You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1502 lines
44KB

  1. /**
  2. * FLAC audio encoder
  3. * Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "bitstream.h"
  23. #include "crc.h"
  24. #include "dsputil.h"
  25. #include "golomb.h"
  26. #include "lls.h"
  27. #define FLAC_MAX_CH 8
  28. #define FLAC_MIN_BLOCKSIZE 16
  29. #define FLAC_MAX_BLOCKSIZE 65535
  30. #define FLAC_SUBFRAME_CONSTANT 0
  31. #define FLAC_SUBFRAME_VERBATIM 1
  32. #define FLAC_SUBFRAME_FIXED 8
  33. #define FLAC_SUBFRAME_LPC 32
  34. #define FLAC_CHMODE_NOT_STEREO 0
  35. #define FLAC_CHMODE_LEFT_RIGHT 1
  36. #define FLAC_CHMODE_LEFT_SIDE 8
  37. #define FLAC_CHMODE_RIGHT_SIDE 9
  38. #define FLAC_CHMODE_MID_SIDE 10
  39. #define ORDER_METHOD_EST 0
  40. #define ORDER_METHOD_2LEVEL 1
  41. #define ORDER_METHOD_4LEVEL 2
  42. #define ORDER_METHOD_8LEVEL 3
  43. #define ORDER_METHOD_SEARCH 4
  44. #define ORDER_METHOD_LOG 5
  45. #define FLAC_STREAMINFO_SIZE 34
  46. #define MIN_LPC_ORDER 1
  47. #define MAX_LPC_ORDER 32
  48. #define MAX_FIXED_ORDER 4
  49. #define MAX_PARTITION_ORDER 8
  50. #define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
  51. #define MAX_LPC_PRECISION 15
  52. #define MAX_LPC_SHIFT 15
  53. #define MAX_RICE_PARAM 14
  54. typedef struct CompressionOptions {
  55. int compression_level;
  56. int block_time_ms;
  57. int use_lpc;
  58. int lpc_coeff_precision;
  59. int min_prediction_order;
  60. int max_prediction_order;
  61. int prediction_order_method;
  62. int min_partition_order;
  63. int max_partition_order;
  64. } CompressionOptions;
  65. typedef struct RiceContext {
  66. int porder;
  67. int params[MAX_PARTITIONS];
  68. } RiceContext;
  69. typedef struct FlacSubframe {
  70. int type;
  71. int type_code;
  72. int obits;
  73. int order;
  74. int32_t coefs[MAX_LPC_ORDER];
  75. int shift;
  76. RiceContext rc;
  77. int32_t samples[FLAC_MAX_BLOCKSIZE];
  78. int32_t residual[FLAC_MAX_BLOCKSIZE+1];
  79. } FlacSubframe;
  80. typedef struct FlacFrame {
  81. FlacSubframe subframes[FLAC_MAX_CH];
  82. int blocksize;
  83. int bs_code[2];
  84. uint8_t crc8;
  85. int ch_mode;
  86. } FlacFrame;
  87. typedef struct FlacEncodeContext {
  88. PutBitContext pb;
  89. int channels;
  90. int ch_code;
  91. int samplerate;
  92. int sr_code[2];
  93. int blocksize;
  94. int max_framesize;
  95. uint32_t frame_count;
  96. FlacFrame frame;
  97. CompressionOptions options;
  98. AVCodecContext *avctx;
  99. DSPContext dsp;
  100. } FlacEncodeContext;
  101. static const int flac_samplerates[16] = {
  102. 0, 0, 0, 0,
  103. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  104. 0, 0, 0, 0
  105. };
  106. static const int flac_blocksizes[16] = {
  107. 0,
  108. 192,
  109. 576, 1152, 2304, 4608,
  110. 0, 0,
  111. 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
  112. };
  113. /**
  114. * Writes streaminfo metadata block to byte array
  115. */
  116. static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
  117. {
  118. PutBitContext pb;
  119. memset(header, 0, FLAC_STREAMINFO_SIZE);
  120. init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
  121. /* streaminfo metadata block */
  122. put_bits(&pb, 16, s->blocksize);
  123. put_bits(&pb, 16, s->blocksize);
  124. put_bits(&pb, 24, 0);
  125. put_bits(&pb, 24, s->max_framesize);
  126. put_bits(&pb, 20, s->samplerate);
  127. put_bits(&pb, 3, s->channels-1);
  128. put_bits(&pb, 5, 15); /* bits per sample - 1 */
  129. flush_put_bits(&pb);
  130. /* total samples = 0 */
  131. /* MD5 signature = 0 */
  132. }
  133. /**
  134. * Sets blocksize based on samplerate
  135. * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
  136. */
  137. static int select_blocksize(int samplerate, int block_time_ms)
  138. {
  139. int i;
