|
- /*
- * Copyright (c) 2007-2008 CSIRO
- * Copyright (c) 2007-2009 Xiph.Org Foundation
- * Copyright (c) 2008-2009 Gregory Maxwell
- * Copyright (c) 2012 Andrew D'Addesio
- * Copyright (c) 2013-2014 Mozilla Corporation
- * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- #include "opustab.h"
- #include "opus_pvq.h"
-
- #define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
- #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
-
- static inline int16_t celt_cos(int16_t x)
- {
- x = (MUL16(x, x) + 4096) >> 13;
- x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
- return x + 1;
- }
-
- static inline int celt_log2tan(int isin, int icos)
- {
- int lc, ls;
- lc = opus_ilog(icos);
- ls = opus_ilog(isin);
- icos <<= 15 - lc;
- isin <<= 15 - ls;
- return (ls << 11) - (lc << 11) +
- ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
- ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
- }
-
- static inline int celt_bits2pulses(const uint8_t *cache, int bits)
- {
- // TODO: Find the size of cache and make it into an array in the parameters list
- int i, low = 0, high;
-
- high = cache[0];
- bits--;
-
- for (i = 0; i < 6; i++) {
- int center = (low + high + 1) >> 1;
- if (cache[center] >= bits)
- high = center;
- else
- low = center;
- }
-
- return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
- }
-
- static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
- {
- // TODO: Find the size of cache and make it into an array in the parameters list
- return (pulses == 0) ? 0 : cache[pulses] + 1;
- }
-
- static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
- int N, float g)
- {
- int i;
- for (i = 0; i < N; i++)
- X[i] = g * iy[i];
- }
-
- static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
- float c, float s)
- {
- float *Xptr;
- int i;
-
- Xptr = X;
- for (i = 0; i < len - stride; i++) {
- float x1 = Xptr[0];
- float x2 = Xptr[stride];
- Xptr[stride] = c * x2 + s * x1;
- *Xptr++ = c * x1 - s * x2;
- }
-
- Xptr = &X[len - 2 * stride - 1];
- for (i = len - 2 * stride - 1; i >= 0; i--) {
- float x1 = Xptr[0];
- float x2 = Xptr[stride];
- Xptr[stride] = c * x2 + s * x1;
- *Xptr-- = c * x1 - s * x2;
- }
- }
-
- static inline void celt_exp_rotation(float *X, uint32_t len,
- uint32_t stride, uint32_t K,
- enum CeltSpread spread, const int encode)
- {
- uint32_t stride2 = 0;
- float c, s;
- float gain, theta;
- int i;
-
- if (2*K >= len || spread == CELT_SPREAD_NONE)
- return;
-
- gain = (float)len / (len + (20 - 5*spread) * K);
- theta = M_PI * gain * gain / 4;
-
- c = cosf(theta);
- s = sinf(theta);
-
- if (len >= stride << 3) {
- stride2 = 1;
- /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
- It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
- while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
- stride2++;
- }
-
- len /= stride;
- for (i = 0; i < stride; i++) {
- if (encode) {
- celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
- if (stride2)
- celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
- } else {
- if (stride2)
- celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
- celt_exp_rotation_impl(X + i * len, len, 1, c, s);
- }
- }
- }
-
- static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
- {
- int i, j, N0 = N / B;
- uint32_t collapse_mask = 0;
-
- if (B <= 1)
- return 1;
-
- for (i = 0; i < B; i++)
- for (j = 0; j < N0; j++)
- collapse_mask |= (!!iy[i*N0+j]) << i;
- return collapse_mask;
- }
-
- static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
- {
- int i;
- float xp = 0, side = 0;
- float E[2];
- float mid2;
- float gain[2];
-
- /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
- for (i = 0; i < N; i++) {
- xp += X[i] * Y[i];
- side += Y[i] * Y[i];
- }
-
- /* Compensating for the mid normalization */
- xp *= mid;
- mid2 = mid;
- E[0] = mid2 * mid2 + side - 2 * xp;
- E[1] = mid2 * mid2 + side + 2 * xp;
- if (E[0] < 6e-4f || E[1] < 6e-4f) {
- for (i = 0; i < N; i++)
- Y[i] = X[i];
- return;
- }
-
- gain[0] = 1.0f / sqrtf(E[0]);
