;
  1946. for(i=0;i<n;i++)
  1947. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  1948. for(i=0;i<18;i++)
  1949. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  1950. for(i=0;i<3;i++)
  1951. g->scale_factors[j++] = 0;
  1952. } else {
  1953. sc = granules[ch][0].scale_factors;
  1954. j = 0;
  1955. for(k=0;k<4;k++) {
  1956. n = (k == 0 ? 6 : 5);
  1957. if ((g->scfsi & (0x8 >> k)) == 0) {
  1958. slen = (k < 2) ? slen1 : slen2;
  1959. for(i=0;i<n;i++)
  1960. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  1961. } else {
  1962. /* simply copy from last granule */
  1963. for(i=0;i<n;i++) {
  1964. g->scale_factors[j] = sc[j];
  1965. j++;
  1966. }
  1967. }
  1968. }
  1969. g->scale_factors[j++] = 0;
  1970. }
  1971. #if defined(DEBUG)
  1972. {
  1973. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  1974. g->scfsi, gr, ch);
  1975. for(i=0;i<j;i++)
  1976. printf(" %d", g->scale_factors[i]);
  1977. printf("\n");
  1978. }
  1979. #endif
  1980. } else {
  1981. int tindex, tindex2, slen[4], sl, sf;
  1982. /* LSF scale factors */
  1983. if (g->block_type == 2) {
  1984. tindex = g->switch_point ? 2 : 1;
  1985. } else {
  1986. tindex = 0;
  1987. }
  1988. sf = g->scalefac_compress;
  1989. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1990. /* intensity stereo case */
  1991. sf >>= 1;
  1992. if (sf < 180) {
  1993. lsf_sf_expand(slen, sf, 6, 6, 0);
  1994. tindex2 = 3;
  1995. } else if (sf < 244) {
  1996. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1997. tindex2 = 4;
  1998. } else {
  1999. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2000. tindex2 = 5;
  2001. }
  2002. } else {
  2003. /* normal case */
  2004. if (sf < 400) {
  2005. lsf_sf_expand(slen, sf, 5, 4, 4);
  2006. tindex2 = 0;
  2007. } else if (sf < 500) {
  2008. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2009. tindex2 = 1;
  2010. } else {
  2011. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2012. tindex2 = 2;
  2013. g->preflag = 1;
  2014. }
  2015. }
  2016. j = 0;
  2017. for(k=0;k<4;k++) {
  2018. n = lsf_nsf_table[tindex2][tindex][k];
  2019. sl = slen[k];
  2020. for(i=0;i<n;i++)
  2021. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2022. }
  2023. /* XXX: should compute exact size */
  2024. for(;j<40;j++)
  2025. g->scale_factors[j] = 0;
  2026. #if defined(DEBUG)
  2027. {
  2028. printf("gr=%d ch=%d scale_factors:\n",
  2029. gr, ch);
  2030. for(i=0;i<40;i++)
  2031. printf(" %d", g->scale_factors[i]);
  2032. printf("\n");
  2033. }
  2034. #endif
  2035. }
  2036. exponents_from_scale_factors(s, g, exponents);
  2037. /* read Huffman coded residue */
  2038. if (huffman_decode(s, g, exponents,
  2039. bits_pos + g->part2_3_length) < 0)
  2040. return -1;
  2041. #if defined(DEBUG)
  2042. sample_dump(0, g->sb_hybrid, 576);
  2043. #endif
  2044. /* skip extension bits */
  2045. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2046. if (bits_left < 0) {
  2047. dprintf("bits_left=%d\n", bits_left);
  2048. return -1;
  2049. }
  2050. while (bits_left >= 16) {
  2051. skip_bits(&s->gb, 16);
  2052. bits_left -= 16;
  2053. }
  2054. if (bits_left > 0)
  2055. skip_bits(&s->gb, bits_left);
  2056. } /* ch */
  2057. if (s->nb_channels == 2)
  2058. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2059. for(ch=0;ch<s->nb_channels;ch++) {
  2060. g = &granules[ch][gr];
  2061. reorder_block(s, g);
  2062. #if defined(DEBUG)
  2063. sample_dump(0, g->sb_hybrid, 576);