  140. int target;
  141. int blocksize;
  142. assert(samplerate > 0);
  143. blocksize = flac_blocksizes[1];
  144. target = (samplerate * block_time_ms) / 1000;
  145. for(i=0; i<16; i++) {
  146. if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
  147. blocksize = flac_blocksizes[i];
  148. }
  149. }
  150. return blocksize;
  151. }
  152. static int flac_encode_init(AVCodecContext *avctx)
  153. {
  154. int freq = avctx->sample_rate;
  155. int channels = avctx->channels;
  156. FlacEncodeContext *s = avctx->priv_data;
  157. int i, level;
  158. uint8_t *streaminfo;
  159. s->avctx = avctx;
  160. dsputil_init(&s->dsp, avctx);
  161. if(avctx->sample_fmt != SAMPLE_FMT_S16) {
  162. return -1;
  163. }
  164. if(channels < 1 || channels > FLAC_MAX_CH) {
  165. return -1;
  166. }
  167. s->channels = channels;
  168. s->ch_code = s->channels-1;
  169. /* find samplerate in table */
  170. if(freq < 1)
  171. return -1;
  172. for(i=4; i<12; i++) {
  173. if(freq == flac_samplerates[i]) {
  174. s->samplerate = flac_samplerates[i];
  175. s->sr_code[0] = i;
  176. s->sr_code[1] = 0;
  177. break;
  178. }
  179. }
  180. /* if not in table, samplerate is non-standard */
  181. if(i == 12) {
  182. if(freq % 1000 == 0 && freq < 255000) {
  183. s->sr_code[0] = 12;
  184. s->sr_code[1] = freq / 1000;
  185. } else if(freq % 10 == 0 && freq < 655350) {
  186. s->sr_code[0] = 14;
  187. s->sr_code[1] = freq / 10;
  188. } else if(freq < 65535) {
  189. s->sr_code[0] = 13;
  190. s->sr_code[1] = freq;
  191. } else {
  192. return -1;
  193. }
  194. s->samplerate = freq;
  195. }
  196. /* set compression option defaults based on avctx->compression_level */
  197. if(avctx->compression_level < 0) {
  198. s->options.compression_level = 5;
  199. } else {
  200. s->options.compression_level = avctx->compression_level;
  201. }
  202. av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
  203. level= s->options.compression_level;
  204. if(level > 12) {
  205. av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
  206. s->options.compression_level);
  207. return -1;
  208. }
  209. s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
  210. s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
  211. s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
  212. s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
  213. s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
  214. ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
  215. ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL,
  216. ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
  217. ORDER_METHOD_SEARCH})[level];
  218. s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
  219. s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
  220. /* set compression option overrides from AVCodecContext */
  221. if(avctx->use_lpc >= 0) {
  222. s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11);
  223. }
  224. if(s->options.use_lpc == 1)
  225. av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
  226. else if(s->options.use_lpc > 1)
  227. av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
  228. if(avctx->min_prediction_order >= 0) {
  229. if(s->options.use_lpc) {
  230. if(avctx->min_prediction_order < MIN_LPC_ORDER ||
  231. avctx->min_prediction_order > MAX_LPC_ORDER) {
  232. av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
  233. avctx->min_prediction_order);
  234. return -1;
  235. }
  236. } else {
  237. if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
  238. av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
  239. avctx->min_prediction_order);
  240. return -1;
  241. }
  242. }
  243. s->options.min_prediction_order = avctx->min_prediction_order;
  244. }
  245. if(avctx->max_prediction_order >= 0) {