- gain[1] = 1.0f / sqrtf(E[1]);
-
- for (i = 0; i < N; i++) {
- float value[2];
- /* Apply mid scaling (side is already scaled) */
- value[0] = mid * X[i];
- value[1] = Y[i];
- X[i] = gain[0] * (value[0] - value[1]);
- Y[i] = gain[1] * (value[0] + value[1]);
- }
- }
-
- static void celt_interleave_hadamard(float *tmp, float *X, int N0,
- int stride, int hadamard)
- {
- int i, j, N = N0*stride;
- const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
-
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[j*stride+i] = X[order[i]*N0+j];
-
- memcpy(X, tmp, N*sizeof(float));
- }
-
- static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
- int stride, int hadamard)
- {
- int i, j, N = N0*stride;
- const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
-
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[order[i]*N0+j] = X[j*stride+i];
-
- memcpy(X, tmp, N*sizeof(float));
- }
-
- static void celt_haar1(float *X, int N0, int stride)
- {
- int i, j;
- N0 >>= 1;
- for (i = 0; i < stride; i++) {
- for (j = 0; j < N0; j++) {
- float x0 = X[stride * (2 * j + 0) + i];
- float x1 = X[stride * (2 * j + 1) + i];
- X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
- X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
- }
- }
- }
-
- static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
- int stereo)
- {
- int qn, qb;
- int N2 = 2 * N - 1;
- if (stereo && N == 2)
- N2--;
-
- /* The upper limit ensures that in a stereo split with itheta==16384, we'll
- * always have enough bits left over to code at least one pulse in the
- * side; otherwise it would collapse, since it doesn't get folded. */
- qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
- qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
- return qn;
- }
-
- /* Convert the quantized vector to an index */
- static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y)
- {
- int i, idx = 0, sum = 0;
- for (i = N - 1; i >= 0; i--) {
- const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
- idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
- sum += FFABS(y[i]);
- }
- return idx;
- }
-
- // this code was adapted from libopus
- static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
- {
- uint64_t norm = 0;
- uint32_t q, p;
- int s, val;
- int k0;
-
- while (N > 2) {
- /*Lots of pulses case:*/
- if (K >= N) {
- const uint32_t *row = ff_celt_pvq_u_row[N];
-
- /* Are the pulses in this dimension negative? */
- p = row[K + 1];
- s = -(i >= p);
- i -= p & s;
-
- /*Count how many pulses were placed in this dimension.*/
- k0 = K;
- q = row[N];
- if (q > i) {
- K = N;
- do {
- p = ff_celt_pvq_u_row[--K][N];
- } while (p > i);
- } else
- for (p = row[K]; p > i; p = row[K])
- K--;
-
- i -= p;
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
- } else { /*Lots of dimensions case:*/
- /*Are there any pulses in this dimension at all?*/
- p = ff_celt_pvq_u_row[K ][N];
- q = ff_celt_pvq_u_row[K + 1][N];
-
- if (p <= i && i < q) {
- i -= p;
- *y++ = 0;
- } else {
- /*Are the pulses in this dimension negative?*/
- s = -(i >= q);
- i -= q & s;
-
- /*Count how many pulses were placed in this dimension.*/
- k0 = K;
- do p = ff_celt_pvq_u_row[--K][N];
- while (p > i);
-
- i -= p;
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
- }
- }
- N--;
- }
-
- /* N == 2 */
- p = 2 * K + 1;
- s = -(i >= p);
- i -= p & s;
- k0 = K;
- K = (i + 1) / 2;
-
- if (K)
- i -= 2 * K - 1;
-
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
-
- /* N==1 */
- s = -i;
- val = (K + s) ^ s;
- norm += val * val;
- *y = val;
-
- return norm;
- }
-
- static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
- {
- ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K));
- }
-
- static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
- {
- const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
- return celt_cwrsi(N, K, idx, y);
- }
-
- /*
- * Faster than libopus's search, operates entirely in the signed domain.
- * Slightly worse/better depending on N, K and the input vector.
