You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

899 lines
25KB

  1. /*
  2. * yuv2rgb.c, Software YUV to RGB converter
  3. *
  4. * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  5. *
  6. * Functions broken out from display_x11.c and several new modes
  7. * added by HÃ¥kan Hjort <d95hjort@dtek.chalmers.se>
  8. *
  9. * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr>
  10. *
  11. * MMX/MMX2 template stuff (needed for fast movntq support),
  12. * 1,4,8bpp support and context / deglobalize stuff
  13. * by Michael Niedermayer (michaelni@gmx.at)
  14. *
  15. * This file is part of mpeg2dec, a free MPEG-2 video decoder
  16. *
  17. * mpeg2dec is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License as published by
  19. * the Free Software Foundation; either version 2, or (at your option)
  20. * any later version.
  21. *
  22. * mpeg2dec is distributed in the hope that it will be useful,
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  25. * GNU General Public License for more details.
  26. *
  27. * You should have received a copy of the GNU General Public License
  28. * along with mpeg2dec; if not, write to the Free Software
  29. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  30. */
  31. #include <stdio.h>
  32. #include <stdlib.h>
  33. #include <inttypes.h>
  34. #include <assert.h>
  35. #include "config.h"
  36. #include "rgb2rgb.h"
  37. #include "swscale.h"
  38. #include "swscale_internal.h"
  39. #ifdef HAVE_VIS
  40. #include "yuv2rgb_vis.c"
  41. #endif
  42. #ifdef HAVE_MLIB
  43. #include "yuv2rgb_mlib.c"
  44. #endif
  45. #define DITHER1XBPP // only for mmx
  46. const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  47. { 1, 3, 1, 3, 1, 3, 1, 3, },
  48. { 2, 0, 2, 0, 2, 0, 2, 0, },
  49. };
  50. const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  51. { 6, 2, 6, 2, 6, 2, 6, 2, },
  52. { 0, 4, 0, 4, 0, 4, 0, 4, },
  53. };
  54. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  55. { 17, 9, 23, 15, 16, 8, 22, 14, },
  56. { 5, 29, 3, 27, 4, 28, 2, 26, },
  57. { 21, 13, 19, 11, 20, 12, 18, 10, },
  58. { 0, 24, 6, 30, 1, 25, 7, 31, },
  59. { 16, 8, 22, 14, 17, 9, 23, 15, },
  60. { 4, 28, 2, 26, 5, 29, 3, 27, },
  61. { 20, 12, 18, 10, 21, 13, 19, 11, },
  62. { 1, 25, 7, 31, 0, 24, 6, 30, },
  63. };
  64. #if 0
  65. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  66. { 0, 48, 12, 60, 3, 51, 15, 63, },
  67. { 32, 16, 44, 28, 35, 19, 47, 31, },
  68. { 8, 56, 4, 52, 11, 59, 7, 55, },
  69. { 40, 24, 36, 20, 43, 27, 39, 23, },
  70. { 2, 50, 14, 62, 1, 49, 13, 61, },
  71. { 34, 18, 46, 30, 33, 17, 45, 29, },
  72. { 10, 58, 6, 54, 9, 57, 5, 53, },
  73. { 42, 26, 38, 22, 41, 25, 37, 21, },
  74. };
  75. #endif
  76. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  77. { 0, 55, 14, 68, 3, 58, 17, 72, },
  78. { 37, 18, 50, 32, 40, 22, 54, 35, },
  79. { 9, 64, 5, 59, 13, 67, 8, 63, },
  80. { 46, 27, 41, 23, 49, 31, 44, 26, },
  81. { 2, 57, 16, 71, 1, 56, 15, 70, },
  82. { 39, 21, 52, 34, 38, 19, 51, 33, },