  246. if(s->options.use_lpc) {
  247. if(avctx->max_prediction_order < MIN_LPC_ORDER ||
  248. avctx->max_prediction_order > MAX_LPC_ORDER) {
  249. av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
  250. avctx->max_prediction_order);
  251. return -1;
  252. }
  253. } else {
  254. if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
  255. av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
  256. avctx->max_prediction_order);
  257. return -1;
  258. }
  259. }
  260. s->options.max_prediction_order = avctx->max_prediction_order;
  261. }
  262. if(s->options.max_prediction_order < s->options.min_prediction_order) {
  263. av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
  264. s->options.min_prediction_order, s->options.max_prediction_order);
  265. return -1;
  266. }
  267. av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
  268. s->options.min_prediction_order, s->options.max_prediction_order);
  269. if(avctx->prediction_order_method >= 0) {
  270. if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
  271. av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
  272. avctx->prediction_order_method);
  273. return -1;
  274. }
  275. s->options.prediction_order_method = avctx->prediction_order_method;
  276. }
  277. switch(s->options.prediction_order_method) {
  278. case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  279. "estimate"); break;
  280. case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  281. "2-level"); break;
  282. case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  283. "4-level"); break;
  284. case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  285. "8-level"); break;
  286. case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  287. "full search"); break;
  288. case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  289. "log search"); break;
  290. }
  291. if(avctx->min_partition_order >= 0) {
  292. if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
  293. av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
  294. avctx->min_partition_order);
  295. return -1;
  296. }
  297. s->options.min_partition_order = avctx->min_partition_order;
  298. }
  299. if(avctx->max_partition_order >= 0) {
  300. if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
  301. av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
  302. avctx->max_partition_order);
  303. return -1;
  304. }
  305. s->options.max_partition_order = avctx->max_partition_order;
  306. }
  307. if(s->options.max_partition_order < s->options.min_partition_order) {
  308. av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
  309. s->options.min_partition_order, s->options.max_partition_order);
  310. return -1;
  311. }
  312. av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
  313. s->options.min_partition_order, s->options.max_partition_order);
  314. if(avctx->frame_size > 0) {
  315. if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
  316. avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
  317. av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
  318. avctx->frame_size);
  319. return -1;
  320. }
  321. s->blocksize = avctx->frame_size;
  322. } else {
  323. s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
  324. avctx->frame_size = s->blocksize;
  325. }
  326. av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);
  327. /* set LPC precision */
  328. if(avctx->lpc_coeff_precision > 0) {
  329. if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
  330. av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
  331. avctx->lpc_coeff_precision);
  332. return -1;
  333. }
  334. s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
  335. } else {
  336. /* select LPC precision based on block size */