  2064. #endif
  2065. compute_antialias(s, g);
  2066. #if defined(DEBUG)
  2067. sample_dump(1, g->sb_hybrid, 576);
  2068. #endif
  2069. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2070. #if defined(DEBUG)
  2071. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2072. #endif
  2073. }
  2074. } /* gr */
  2075. return nb_granules * 18;
  2076. }
  2077. static int mp_decode_frame(MPADecodeContext *s,
  2078. short *samples)
  2079. {
  2080. int i, nb_frames, ch;
  2081. short *samples_ptr;
  2082. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2083. s->inbuf_ptr - s->inbuf - HEADER_SIZE);
  2084. /* skip error protection field */
  2085. if (s->error_protection)
  2086. get_bits(&s->gb, 16);
  2087. dprintf("frame %d:\n", s->frame_count);
  2088. switch(s->layer) {
  2089. case 1:
  2090. nb_frames = mp_decode_layer1(s);
  2091. break;
  2092. case 2:
  2093. nb_frames = mp_decode_layer2(s);
  2094. break;
  2095. case 3:
  2096. default:
  2097. nb_frames = mp_decode_layer3(s);
  2098. break;
  2099. }
  2100. #if defined(DEBUG)
  2101. for(i=0;i<nb_frames;i++) {
  2102. for(ch=0;ch<s->nb_channels;ch++) {
  2103. int j;
  2104. printf("%d-%d:", i, ch);
  2105. for(j=0;j<SBLIMIT;j++)
  2106. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2107. printf("\n");
  2108. }
  2109. }
  2110. #endif
  2111. /* apply the synthesis filter */
  2112. for(ch=0;ch<s->nb_channels;ch++) {
  2113. samples_ptr = samples + ch;
  2114. for(i=0;i<nb_frames;i++) {
  2115. synth_filter(s, ch, samples_ptr, s->nb_channels,
  2116. s->sb_samples[ch][i]);
  2117. samples_ptr += 32 * s->nb_channels;
  2118. }
  2119. }
  2120. #ifdef DEBUG
  2121. s->frame_count++;
  2122. #endif
  2123. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2124. }
  2125. static int decode_frame(AVCodecContext * avctx,
  2126. void *data, int *data_size,
  2127. UINT8 * buf, int buf_size)
  2128. {
  2129. MPADecodeContext *s = avctx->priv_data;
  2130. UINT32 header;
  2131. UINT8 *buf_ptr;
  2132. int len, out_size;
  2133. short *out_samples = data;
  2134. *data_size = 0;
  2135. buf_ptr = buf;
  2136. while (buf_size > 0) {
  2137. len = s->inbuf_ptr - s->inbuf;
  2138. if (s->frame_size == 0) {
  2139. /* special case for next header for first frame in free
  2140. format case (XXX: find a simpler method) */
  2141. if (s->free_format_next_header != 0) {
  2142. s->inbuf[0] = s->free_format_next_header >> 24;
  2143. s->inbuf[1] = s->free_format_next_header >> 16;
  2144. s->inbuf[2] = s->free_format_next_header >> 8;
  2145. s->inbuf[3] = s->free_format_next_header;
  2146. s->inbuf_ptr = s->inbuf + 4;
  2147. s->free_format_next_header = 0;
  2148. goto got_header;
  2149. }
  2150. /* no header seen : find one. We need at least HEADER_SIZE
  2151. bytes to parse it */
  2152. len = HEADER_SIZE - len;
  2153. if (len > buf_size)
  2154. len = buf_size;
  2155. if (len > 0) {
  2156. memcpy(s->inbuf_ptr, buf_ptr, len);
  2157. buf_ptr += len;
  2158. buf_size -= len;
  2159. s->inbuf_ptr += len;
  2160. }
  2161. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2162. got_header:
  2163. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2164. (s->inbuf[2] << 8) | s->inbuf[3];
  2165. if (check_header(header) < 0) {
  2166. /* no sync found : move by one byte (inefficient, but simple!) */
  2167. memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2168. s->inbuf_ptr--;
  2169. dprintf("skip %x\n", header);
  2170. /* reset free format frame size to give a chance