  83. { 11, 66, 7, 62, 10, 65, 6, 60, },
  84. { 48, 30, 43, 25, 47, 29, 42, 24, },
  85. };
  86. #if 0
  87. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  88. { 68, 36, 92, 60, 66, 34, 90, 58, },
  89. { 20, 116, 12, 108, 18, 114, 10, 106, },
  90. { 84, 52, 76, 44, 82, 50, 74, 42, },
  91. { 0, 96, 24, 120, 6, 102, 30, 126, },
  92. { 64, 32, 88, 56, 70, 38, 94, 62, },
  93. { 16, 112, 8, 104, 22, 118, 14, 110, },
  94. { 80, 48, 72, 40, 86, 54, 78, 46, },
  95. { 4, 100, 28, 124, 2, 98, 26, 122, },
  96. };
  97. #endif
  98. #if 1
  99. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  100. {117, 62, 158, 103, 113, 58, 155, 100, },
  101. { 34, 199, 21, 186, 31, 196, 17, 182, },
  102. {144, 89, 131, 76, 141, 86, 127, 72, },
  103. { 0, 165, 41, 206, 10, 175, 52, 217, },
  104. {110, 55, 151, 96, 120, 65, 162, 107, },
  105. { 28, 193, 14, 179, 38, 203, 24, 189, },
  106. {138, 83, 124, 69, 148, 93, 134, 79, },
  107. { 7, 172, 48, 213, 3, 168, 45, 210, },
  108. };
  109. #elif 1
  110. // tries to correct a gamma of 1.5
  111. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  112. { 0, 143, 18, 200, 2, 156, 25, 215, },
  113. { 78, 28, 125, 64, 89, 36, 138, 74, },
  114. { 10, 180, 3, 161, 16, 195, 8, 175, },
  115. {109, 51, 93, 38, 121, 60, 105, 47, },
  116. { 1, 152, 23, 210, 0, 147, 20, 205, },
  117. { 85, 33, 134, 71, 81, 30, 130, 67, },
  118. { 14, 190, 6, 171, 12, 185, 5, 166, },
  119. {117, 57, 101, 44, 113, 54, 97, 41, },
  120. };
  121. #elif 1
  122. // tries to correct a gamma of 2.0
  123. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  124. { 0, 124, 8, 193, 0, 140, 12, 213, },
  125. { 55, 14, 104, 42, 66, 19, 119, 52, },
  126. { 3, 168, 1, 145, 6, 187, 3, 162, },
  127. { 86, 31, 70, 21, 99, 39, 82, 28, },
  128. { 0, 134, 11, 206, 0, 129, 9, 200, },
  129. { 62, 17, 114, 48, 58, 16, 109, 45, },
  130. { 5, 181, 2, 157, 4, 175, 1, 151, },
  131. { 95, 36, 78, 26, 90, 34, 74, 24, },
  132. };
  133. #else
  134. // tries to correct a gamma of 2.5
  135. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  136. { 0, 107, 3, 187, 0, 125, 6, 212, },
  137. { 39, 7, 86, 28, 49, 11, 102, 36, },
  138. { 1, 158, 0, 131, 3, 180, 1, 151, },
  139. { 68, 19, 52, 12, 81, 25, 64, 17, },
  140. { 0, 119, 5, 203, 0, 113, 4, 195, },
  141. { 45, 9, 96, 33, 42, 8, 91, 30, },
  142. { 2, 172, 1, 144, 2, 165, 0, 137, },
  143. { 77, 23, 60, 15, 72, 21, 56, 14, },
  144. };
  145. #endif
  146. #ifdef HAVE_MMX
  147. /* hope these constant values are cache line aligned */
  148. DECLARE_ASM_CONST(8, uint64_t, mmx_00ffw) = 0x00ff00ff00ff00ffULL;
  149. DECLARE_ASM_CONST(8, uint64_t, mmx_redmask) = 0xf8f8f8f8f8f8f8f8ULL;
  150. DECLARE_ASM_CONST(8, uint64_t, mmx_grnmask) = 0xfcfcfcfcfcfcfcfcULL;
  151. // the volatile is required because gcc otherwise optimizes some writes away not knowing that these
  152. // are read in the asm block