  337. if( s->blocksize <= 192) s->options.lpc_coeff_precision = 7;
  338. else if(s->blocksize <= 384) s->options.lpc_coeff_precision = 8;
  339. else if(s->blocksize <= 576) s->options.lpc_coeff_precision = 9;
  340. else if(s->blocksize <= 1152) s->options.lpc_coeff_precision = 10;
  341. else if(s->blocksize <= 2304) s->options.lpc_coeff_precision = 11;
  342. else if(s->blocksize <= 4608) s->options.lpc_coeff_precision = 12;
  343. else if(s->blocksize <= 8192) s->options.lpc_coeff_precision = 13;
  344. else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
  345. else s->options.lpc_coeff_precision = 15;
  346. }
  347. av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
  348. s->options.lpc_coeff_precision);
  349. /* set maximum encoded frame size in verbatim mode */
  350. if(s->channels == 2) {
  351. s->max_framesize = 14 + ((s->blocksize * 33 + 7) >> 3);
  352. } else {
  353. s->max_framesize = 14 + (s->blocksize * s->channels * 2);
  354. }
  355. streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
  356. write_streaminfo(s, streaminfo);
  357. avctx->extradata = streaminfo;
  358. avctx->extradata_size = FLAC_STREAMINFO_SIZE;
  359. s->frame_count = 0;
  360. avctx->coded_frame = avcodec_alloc_frame();
  361. avctx->coded_frame->key_frame = 1;
  362. return 0;
  363. }
  364. static void init_frame(FlacEncodeContext *s)
  365. {
  366. int i, ch;
  367. FlacFrame *frame;
  368. frame = &s->frame;
  369. for(i=0; i<16; i++) {
  370. if(s->blocksize == flac_blocksizes[i]) {
  371. frame->blocksize = flac_blocksizes[i];
  372. frame->bs_code[0] = i;
  373. frame->bs_code[1] = 0;
  374. break;
  375. }
  376. }
  377. if(i == 16) {
  378. frame->blocksize = s->blocksize;
  379. if(frame->blocksize <= 256) {
  380. frame->bs_code[0] = 6;
  381. frame->bs_code[1] = frame->blocksize-1;
  382. } else {
  383. frame->bs_code[0] = 7;
  384. frame->bs_code[1] = frame->blocksize-1;
  385. }
  386. }
  387. for(ch=0; ch<s->channels; ch++) {
  388. frame->subframes[ch].obits = 16;
  389. }
  390. }
  391. /**
  392. * Copy channel-interleaved input samples into separate subframes
  393. */
  394. static void copy_samples(FlacEncodeContext *s, int16_t *samples)
  395. {
  396. int i, j, ch;
  397. FlacFrame *frame;
  398. frame = &s->frame;
  399. for(i=0,j=0; i<frame->blocksize; i++) {
  400. for(ch=0; ch<s->channels; ch++,j++) {
  401. frame->subframes[ch].samples[i] = samples[j];
  402. }
  403. }
  404. }
  405. #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
  406. /**
  407. * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0
  408. */
  409. static int find_optimal_param(uint32_t sum, int n)
  410. {
  411. int k;
  412. uint32_t sum2;
  413. if(sum <= n>>1)
  414. return 0;
  415. sum2 = sum-(n>>1);
  416. k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n);
  417. return FFMIN(k, MAX_RICE_PARAM);
  418. }
  419. static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
  420. uint32_t *sums, int n, int pred_order)
  421. {
  422. int i;
  423. int k, cnt, part;
  424. uint32_t all_bits;
  425. part = (1 << porder);
  426. all_bits = 4 * part;
  427. cnt = (n >> porder) - pred_order;
  428. for(i=0; i<part; i++) {
  429. k = find_optimal_param(sums[i], cnt);
  430. rc->params[i] = k;
  431. all_bits += rice_encode_count(sums[i], cnt, k);
  432. cnt = n >> porder;
  433. }
  434. rc->porder = porder;
  435. return all_bits;
  436. }
  437. static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
  438. uint32_t sums[][MAX_PARTITIONS])
  439. {
  440. int i, j;
  441. int parts;
  442. uint32_t *res, *res_end;
  443. /* sums for highest level */
  444. parts = (1 << pmax);
  445. res = &data[pred_order];
  446. res_end = &data[n >> pmax];
  447. for(i=0; i<parts; i++) {
  448. uint32_t sum = 0;
  449. while(res < res_end){