  2171. to get a new bitrate */
  2172. s->free_format_frame_size = 0;
  2173. } else {
  2174. if (decode_header(s, header) == 1) {
  2175. /* free format: prepare to compute frame size */
  2176. s->frame_size = -1;
  2177. }
  2178. /* update codec info */
  2179. avctx->sample_rate = s->sample_rate;
  2180. avctx->channels = s->nb_channels;
  2181. avctx->bit_rate = s->bit_rate;
  2182. avctx->frame_size = s->frame_size;
  2183. }
  2184. }
  2185. } else if (s->frame_size == -1) {
  2186. /* free format : find next sync to compute frame size */
  2187. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2188. if (len > buf_size)
  2189. len = buf_size;
  2190. if (len == 0) {
  2191. /* frame too long: resync */
  2192. s->frame_size = 0;
  2193. memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2194. s->inbuf_ptr--;
  2195. } else {
  2196. UINT8 *p, *pend;
  2197. UINT32 header1;
  2198. int padding;
  2199. memcpy(s->inbuf_ptr, buf_ptr, len);
  2200. /* check for header */
  2201. p = s->inbuf_ptr - 3;
  2202. pend = s->inbuf_ptr + len - 4;
  2203. while (p <= pend) {
  2204. header = (p[0] << 24) | (p[1] << 16) |
  2205. (p[2] << 8) | p[3];
  2206. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2207. (s->inbuf[2] << 8) | s->inbuf[3];
  2208. /* check with high probability that we have a
  2209. valid header */
  2210. if ((header & SAME_HEADER_MASK) ==
  2211. (header1 & SAME_HEADER_MASK)) {
  2212. /* header found: update pointers */
  2213. len = (p + 4) - s->inbuf_ptr;
  2214. buf_ptr += len;
  2215. buf_size -= len;
  2216. s->inbuf_ptr = p;
  2217. /* compute frame size */
  2218. s->free_format_next_header = header;
  2219. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2220. padding = (header1 >> 9) & 1;
  2221. if (s->layer == 1)
  2222. s->free_format_frame_size -= padding * 4;
  2223. else
  2224. s->free_format_frame_size -= padding;
  2225. dprintf("free frame size=%d padding=%d\n",
  2226. s->free_format_frame_size, padding);
  2227. decode_header(s, header1);
  2228. goto next_data;
  2229. }
  2230. p++;
  2231. }
  2232. /* not found: simply increase pointers */
  2233. buf_ptr += len;
  2234. s->inbuf_ptr += len;
  2235. buf_size -= len;
  2236. }
  2237. } else if (len < s->frame_size) {
  2238. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2239. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2240. len = s->frame_size - len;
  2241. if (len > buf_size)
  2242. len = buf_size;
  2243. memcpy(s->inbuf_ptr, buf_ptr, len);
  2244. buf_ptr += len;
  2245. s->inbuf_ptr += len;
  2246. buf_size -= len;
  2247. } else {
  2248. out_size = mp_decode_frame(s, out_samples);
  2249. s->inbuf_ptr = s->inbuf;
  2250. s->frame_size = 0;
  2251. *data_size = out_size;
  2252. break;
  2253. }
  2254. next_data:
  2255. ;
  2256. }
  2257. return buf_ptr - buf;
  2258. }
  2259. AVCodec mp2_decoder =
  2260. {
  2261. "mp2",
  2262. CODEC_TYPE_AUDIO,
  2263. CODEC_ID_MP2,
  2264. sizeof(MPADecodeContext),
  2265. decode_init,
  2266. NULL,
  2267. NULL,
  2268. decode_frame,
  2269. };
  2270. AVCodec mp3_decoder =
  2271. {
  2272. "mp3",
  2273. CODEC_TYPE_AUDIO,
  2274. CODEC_ID_MP3LAME,
  2275. sizeof(MPADecodeContext),
  2276. decode_init,
  2277. NULL,
  2278. NULL,
  2279. decode_frame,
  2280. };
  2281. #undef C1
  2282. #undef C2
  2283. #undef C3
  2284. #undef C4
  2285. #undef C5
  2286. #undef C6
  2287. #undef C7
  2288. #undef C8
  2289. #undef FRAC_BITS
  2290. #undef HEADER_SIZE