  153. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  154. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  155. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  156. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  157. static uint64_t __attribute__((aligned(8))) dither4[2]={
  158. 0x0103010301030103LL,
  159. 0x0200020002000200LL,};
  160. static uint64_t __attribute__((aligned(8))) dither8[2]={
  161. 0x0602060206020602LL,
  162. 0x0004000400040004LL,};
  163. #undef HAVE_MMX
  164. //MMX versions
  165. #undef RENAME
  166. #define HAVE_MMX
  167. #undef HAVE_MMX2
  168. #undef HAVE_3DNOW
  169. #define RENAME(a) a ## _MMX
  170. #include "yuv2rgb_template.c"
  171. //MMX2 versions
  172. #undef RENAME
  173. #define HAVE_MMX
  174. #define HAVE_MMX2
  175. #undef HAVE_3DNOW
  176. #define RENAME(a) a ## _MMX2
  177. #include "yuv2rgb_template.c"
  178. #endif /* defined(ARCH_X86) */
  179. const int32_t Inverse_Table_6_9[8][4] = {
  180. {117504, 138453, 13954, 34903}, /* no sequence_display_extension */
  181. {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */
  182. {104597, 132201, 25675, 53279}, /* unspecified */
  183. {104597, 132201, 25675, 53279}, /* reserved */
  184. {104448, 132798, 24759, 53109}, /* FCC */
  185. {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */
  186. {104597, 132201, 25675, 53279}, /* SMPTE 170M */
  187. {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */
  188. };
  189. #define RGB(i) \
  190. U = pu[i]; \
  191. V = pv[i]; \
  192. r = (void *)c->table_rV[V]; \
  193. g = (void *)(c->table_gU[U] + c->table_gV[V]); \
  194. b = (void *)c->table_bU[U];
  195. #define DST1(i) \
  196. Y = py_1[2*i]; \
  197. dst_1[2*i] = r[Y] + g[Y] + b[Y]; \
  198. Y = py_1[2*i+1]; \
  199. dst_1[2*i+1] = r[Y] + g[Y] + b[Y];
  200. #define DST2(i) \
  201. Y = py_2[2*i]; \
  202. dst_2[2*i] = r[Y] + g[Y] + b[Y]; \
  203. Y = py_2[2*i+1]; \
  204. dst_2[2*i+1] = r[Y] + g[Y] + b[Y];
  205. #define DST1RGB(i) \
  206. Y = py_1[2*i]; \
  207. dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \
  208. Y = py_1[2*i+1]; \
  209. dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y];
  210. #define DST2RGB(i) \
  211. Y = py_2[2*i]; \
  212. dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \
  213. Y = py_2[2*i+1]; \
  214. dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y];
  215. #define DST1BGR(i) \
  216. Y = py_1[2*i]; \
  217. dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \
  218. Y = py_1[2*i+1]; \
  219. dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y];
  220. #define DST2BGR(i) \
  221. Y = py_2[2*i]; \
  222. dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \
  223. Y = py_2[2*i+1]; \
  224. dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y];
  225. #define PROLOG(func_name, dst_type) \
  226. static int func_name(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, \
  227. int srcSliceH, uint8_t* dst[], int dstStride[]){\
  228. int y;\
  229. \
  230. if (c->srcFormat == PIX_FMT_YUV422P){\
  231. srcStride[1] *= 2;\
  232. srcStride[2] *= 2;\
  233. }\
  234. for (y=0; y<srcSliceH; y+=2){\