- */
- static float ppp_pvq_search_c(float *X, int *y, int K, int N)
- {
- int i, y_norm = 0;
- float res = 0.0f, xy_norm = 0.0f;
-
- for (i = 0; i < N; i++)
- res += FFABS(X[i]);
-
- res = K/(res + FLT_EPSILON);
-
- for (i = 0; i < N; i++) {
- y[i] = lrintf(res*X[i]);
- y_norm += y[i]*y[i];
- xy_norm += y[i]*X[i];
- K -= FFABS(y[i]);
- }
-
- while (K) {
- int max_idx = 0, phase = FFSIGN(K);
- float max_num = 0.0f;
- float max_den = 1.0f;
- y_norm += 1.0f;
-
- for (i = 0; i < N; i++) {
- /* If the sum has been overshot and the best place has 0 pulses allocated
- * to it, attempting to decrease it further will actually increase the
- * sum. Prevent this by disregarding any 0 positions when decrementing. */
- const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
- const int y_new = y_norm + 2*phase*FFABS(y[i]);
- float xy_new = xy_norm + 1*phase*FFABS(X[i]);
- xy_new = xy_new * xy_new;
- if (ca && (max_den*xy_new) > (y_new*max_num)) {
- max_den = y_new;
- max_num = xy_new;
- max_idx = i;
- }
- }
-
- K -= phase;
-
- phase *= FFSIGN(X[max_idx]);
- xy_norm += 1*phase*X[max_idx];
- y_norm += 2*phase*y[max_idx];
- y[max_idx] += phase;
- }
-
- return (float)y_norm;
- }
-
- static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
- enum CeltSpread spread, uint32_t blocks, float gain,
- CeltPVQ *pvq)
- {
- int *y = pvq->qcoeff;
-
- celt_exp_rotation(X, N, blocks, K, spread, 1);
- gain /= sqrtf(pvq->pvq_search(X, y, K, N));
- celt_encode_pulses(rc, y, N, K);
- celt_normalize_residual(y, X, N, gain);
- celt_exp_rotation(X, N, blocks, K, spread, 0);
- return celt_extract_collapse_mask(y, N, blocks);
- }
-
- /** Decode pulse vector and combine the result with the pitch vector to produce
- the final normalised signal in the current band. */
- static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
- enum CeltSpread spread, uint32_t blocks, float gain,
- CeltPVQ *pvq)
- {
- int *y = pvq->qcoeff;
-
- gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
- celt_normalize_residual(y, X, N, gain);
- celt_exp_rotation(X, N, blocks, K, spread, 0);
- return celt_extract_collapse_mask(y, N, blocks);
- }
-
- static int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
- {
- int i;
- float e[2] = { 0.0f, 0.0f };
- if (coupling) { /* Coupling case */
- for (i = 0; i < N; i++) {
- e[0] += (X[i] + Y[i])*(X[i] + Y[i]);
- e[1] += (X[i] - Y[i])*(X[i] - Y[i]);
- }
- } else {
- for (i = 0; i < N; i++) {
- e[0] += X[i]*X[i];
- e[1] += Y[i]*Y[i];
- }
- }
- return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
- }
-
- static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
- {
- int i;
- const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
- e_l *= energy_n;
- e_r *= energy_n;
- for (i = 0; i < N; i++)
- X[i] = e_l*X[i] + e_r*Y[i];
- }
-
- static void celt_stereo_ms_decouple(float *X, float *Y, int N)
- {
- int i;
- for (i = 0; i < N; i++) {
- const float Xret = X[i];
- X[i] = (X[i] + Y[i])*M_SQRT1_2;
- Y[i] = (Y[i] - Xret)*M_SQRT1_2;
- }
- }
-
- static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f,
- OpusRangeCoder *rc,
- const int band, float *X,
- float *Y, int N, int b,
- uint32_t blocks, float *lowband,
- int duration, float *lowband_out,
- int level, float gain,
- float *lowband_scratch,
- int fill, int quant,
- QUANT_FN(*rec))
- {
- int i;
- const uint8_t *cache;
- int stereo = !!Y, split = stereo;
- int imid = 0, iside = 0;
- uint32_t N0 = N;
- int N_B = N / blocks;
- int N_B0 = N_B;
- int B0 = blocks;
- int time_divide = 0;
- int recombine = 0;
- int inv = 0;
- float mid = 0, side = 0;
- int longblocks = (B0 == 1);
- uint32_t cm = 0;
-
- if (N == 1) {
- float *x = X;
- for (i = 0; i <= stereo; i++) {
- int sign = 0;
- if (f->remaining2 >= 1 << 3) {
- if (quant) {
- sign = x[0] < 0;
- ff_opus_rc_put_raw(rc, sign, 1);
- } else {
- sign = ff_opus_rc_get_raw(rc, 1);
- }
- f->remaining2 -= 1 << 3;
- }
- x[0] = 1.0f - 2.0f*sign;
- x = Y;
- }
- if (lowband_out)
- lowband_out[0] = X[0];
- return 1;
- }
-
- if (!stereo && level == 0) {
- int tf_change = f->tf_change[band];