  450. sum += *(res++);
  451. }
  452. sums[pmax][i] = sum;
  453. res_end+= n >> pmax;
  454. }
  455. /* sums for lower levels */
  456. for(i=pmax-1; i>=pmin; i--) {
  457. parts = (1 << i);
  458. for(j=0; j<parts; j++) {
  459. sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
  460. }
  461. }
  462. }
  463. static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
  464. int32_t *data, int n, int pred_order)
  465. {
  466. int i;
  467. uint32_t bits[MAX_PARTITION_ORDER+1];
  468. int opt_porder;
  469. RiceContext tmp_rc;
  470. uint32_t *udata;
  471. uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
  472. assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
  473. assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
  474. assert(pmin <= pmax);
  475. udata = av_malloc(n * sizeof(uint32_t));
  476. for(i=0; i<n; i++) {
  477. udata[i] = (2*data[i]) ^ (data[i]>>31);
  478. }
  479. calc_sums(pmin, pmax, udata, n, pred_order, sums);
  480. opt_porder = pmin;
  481. bits[pmin] = UINT32_MAX;
  482. for(i=pmin; i<=pmax; i++) {
  483. bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
  484. if(bits[i] <= bits[opt_porder]) {
  485. opt_porder = i;
  486. *rc= tmp_rc;
  487. }
  488. }
  489. av_freep(&udata);
  490. return bits[opt_porder];
  491. }
  492. static int get_max_p_order(int max_porder, int n, int order)
  493. {
  494. int porder = FFMIN(max_porder, av_log2(n^(n-1)));
  495. if(order > 0)
  496. porder = FFMIN(porder, av_log2(n/order));
  497. return porder;
  498. }
  499. static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
  500. int32_t *data, int n, int pred_order,
  501. int bps)
  502. {
  503. uint32_t bits;
  504. pmin = get_max_p_order(pmin, n, pred_order);
  505. pmax = get_max_p_order(pmax, n, pred_order);
  506. bits = pred_order*bps + 6;
  507. bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
  508. return bits;
  509. }
  510. static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
  511. int32_t *data, int n, int pred_order,
  512. int bps, int precision)
  513. {
  514. uint32_t bits;
  515. pmin = get_max_p_order(pmin, n, pred_order);
  516. pmax = get_max_p_order(pmax, n, pred_order);
  517. bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
  518. bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
  519. return bits;
  520. }
  521. /**
  522. * Apply Welch window function to audio block
  523. */
  524. static void apply_welch_window(const int32_t *data, int len, double *w_data)
  525. {
  526. int i, n2;
  527. double w;
  528. double c;
  529. n2 = (len >> 1);
  530. c = 2.0 / (len - 1.0);
  531. for(i=0; i<n2; i++) {
  532. w = c - i - 1.0;
  533. w = 1.0 - (w * w);
  534. w_data[i] = data[i] * w;
  535. w_data[len-1-i] = data[len-1-i] * w;
  536. }
  537. }
  538. /**
  539. * Calculates autocorrelation data from audio samples
  540. * A Welch window function is applied before calculation.
  541. */
  542. void ff_flac_compute_autocorr(const int32_t *data, int len, int lag,
  543. double *autoc)
  544. {
  545. int i, j;
  546. double tmp[len + lag + 1];
  547. double *data1= tmp + lag;
  548. apply_welch_window(data, len, data1);
  549. for(j=0; j<lag; j++)
  550. data1[j-lag]= 0.0;
  551. data1[len] = 0.0;
  552. for(j=0; j<lag; j+=2){
  553. double sum0 = 1.0, sum1 = 1.0;
  554. for(i=0; i<len; i++){
  555. sum0 += data1[i] * data1[i-j];
  556. sum1 += data1[i] * data1[i-j-1];
  557. }
  558. autoc[j ] = sum0;
  559. autoc[j+1] = sum1;
  560. }
  561. if(j==lag){
  562. double sum = 1.0;
  563. for(i=0; i<len; i+=2){
  564. sum += data1[i ] * data1[i-j ]
  565. + data1[i+1] * data1[i-j+1];
  566. }
  567. autoc[j] = sum;
  568. }
  569. }
  570. /**
  571. * Levinson-Durbin recursion.
  572. * Produces LPC coefficients from autocorrelation data.