  235. dst_type *dst_1= (dst_type*)(dst[0] + (y+srcSliceY )*dstStride[0]);\
  236. dst_type *dst_2= (dst_type*)(dst[0] + (y+srcSliceY+1)*dstStride[0]);\
  237. dst_type av_unused *r, *b;\
  238. dst_type *g;\
  239. uint8_t *py_1= src[0] + y*srcStride[0];\
  240. uint8_t *py_2= py_1 + srcStride[0];\
  241. uint8_t *pu= src[1] + (y>>1)*srcStride[1];\
  242. uint8_t *pv= src[2] + (y>>1)*srcStride[2];\
  243. unsigned int h_size= c->dstW>>3;\
  244. while (h_size--) {\
  245. int av_unused U, V;\
  246. int Y;\
  247. #define EPILOG1(dst_delta)\
  248. pu += 4;\
  249. pv += 4;\
  250. py_1 += 8;\
  251. py_2 += 8;\
  252. dst_1 += dst_delta;\
  253. dst_2 += dst_delta;\
  254. }\
  255. if (c->dstW & 4) {\
  256. int av_unused U, V;\
  257. int Y;\
  258. #define EPILOG2()\
  259. }\
  260. }\
  261. return srcSliceH;\
  262. }
  263. #define EPILOG(dst_delta)\
  264. EPILOG1(dst_delta)\
  265. EPILOG2()
  266. PROLOG(yuv2rgb_c_32, uint32_t)
  267. RGB(0);
  268. DST1(0);
  269. DST2(0);
  270. RGB(1);
  271. DST2(1);
  272. DST1(1);
  273. RGB(2);
  274. DST1(2);
  275. DST2(2);
  276. RGB(3);
  277. DST2(3);
  278. DST1(3);
  279. EPILOG1(8)
  280. RGB(0);
  281. DST1(0);
  282. DST2(0);
  283. RGB(1);
  284. DST2(1);
  285. DST1(1);
  286. EPILOG2()
  287. PROLOG(yuv2rgb_c_24_rgb, uint8_t)
  288. RGB(0);
  289. DST1RGB(0);
  290. DST2RGB(0);
  291. RGB(1);
  292. DST2RGB(1);
  293. DST1RGB(1);
  294. RGB(2);
  295. DST1RGB(2);
  296. DST2RGB(2);
  297. RGB(3);
  298. DST2RGB(3);
  299. DST1RGB(3);
  300. EPILOG1(24)
  301. RGB(0);
  302. DST1RGB(0);
  303. DST2RGB(0);
  304. RGB(1);
  305. DST2RGB(1);
  306. DST1RGB(1);
  307. EPILOG2()
  308. // only trivial mods from yuv2rgb_c_24_rgb
  309. PROLOG(yuv2rgb_c_24_bgr, uint8_t)
  310. RGB(0);
  311. DST1BGR(0);
  312. DST2BGR(0);
  313. RGB(1);
  314. DST2BGR(1);
  315. DST1BGR(1);
  316. RGB(2);
  317. DST1BGR(2);
  318. DST2BGR(2);
  319. RGB(3);
  320. DST2BGR(3);
  321. DST1BGR(3);
  322. EPILOG1(24)
  323. RGB(0);
  324. DST1BGR(0);
  325. DST2BGR(0);
  326. RGB(1);
  327. DST2BGR(1);
  328. DST1BGR(1);
  329. EPILOG2()
  330. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  331. // r, g, b, dst_1, dst_2
  332. PROLOG(yuv2rgb_c_16, uint16_t)
  333. RGB(0);
  334. DST1(0);
  335. DST2(0);
  336. RGB(1);
  337. DST2(1);
  338. DST1(1);
  339. RGB(2);
  340. DST1(2);
  341. DST2(2);
  342. RGB(3);
  343. DST2(3);
  344. DST1(3);
  345. EPILOG(8)
  346. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  347. // r, g, b, dst_1, dst_2
  348. PROLOG(yuv2rgb_c_8, uint8_t)
  349. RGB(0);
  350. DST1(0);
  351. DST2(0);
  352. RGB(1);
  353. DST2(1);
  354. DST1(1);
  355. RGB(2);
  356. DST1(2);
  357. DST2(2);
  358. RGB(3);
  359. DST2(3);
  360. DST1(3);
  361. EPILOG(8)
  362. // r, g, b, dst_1, dst_2
  363. PROLOG(yuv2rgb_c_8_ordered_dither, uint8_t)
  364. const uint8_t *d32= dither_8x8_32[y&7];
  365. const uint8_t *d64= dither_8x8_73[y&7];
  366. #define DST1bpp8(i,o) \
  367. Y = py_1[2*i]; \
  368. dst_1[2*i] = r[Y+d32[0+o]] + g[Y+d32[0+o]] + b[Y+d64[0+o]]; \