- int k;
- if (tf_change > 0)
- recombine = tf_change;
- /* Band recombining to increase frequency resolution */
-
- if (lowband &&
- (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
- for (i = 0; i < N; i++)
- lowband_scratch[i] = lowband[i];
- lowband = lowband_scratch;
- }
-
- for (k = 0; k < recombine; k++) {
- if (quant || lowband)
- celt_haar1(quant ? X : lowband, N >> k, 1 << k);
- fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
- }
- blocks >>= recombine;
- N_B <<= recombine;
-
- /* Increasing the time resolution */
- while ((N_B & 1) == 0 && tf_change < 0) {
- if (quant || lowband)
- celt_haar1(quant ? X : lowband, N_B, blocks);
- fill |= fill << blocks;
- blocks <<= 1;
- N_B >>= 1;
- time_divide++;
- tf_change++;
- }
- B0 = blocks;
- N_B0 = N_B;
-
- /* Reorganize the samples in time order instead of frequency order */
- if (B0 > 1 && (quant || lowband))
- celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband,
- N_B >> recombine, B0 << recombine,
- longblocks);
- }
-
- /* If we need 1.5 more bit than we can produce, split the band in two. */
- cache = ff_celt_cache_bits +
- ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
- if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
- N >>= 1;
- Y = X + N;
- split = 1;
- duration -= 1;
- if (blocks == 1)
- fill = (fill & 1) | (fill << 1);
- blocks = (blocks + 1) >> 1;
- }
-
- if (split) {
- int qn;
- int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0;
- int mbits, sbits, delta;
- int qalloc;
- int pulse_cap;
- int offset;
- int orig_fill;
- int tell;
-
- /* Decide on the resolution to give to the split parameter theta */
- pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
- offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
- CELT_QTHETA_OFFSET);
- qn = (stereo && band >= f->intensity_stereo) ? 1 :
- celt_compute_qn(N, b, offset, pulse_cap, stereo);
- tell = opus_rc_tell_frac(rc);
- if (qn != 1) {
- if (quant)
- itheta = (itheta*qn + 8192) >> 14;
- /* Entropy coding of the angle. We use a uniform pdf for the
- * time split, a step for stereo, and a triangular one for the rest. */
- if (quant) {
- if (stereo && N > 2)
- ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
- else if (stereo || B0 > 1)
- ff_opus_rc_enc_uint(rc, itheta, qn + 1);
- else
- ff_opus_rc_enc_uint_tri(rc, itheta, qn);
- itheta = itheta * 16384 / qn;
- if (stereo) {
- if (itheta == 0)
- celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
- f->block[1].lin_energy[band], N);
- else
- celt_stereo_ms_decouple(X, Y, N);
- }
- } else {
- if (stereo && N > 2)
- itheta = ff_opus_rc_dec_uint_step(rc, qn / 2);
- else if (stereo || B0 > 1)
- itheta = ff_opus_rc_dec_uint(rc, qn+1);
- else
- itheta = ff_opus_rc_dec_uint_tri(rc, qn);
- itheta = itheta * 16384 / qn;
- }
- } else if (stereo) {
- if (quant) {
- inv = itheta > 8192;
- if (inv) {
- for (i = 0; i < N; i++)
- Y[i] *= -1;
- }
- celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
- f->block[1].lin_energy[band], N);
-
- if (b > 2 << 3 && f->remaining2 > 2 << 3) {
- ff_opus_rc_enc_log(rc, inv, 2);
- } else {
- inv = 0;
- }
- } else {
- inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
- }
- itheta = 0;
- }
- qalloc = opus_rc_tell_frac(rc) - tell;
- b -= qalloc;
-
- orig_fill = fill;
- if (itheta == 0) {
- imid = 32767;
- iside = 0;
- fill = av_mod_uintp2(fill, blocks);
- delta = -16384;
- } else if (itheta == 16384) {
- imid = 0;
- iside = 32767;
- fill &= ((1 << blocks) - 1) << blocks;
- delta = 16384;
- } else {
- imid = celt_cos(itheta);
- iside = celt_cos(16384-itheta);
- /* This is the mid vs side allocation that minimizes squared error
- in that band. */
- delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
- }
-
- mid = imid / 32768.0f;
- side = iside / 32768.0f;
-
- /* This is a special case for N=2 that only works for stereo and takes
- advantage of the fact that mid and side are orthogonal to encode
- the side with just one bit. */
- if (N == 2 && stereo) {
- int c;
- int sign = 0;
- float tmp;
- float *x2, *y2;