  573. */
  574. static void compute_lpc_coefs(const double *autoc, int max_order,
  575. double lpc[][MAX_LPC_ORDER], double *ref)
  576. {
  577. int i, j, i2;
  578. double r, err, tmp;
  579. double lpc_tmp[MAX_LPC_ORDER];
  580. for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
  581. err = autoc[0];
  582. for(i=0; i<max_order; i++) {
  583. r = -autoc[i+1];
  584. for(j=0; j<i; j++) {
  585. r -= lpc_tmp[j] * autoc[i-j];
  586. }
  587. r /= err;
  588. ref[i] = fabs(r);
  589. err *= 1.0 - (r * r);
  590. i2 = (i >> 1);
  591. lpc_tmp[i] = r;
  592. for(j=0; j<i2; j++) {
  593. tmp = lpc_tmp[j];
  594. lpc_tmp[j] += r * lpc_tmp[i-1-j];
  595. lpc_tmp[i-1-j] += r * tmp;
  596. }
  597. if(i & 1) {
  598. lpc_tmp[j] += lpc_tmp[j] * r;
  599. }
  600. for(j=0; j<=i; j++) {
  601. lpc[i][j] = -lpc_tmp[j];
  602. }
  603. }
  604. }
  605. /**
  606. * Quantize LPC coefficients
  607. */
  608. static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
  609. int32_t *lpc_out, int *shift)
  610. {
  611. int i;
  612. double cmax, error;
  613. int32_t qmax;
  614. int sh;
  615. /* define maximum levels */
  616. qmax = (1 << (precision - 1)) - 1;
  617. /* find maximum coefficient value */
  618. cmax = 0.0;
  619. for(i=0; i<order; i++) {
  620. cmax= FFMAX(cmax, fabs(lpc_in[i]));
  621. }
  622. /* if maximum value quantizes to zero, return all zeros */
  623. if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
  624. *shift = 0;
  625. memset(lpc_out, 0, sizeof(int32_t) * order);
  626. return;
  627. }
  628. /* calculate level shift which scales max coeff to available bits */
  629. sh = MAX_LPC_SHIFT;
  630. while((cmax * (1 << sh) > qmax) && (sh > 0)) {
  631. sh--;
  632. }
  633. /* since negative shift values are unsupported in decoder, scale down
  634. coefficients instead */
  635. if(sh == 0 && cmax > qmax) {
  636. double scale = ((double)qmax) / cmax;
  637. for(i=0; i<order; i++) {
  638. lpc_in[i] *= scale;
  639. }
  640. }
  641. /* output quantized coefficients and level shift */
  642. error=0;
  643. for(i=0; i<order; i++) {
  644. error += lpc_in[i] * (1 << sh);
  645. lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
  646. error -= lpc_out[i];
  647. }
  648. *shift = sh;
  649. }
  650. static int estimate_best_order(double *ref, int max_order)
  651. {
  652. int i, est;
  653. est = 1;
  654. for(i=max_order-1; i>=0; i--) {
  655. if(ref[i] > 0.10) {
  656. est = i+1;
  657. break;
  658. }
  659. }
  660. return est;
  661. }
  662. /**
  663. * Calculate LPC coefficients for multiple orders
  664. */
  665. static int lpc_calc_coefs(FlacEncodeContext *s,
  666. const int32_t *samples, int blocksize, int max_order,
  667. int precision, int32_t coefs[][MAX_LPC_ORDER],
  668. int *shift, int use_lpc, int omethod)
  669. {
  670. double autoc[MAX_LPC_ORDER+1];
  671. double ref[MAX_LPC_ORDER];
  672. double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
  673. int i, j, pass;
  674. int opt_order;
  675. assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
  676. if(use_lpc == 1){
  677. s->dsp.flac_compute_autocorr(samples, blocksize, max_order, autoc);
  678. compute_lpc_coefs(autoc, max_order, lpc, ref);
  679. }else{
  680. LLSModel m[2];
  681. double var[MAX_LPC_ORDER+1], weight;
  682. for(pass=0; pass<use_lpc-1; pass++){
  683. av_init_lls(&m[pass&1], max_order);
  684. weight=0;
  685. for(i=max_order; i<blocksize; i++){
  686. for(j=0; j<=max_order; j++)
  687. var[j]= samples[i-j];
  688. if(pass){
  689. double eval, inv, rinv;
  690. eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
  691. eval= (512>>pass) + fabs(eval - var[0]);
  692. inv = 1/eval;
  693. rinv = sqrt(inv);
  694. for(j=0; j<=max_order; j++)
  695. var[j] *= rinv;