  369. Y = py_1[2*i+1]; \
  370. dst_1[2*i+1] = r[Y+d32[1+o]] + g[Y+d32[1+o]] + b[Y+d64[1+o]];
  371. #define DST2bpp8(i,o) \
  372. Y = py_2[2*i]; \
  373. dst_2[2*i] = r[Y+d32[8+o]] + g[Y+d32[8+o]] + b[Y+d64[8+o]]; \
  374. Y = py_2[2*i+1]; \
  375. dst_2[2*i+1] = r[Y+d32[9+o]] + g[Y+d32[9+o]] + b[Y+d64[9+o]];
  376. RGB(0);
  377. DST1bpp8(0,0);
  378. DST2bpp8(0,0);
  379. RGB(1);
  380. DST2bpp8(1,2);
  381. DST1bpp8(1,2);
  382. RGB(2);
  383. DST1bpp8(2,4);
  384. DST2bpp8(2,4);
  385. RGB(3);
  386. DST2bpp8(3,6);
  387. DST1bpp8(3,6);
  388. EPILOG(8)
  389. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  390. // r, g, b, dst_1, dst_2
  391. PROLOG(yuv2rgb_c_4, uint8_t)
  392. int acc;
  393. #define DST1_4(i) \
  394. Y = py_1[2*i]; \
  395. acc = r[Y] + g[Y] + b[Y]; \
  396. Y = py_1[2*i+1]; \
  397. acc |= (r[Y] + g[Y] + b[Y])<<4; \
  398. dst_1[i] = acc;
  399. #define DST2_4(i) \
  400. Y = py_2[2*i]; \
  401. acc = r[Y] + g[Y] + b[Y]; \
  402. Y = py_2[2*i+1]; \
  403. acc |= (r[Y] + g[Y] + b[Y])<<4; \
  404. dst_2[i] = acc;
  405. RGB(0);
  406. DST1_4(0);
  407. DST2_4(0);
  408. RGB(1);
  409. DST2_4(1);
  410. DST1_4(1);
  411. RGB(2);
  412. DST1_4(2);
  413. DST2_4(2);
  414. RGB(3);
  415. DST2_4(3);
  416. DST1_4(3);
  417. EPILOG(4)
  418. PROLOG(yuv2rgb_c_4_ordered_dither, uint8_t)
  419. const uint8_t *d64= dither_8x8_73[y&7];
  420. const uint8_t *d128=dither_8x8_220[y&7];
  421. int acc;
  422. #define DST1bpp4(i,o) \
  423. Y = py_1[2*i]; \
  424. acc = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  425. Y = py_1[2*i+1]; \
  426. acc |= (r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]])<<4; \
  427. dst_1[i]= acc;
  428. #define DST2bpp4(i,o) \
  429. Y = py_2[2*i]; \
  430. acc = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  431. Y = py_2[2*i+1]; \
  432. acc |= (r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]])<<4; \
  433. dst_2[i]= acc;
  434. RGB(0);
  435. DST1bpp4(0,0);
  436. DST2bpp4(0,0);
  437. RGB(1);
  438. DST2bpp4(1,2);
  439. DST1bpp4(1,2);
  440. RGB(2);
  441. DST1bpp4(2,4);
  442. DST2bpp4(2,4);
  443. RGB(3);
  444. DST2bpp4(3,6);
  445. DST1bpp4(3,6);
  446. EPILOG(4)
  447. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  448. // r, g, b, dst_1, dst_2
  449. PROLOG(yuv2rgb_c_4b, uint8_t)
  450. RGB(0);
  451. DST1(0);
  452. DST2(0);
  453. RGB(1);
  454. DST2(1);
  455. DST1(1);
  456. RGB(2);
  457. DST1(2);
  458. DST2(2);
  459. RGB(3);
  460. DST2(3);
  461. DST1(3);
  462. EPILOG(8)
  463. PROLOG(yuv2rgb_c_4b_ordered_dither, uint8_t)
  464. const uint8_t *d64= dither_8x8_73[y&7];
  465. const uint8_t *d128=dither_8x8_220[y&7];
  466. #define DST1bpp4b(i,o) \
  467. Y = py_1[2*i]; \
  468. dst_1[2*i] = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  469. Y = py_1[2*i+1]; \
  470. dst_1[2*i+1] = r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]];
  471. #define DST2bpp4b(i,o) \
  472. Y = py_2[2*i]; \
  473. dst_2[2*i] = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  474. Y = py_2[2*i+1]; \