- mbits = b;
- /* Only need one bit for the side */
- sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
- mbits -= sbits;
- c = (itheta > 8192);
- f->remaining2 -= qalloc+sbits;
-
- x2 = c ? Y : X;
- y2 = c ? X : Y;
- if (sbits) {
- if (quant) {
- sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
- ff_opus_rc_put_raw(rc, sign, 1);
- } else {
- sign = ff_opus_rc_get_raw(rc, 1);
- }
- }
- sign = 1 - 2 * sign;
- /* We use orig_fill here because we want to fold the side, but if
- itheta==16384, we'll have cleared the low bits of fill. */
- cm = rec(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration,
- lowband_out, level, gain, lowband_scratch, orig_fill);
- /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
- and there's no need to worry about mixing with the other channel. */
- y2[0] = -sign * x2[1];
- y2[1] = sign * x2[0];
- X[0] *= mid;
- X[1] *= mid;
- Y[0] *= side;
- Y[1] *= side;
- tmp = X[0];
- X[0] = tmp - Y[0];
- Y[0] = tmp + Y[0];
- tmp = X[1];
- X[1] = tmp - Y[1];
- Y[1] = tmp + Y[1];
- } else {
- /* "Normal" split code */
- float *next_lowband2 = NULL;
- float *next_lowband_out1 = NULL;
- int next_level = 0;
- int rebalance;
- uint32_t cmt;
-
- /* Give more bits to low-energy MDCTs than they would
- * otherwise deserve */
- if (B0 > 1 && !stereo && (itheta & 0x3fff)) {
- if (itheta > 8192)
- /* Rough approximation for pre-echo masking */
- delta -= delta >> (4 - duration);
- else
- /* Corresponds to a forward-masking slope of
- * 1.5 dB per 10 ms */
- delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
- }
- mbits = av_clip((b - delta) / 2, 0, b);
- sbits = b - mbits;
- f->remaining2 -= qalloc;
-
- if (lowband && !stereo)
- next_lowband2 = lowband + N; /* >32-bit split case */
-
- /* Only stereo needs to pass on lowband_out.
- * Otherwise, it's handled at the end */
- if (stereo)
- next_lowband_out1 = lowband_out;
- else
- next_level = level + 1;
-
- rebalance = f->remaining2;
- if (mbits >= sbits) {
- /* In stereo mode, we do not apply a scaling to the mid
- * because we need the normalized mid for folding later */
- cm = rec(pvq, f, rc, band, X, NULL, N, mbits, blocks, lowband,
- duration, next_lowband_out1, next_level,
- stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
- rebalance = mbits - (rebalance - f->remaining2);
- if (rebalance > 3 << 3 && itheta != 0)
- sbits += rebalance - (3 << 3);
-
- /* For a stereo split, the high bits of fill are always zero,
- * so no folding will be done to the side. */
- cmt = rec(pvq, f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2,
- duration, NULL, next_level, gain * side, NULL,
- fill >> blocks);
- cm |= cmt << ((B0 >> 1) & (stereo - 1));
- } else {
- /* For a stereo split, the high bits of fill are always zero,
- * so no folding will be done to the side. */
- cm = rec(pvq, f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2,
- duration, NULL, next_level, gain * side, NULL, fill >> blocks);
- cm <<= ((B0 >> 1) & (stereo - 1));
- rebalance = sbits - (rebalance - f->remaining2);
- if (rebalance > 3 << 3 && itheta != 16384)
- mbits += rebalance - (3 << 3);
-
- /* In stereo mode, we do not apply a scaling to the mid because
- * we need the normalized mid for folding later */
- cm |= rec(pvq, f, rc, band, X, NULL, N, mbits, blocks, lowband, duration,
- next_lowband_out1, next_level, stereo ? 1.0f : (gain * mid),
- lowband_scratch, fill);
- }
- }
- } else {
- /* This is the basic no-split case */
- uint32_t q = celt_bits2pulses(cache, b);
- uint32_t curr_bits = celt_pulses2bits(cache, q);
- f->remaining2 -= curr_bits;
-
- /* Ensures we can never bust the budget */
- while (f->remaining2 < 0 && q > 0) {
- f->remaining2 += curr_bits;
- curr_bits = celt_pulses2bits(cache, --q);
- f->remaining2 -= curr_bits;
- }
-
- if (q != 0) {
- /* Finally do the actual (de)quantization */
- if (quant) {
- cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
- f->spread, blocks, gain, pvq);
- } else {
- cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
- f->spread, blocks, gain, pvq);