  696. weight += inv;
  697. }else
  698. weight++;
  699. av_update_lls(&m[pass&1], var, 1.0);
  700. }
  701. av_solve_lls(&m[pass&1], 0.001, 0);
  702. }
  703. for(i=0; i<max_order; i++){
  704. for(j=0; j<max_order; j++)
  705. lpc[i][j]= m[(pass-1)&1].coeff[i][j];
  706. ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
  707. }
  708. for(i=max_order-1; i>0; i--)
  709. ref[i] = ref[i-1] - ref[i];
  710. }
  711. opt_order = max_order;
  712. if(omethod == ORDER_METHOD_EST) {
  713. opt_order = estimate_best_order(ref, max_order);
  714. i = opt_order-1;
  715. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
  716. } else {
  717. for(i=0; i<max_order; i++) {
  718. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
  719. }
  720. }
  721. return opt_order;
  722. }
  723. static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
  724. {
  725. assert(n > 0);
  726. memcpy(res, smp, n * sizeof(int32_t));
  727. }
  728. static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
  729. int order)
  730. {
  731. int i;
  732. for(i=0; i<order; i++) {
  733. res[i] = smp[i];
  734. }
  735. if(order==0){
  736. for(i=order; i<n; i++)
  737. res[i]= smp[i];
  738. }else if(order==1){
  739. for(i=order; i<n; i++)
  740. res[i]= smp[i] - smp[i-1];
  741. }else if(order==2){
  742. int a = smp[order-1] - smp[order-2];
  743. for(i=order; i<n; i+=2) {
  744. int b = smp[i] - smp[i-1];
  745. res[i]= b - a;
  746. a = smp[i+1] - smp[i];
  747. res[i+1]= a - b;
  748. }
  749. }else if(order==3){
  750. int a = smp[order-1] - smp[order-2];
  751. int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
  752. for(i=order; i<n; i+=2) {
  753. int b = smp[i] - smp[i-1];
  754. int d = b - a;
  755. res[i]= d - c;
  756. a = smp[i+1] - smp[i];
  757. c = a - b;
  758. res[i+1]= c - d;
  759. }
  760. }else{
  761. int a = smp[order-1] - smp[order-2];
  762. int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
  763. int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
  764. for(i=order; i<n; i+=2) {
  765. int b = smp[i] - smp[i-1];
  766. int d = b - a;
  767. int f = d - c;
  768. res[i]= f - e;
  769. a = smp[i+1] - smp[i];
  770. c = a - b;
  771. e = c - d;
  772. res[i+1]= e - f;
  773. }
  774. }
  775. }
  776. #define LPC1(x) {\
  777. int c = coefs[(x)-1];\
  778. p0 += c*s;\
  779. s = smp[i-(x)+1];\
  780. p1 += c*s;\
  781. }
  782. static av_always_inline void encode_residual_lpc_unrolled(
  783. int32_t *res, const int32_t *smp, int n,
  784. int order, const int32_t *coefs, int shift, int big)
  785. {
  786. int i;
  787. for(i=order; i<n; i+=2) {
  788. int s = smp[i-order];
  789. int p0 = 0, p1 = 0;
  790. if(big) {
  791. switch(order) {
  792. case 32: LPC1(32)
  793. case 31: LPC1(31)
  794. case 30: LPC1(30)
  795. case 29: LPC1(29)
  796. case 28: LPC1(28)
  797. case 27: LPC1(27)
  798. case 26: LPC1(26)
  799. case 25: LPC1(25)
  800. case 24: LPC1(24)
  801. case 23: LPC1(23)
  802. case 22: LPC1(22)
  803. case 21: LPC1(21)
  804. case 20: LPC1(20)
  805. case 19: LPC1(19)
  806. case 18: LPC1(18)
  807. case 17: LPC1(17)
  808. case 16: LPC1(16)
  809. case 15: LPC1(15)
  810. case 14: LPC1(14)
  811. case 13: LPC1(13)
  812. case 12: LPC1(12)
  813. case 11: LPC1(11)
  814. case 10: LPC1(10)
  815. case 9: LPC1( 9)
  816. LPC1( 8)
  817. LPC1( 7)
  818. LPC1( 6)
  819. LPC1( 5)
  820. LPC1( 4)
  821. LPC1( 3)
  822. LPC1( 2)
  823. LPC1( 1)
  824. }
  825. } else {
  826. switch(order) {
  827. case 8: LPC1( 8)
  828. case 7: LPC1( 7)
  829. case 6: LPC1( 6)
  830. case 5: LPC1( 5)
  831. case 4: LPC1( 4)
  832. case 3: LPC1( 3)
  833. case 2: LPC1( 2)
  834. case 1: LPC1( 1)
  835. }
  836. }
  837. res[i ] = smp[i ] - (p0 >> shift);
  838. res[i+1] = smp[i+1] - (p1 >> shift);