  475. dst_2[2*i+1] = r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]];
  476. RGB(0);
  477. DST1bpp4b(0,0);
  478. DST2bpp4b(0,0);
  479. RGB(1);
  480. DST2bpp4b(1,2);
  481. DST1bpp4b(1,2);
  482. RGB(2);
  483. DST1bpp4b(2,4);
  484. DST2bpp4b(2,4);
  485. RGB(3);
  486. DST2bpp4b(3,6);
  487. DST1bpp4b(3,6);
  488. EPILOG(8)
  489. PROLOG(yuv2rgb_c_1_ordered_dither, uint8_t)
  490. const uint8_t *d128=dither_8x8_220[y&7];
  491. char out_1=0, out_2=0;
  492. g= c->table_gU[128] + c->table_gV[128];
  493. #define DST1bpp1(i,o) \
  494. Y = py_1[2*i]; \
  495. out_1+= out_1 + g[Y+d128[0+o]]; \
  496. Y = py_1[2*i+1]; \
  497. out_1+= out_1 + g[Y+d128[1+o]];
  498. #define DST2bpp1(i,o) \
  499. Y = py_2[2*i]; \
  500. out_2+= out_2 + g[Y+d128[8+o]]; \
  501. Y = py_2[2*i+1]; \
  502. out_2+= out_2 + g[Y+d128[9+o]];
  503. DST1bpp1(0,0);
  504. DST2bpp1(0,0);
  505. DST2bpp1(1,2);
  506. DST1bpp1(1,2);
  507. DST1bpp1(2,4);
  508. DST2bpp1(2,4);
  509. DST2bpp1(3,6);
  510. DST1bpp1(3,6);
  511. dst_1[0]= out_1;
  512. dst_2[0]= out_2;
  513. EPILOG(1)
  514. SwsFunc yuv2rgb_get_func_ptr (SwsContext *c)
  515. {
  516. #if defined(HAVE_MMX2) || defined(HAVE_MMX)
  517. if (c->flags & SWS_CPU_CAPS_MMX2){
  518. switch(c->dstFormat){
  519. case PIX_FMT_RGB32: return yuv420_rgb32_MMX2;
  520. case PIX_FMT_BGR24: return yuv420_rgb24_MMX2;
  521. case PIX_FMT_BGR565: return yuv420_rgb16_MMX2;
  522. case PIX_FMT_BGR555: return yuv420_rgb15_MMX2;
  523. }
  524. }
  525. if (c->flags & SWS_CPU_CAPS_MMX){
  526. switch(c->dstFormat){
  527. case PIX_FMT_RGB32: return yuv420_rgb32_MMX;
  528. case PIX_FMT_BGR24: return yuv420_rgb24_MMX;
  529. case PIX_FMT_BGR565: return yuv420_rgb16_MMX;
  530. case PIX_FMT_BGR555: return yuv420_rgb15_MMX;
  531. }
  532. }
  533. #endif
  534. #ifdef HAVE_VIS
  535. {
  536. SwsFunc t= yuv2rgb_init_vis(c);
  537. if (t) return t;
  538. }
  539. #endif
  540. #ifdef HAVE_MLIB
  541. {
  542. SwsFunc t= yuv2rgb_init_mlib(c);
  543. if (t) return t;
  544. }
  545. #endif
  546. #ifdef HAVE_ALTIVEC
  547. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  548. {
  549. SwsFunc t = yuv2rgb_init_altivec(c);
  550. if (t) return t;
  551. }
  552. #endif
  553. #ifdef ARCH_BFIN
  554. if (c->flags & SWS_CPU_CAPS_BFIN)
  555. {
  556. SwsFunc t = ff_bfin_yuv2rgb_get_func_ptr (c);
  557. if (t) return t;
  558. }
  559. #endif
  560. av_log(c, AV_LOG_WARNING, "No accelerated colorspace conversion found\n");
  561. switch(c->dstFormat){
  562. case PIX_FMT_BGR32:
  563. case PIX_FMT_RGB32: return yuv2rgb_c_32;
  564. case PIX_FMT_RGB24: return yuv2rgb_c_24_rgb;
  565. case PIX_FMT_BGR24: return yuv2rgb_c_24_bgr;
  566. case PIX_FMT_RGB565:
  567. case PIX_FMT_BGR565:
  568. case PIX_FMT_RGB555:
  569. case PIX_FMT_BGR555: return yuv2rgb_c_16;
  570. case PIX_FMT_RGB8:
  571. case PIX_FMT_BGR8: return yuv2rgb_c_8_ordered_dither;
  572. case PIX_FMT_RGB4:
  573. case PIX_FMT_BGR4: return yuv2rgb_c_4_ordered_dither;