- }
- } else {
- /* If there's no pulse, fill the band anyway */
- uint32_t cm_mask = (1 << blocks) - 1;
- fill &= cm_mask;
- if (fill) {
- if (!lowband) {
- /* Noise */
- for (i = 0; i < N; i++)
- X[i] = (((int32_t)celt_rng(f)) >> 20);
- cm = cm_mask;
- } else {
- /* Folded spectrum */
- for (i = 0; i < N; i++) {
- /* About 48 dB below the "normal" folding level */
- X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
- }
- cm = fill;
- }
- celt_renormalize_vector(X, N, gain);
- } else {
- memset(X, 0, N*sizeof(float));
- }
- }
- }
-
- /* This code is used by the decoder and by the resynthesis-enabled encoder */
- if (stereo) {
- if (N > 2)
- celt_stereo_merge(X, Y, mid, N);
- if (inv) {
- for (i = 0; i < N; i++)
- Y[i] *= -1;
- }
- } else if (level == 0) {
- int k;
-
- /* Undo the sample reorganization going from time order to frequency order */
- if (B0 > 1)
- celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine,
- B0 << recombine, longblocks);
-
- /* Undo time-freq changes that we did earlier */
- N_B = N_B0;
- blocks = B0;
- for (k = 0; k < time_divide; k++) {
- blocks >>= 1;
- N_B <<= 1;
- cm |= cm >> blocks;
- celt_haar1(X, N_B, blocks);
- }
-
- for (k = 0; k < recombine; k++) {
- cm = ff_celt_bit_deinterleave[cm];
- celt_haar1(X, N0>>k, 1<<k);
- }
- blocks <<= recombine;
-
- /* Scale output for later folding */
- if (lowband_out) {
- float n = sqrtf(N0);
- for (i = 0; i < N0; i++)
- lowband_out[i] = n * X[i];
- }
- cm = av_mod_uintp2(cm, blocks);
- }
-
- return cm;
- }
-
-
- static QUANT_FN(pvq_decode_band)
- {
- return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
- lowband_out, level, gain, lowband_scratch, fill, 0,
- pvq->decode_band);
- }
-
- static QUANT_FN(pvq_encode_band)
- {
- return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
- lowband_out, level, gain, lowband_scratch, fill, 1,
- pvq->encode_band);
- }
-
- static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band,
- float *bits, float lambda)
- {
- int i, b = 0;
- uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
- const int band_size = ff_celt_freq_range[band] << f->size;
- float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176];
- float dist, cost, err_x = 0.0f, err_y = 0.0f;
- float *X = buf;
- float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size);
- float *Y = (f->channels == 2) ? &buf[176] : NULL;
- float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size);
- OPUS_RC_CHECKPOINT_SPAWN(rc);
-
- memcpy(X, X_orig, band_size*sizeof(float));
- if (Y)
- memcpy(Y, Y_orig, band_size*sizeof(float));
-
- f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1;
- if (band <= f->coded_bands - 1) {
- int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band);
- b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14);
- }
-
- if (f->dual_stereo) {
- pvq->encode_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL,
- f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]);
-
- pvq->encode_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL,
- f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]);
- } else {
- pvq->encode_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size,
- norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
- }
-
- for (i = 0; i < band_size; i++) {
- err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]);
- if (Y)
- err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]);
- }
-
- dist = sqrtf(err_x) + sqrtf(err_y);
- cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f;
- *bits += cost;
-
- OPUS_RC_CHECKPOINT_ROLLBACK(rc);
-
- return lambda*dist*cost;
- }
-
- int av_cold ff_celt_pvq_init(CeltPVQ **pvq)
- {
- CeltPVQ *s = av_malloc(sizeof(CeltPVQ));
- if (!s)
- return AVERROR(ENOMEM);
-
- s->pvq_search = ppp_pvq_search_c;
- s->decode_band = pvq_decode_band;
- s->encode_band = pvq_encode_band;
- s->band_cost = pvq_band_cost;
-
- if (ARCH_X86)
- ff_opus_dsp_init_x86(s);
-
- *pvq = s;
-
- return 0;
- }
-
- void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
- {
- av_freep(pvq);
- }
|