  574. case PIX_FMT_RGB4_BYTE:
  575. case PIX_FMT_BGR4_BYTE: return yuv2rgb_c_4b_ordered_dither;
  576. case PIX_FMT_MONOBLACK: return yuv2rgb_c_1_ordered_dither;
  577. default:
  578. assert(0);
  579. }
  580. return NULL;
  581. }
  582. static int div_round (int dividend, int divisor)
  583. {
  584. if (dividend > 0)
  585. return (dividend + (divisor>>1)) / divisor;
  586. else
  587. return -((-dividend + (divisor>>1)) / divisor);
  588. }
  589. int yuv2rgb_c_init_tables (SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
  590. {
  591. const int isRgb = isBGR(c->dstFormat);
  592. const int bpp = fmt_depth(c->dstFormat);
  593. int i;
  594. uint8_t table_Y[1024];
  595. uint32_t *table_32 = 0;
  596. uint16_t *table_16 = 0;
  597. uint8_t *table_8 = 0;
  598. uint8_t *table_332 = 0;
  599. uint8_t *table_121 = 0;
  600. uint8_t *table_1 = 0;
  601. int entry_size = 0;
  602. void *table_r = 0, *table_g = 0, *table_b = 0;
  603. void *table_start;
  604. int64_t crv = inv_table[0];
  605. int64_t cbu = inv_table[1];
  606. int64_t cgu = -inv_table[2];
  607. int64_t cgv = -inv_table[3];
  608. int64_t cy = 1<<16;
  609. int64_t oy = 0;
  610. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  611. if (!fullRange){
  612. cy= (cy*255) / 219;
  613. oy= 16<<16;
  614. }else{
  615. crv= (crv*224) / 255;
  616. cbu= (cbu*224) / 255;
  617. cgu= (cgu*224) / 255;
  618. cgv= (cgv*224) / 255;
  619. }
  620. cy = (cy *contrast )>>16;
  621. crv= (crv*contrast * saturation)>>32;
  622. cbu= (cbu*contrast * saturation)>>32;
  623. cgu= (cgu*contrast * saturation)>>32;
  624. cgv= (cgv*contrast * saturation)>>32;
  625. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  626. oy -= 256*brightness;
  627. for (i = 0; i < 1024; i++) {
  628. int j;
  629. j= (cy*(((i - 384)<<16) - oy) + (1<<31))>>32;
  630. j = (j < 0) ? 0 : ((j > 255) ? 255 : j);
  631. table_Y[i] = j;
  632. }
  633. switch (bpp) {
  634. case 32:
  635. table_start= table_32 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t));
  636. entry_size = sizeof (uint32_t);
  637. table_r = table_32 + 197;
  638. table_b = table_32 + 197 + 685;
  639. table_g = table_32 + 197 + 2*682;
  640. for (i = -197; i < 256+197; i++)
  641. ((uint32_t *)table_r)[i] = table_Y[i+384] << (isRgb ? 16 : 0);
  642. for (i = -132; i < 256+132; i++)
  643. ((uint32_t *)table_g)[i] = table_Y[i+384] << 8;
  644. for (i = -232; i < 256+232; i++)
  645. ((uint32_t *)table_b)[i] = table_Y[i+384] << (isRgb ? 0 : 16);
  646. break;
  647. case 24:
  648. table_start= table_8 = av_malloc ((256 + 2*232) * sizeof (uint8_t));
  649. entry_size = sizeof (uint8_t);
  650. table_r = table_g = table_b = table_8 + 232;
  651. for (i = -232; i < 256+232; i++)
  652. ((uint8_t * )table_b)[i] = table_Y[i+384];
  653. break;
  654. case 15:
  655. case 16:
  656. table_start= table_16 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t));
  657. entry_size = sizeof (uint16_t);
  658. table_r = table_16 + 197;
  659. table_b = table_16 + 197 + 685;
  660. table_g = table_16 + 197 + 2*682;
  661. for (i = -197; i < 256+197; i++) {
  662. int j = table_Y[i+384] >> 3;
  663. if (isRgb)
  664. j <<= ((bpp==16) ? 11 : 10);
  665. ((uint16_t *)table_r)[i] = j;
  666. }
  667. for (i = -132; i < 256+132; i++) {
  668. int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3);
  669. ((uint16_t *)table_g)[i] = j << 5;
  670. }
  671. for (i = -232; i < 256+232; i++) {
  672. int j = table_Y[i+384] >> 3;
  673. if (!isRgb)
  674. j <<= ((bpp==16) ? 11 : 10);
  675. ((uint16_t *)table_b)[i] = j;
  676. }
  677. break;
  678. case 8:
  679. table_start= table_332 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  680. entry_size = sizeof (uint8_t);
  681. table_r = table_332 + 197;
  682. table_b = table_332 + 197 + 685;
  683. table_g = table_332 + 197 + 2*682;
  684. for (i = -197; i < 256+197; i++) {
  685. int j = (table_Y[i+384 - 16] + 18)/36;
  686. if (isRgb)
  687. j <<= 5;
  688. ((uint8_t *)table_r)[i] = j;
  689. }
  690. for (i = -132; i < 256+132; i++) {
  691. int j = (table_Y[i+384 - 16] + 18)/36;
  692. if (!isRgb)
  693. j <<= 1;
  694. ((uint8_t *)table_g)[i] = j << 2;
  695. }
  696. for (i = -232; i < 256+232; i++) {
  697. int j = (table_Y[i+384 - 37] + 43)/85;
  698. if (!isRgb)
  699. j <<= 6;
  700. ((uint8_t *)table_b)[i] = j;
  701. }
  702. break;
  703. case 4:
  704. case 4|128:
  705. table_start= table_121 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  706. entry_size = sizeof (uint8_t);
  707. table_r = table_121 + 197;
  708. table_b = table_121 + 197 + 685;
  709. table_g = table_121 + 197 + 2*682;
  710. for (i = -197; i < 256+197; i++) {
  711. int j = table_Y[i+384 - 110] >> 7;
  712. if (isRgb)
  713. j <<= 3;
  714. ((uint8_t *)table_r)[i] = j;
  715. }
  716. for (i = -132; i < 256+132; i++) {
  717. int j = (table_Y[i+384 - 37]+ 43)/85;
  718. ((uint8_t *)table_g)[i] = j << 1;
  719. }
  720. for (i = -232; i < 256+232; i++) {
  721. int j =table_Y[i+384 - 110] >> 7;
  722. if (!isRgb)
  723. j <<= 3;
  724. ((uint8_t *)table_b)[i] = j;
  725. }
  726. break;
  727. case 1:
  728. table_start= table_1 = av_malloc (256*2 * sizeof (uint8_t));
  729. entry_size = sizeof (uint8_t);
  730. table_g = table_1;
  731. table_r = table_b = NULL;
  732. for (i = 0; i < 256+256; i++) {
  733. int j = table_Y[i + 384 - 110]>>7;
  734. ((uint8_t *)table_g)[i] = j;
  735. }
  736. break;
  737. default:
  738. table_start= NULL;
  739. av_log(c, AV_LOG_ERROR, "%ibpp not supported by yuv2rgb\n", bpp);
  740. //free mem?
  741. return -1;
  742. }
  743. for (i = 0; i < 256; i++) {
  744. c->table_rV[i] = (uint8_t *)table_r + entry_size * div_round (crv * (i-128), 76309);
  745. c->table_gU[i] = (uint8_t *)table_g + entry_size * div_round (cgu * (i-128), 76309);
  746. c->table_gV[i] = entry_size * div_round (cgv * (i-128), 76309);
  747. c->table_bU[i] = (uint8_t *)table_b + entry_size * div_round (cbu * (i-128), 76309);
  748. }
  749. av_free(c->yuvTable);
  750. c->yuvTable= table_start;
  751. return 0;
  752. }