  839. }
  840. }
  841. static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
  842. int order, const int32_t *coefs, int shift)
  843. {
  844. int i;
  845. for(i=0; i<order; i++) {
  846. res[i] = smp[i];
  847. }
  848. #ifdef CONFIG_SMALL
  849. for(i=order; i<n; i+=2) {
  850. int j;
  851. int s = smp[i];
  852. int p0 = 0, p1 = 0;
  853. for(j=0; j<order; j++) {
  854. int c = coefs[j];
  855. p1 += c*s;
  856. s = smp[i-j-1];
  857. p0 += c*s;
  858. }
  859. res[i ] = smp[i ] - (p0 >> shift);
  860. res[i+1] = smp[i+1] - (p1 >> shift);
  861. }
  862. #else
  863. switch(order) {
  864. case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
  865. case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
  866. case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
  867. case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
  868. case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
  869. case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
  870. case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
  871. case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
  872. default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
  873. }
  874. #endif
  875. }
  876. static int encode_residual(FlacEncodeContext *ctx, int ch)
  877. {
  878. int i, n;
  879. int min_order, max_order, opt_order, precision, omethod;
  880. int min_porder, max_porder;
  881. FlacFrame *frame;
  882. FlacSubframe *sub;
  883. int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
  884. int shift[MAX_LPC_ORDER];
  885. int32_t *res, *smp;
  886. frame = &ctx->frame;
  887. sub = &frame->subframes[ch];
  888. res = sub->residual;
  889. smp = sub->samples;
  890. n = frame->blocksize;
  891. /* CONSTANT */
  892. for(i=1; i<n; i++) {
  893. if(smp[i] != smp[0]) break;
  894. }
  895. if(i == n) {
  896. sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
  897. res[0] = smp[0];
  898. return sub->obits;
  899. }
  900. /* VERBATIM */
  901. if(n < 5) {
  902. sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
  903. encode_residual_verbatim(res, smp, n);
  904. return sub->obits * n;
  905. }
  906. min_order = ctx->options.min_prediction_order;
  907. max_order = ctx->options.max_prediction_order;
  908. min_porder = ctx->options.min_partition_order;
  909. max_porder = ctx->options.max_partition_order;
  910. precision = ctx->options.lpc_coeff_precision;
  911. omethod = ctx->options.prediction_order_method;
  912. /* FIXED */
  913. if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
  914. uint32_t bits[MAX_FIXED_ORDER+1];
  915. if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
  916. opt_order = 0;
  917. bits[0] = UINT32_MAX;
  918. for(i=min_order; i<=max_order; i++) {
  919. encode_residual_fixed(res, smp, n, i);
  920. bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
  921. n, i, sub->obits);
  922. if(bits[i] < bits[opt_order]) {
  923. opt_order = i;
  924. }
  925. }
  926. sub->order = opt_order;
  927. sub->type = FLAC_SUBFRAME_FIXED;
  928. sub->type_code = sub->type | sub->order;
  929. if(sub->order != max_order) {
  930. encode_residual_fixed(res, smp, n, sub->order);
  931. return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
  932. sub->order, sub->obits);
  933. }
  934. return bits[sub->order];
  935. }
  936. /* LPC */
  937. opt_order = lpc_calc_coefs(ctx, smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc, omethod);
  938. if(omethod == ORDER_METHOD_2LEVEL ||
  939. omethod == ORDER_METHOD_4LEVEL ||
  940. omethod == ORDER_METHOD_8LEVEL) {
  941. int levels = 1 << omethod;
  942. uint32_t bits[levels];
  943. int order;
  944. int opt_index = levels-1;
  945. opt_order = max_order-1;
  946. bits[opt_index] = UINT32_MAX;
  947. for(i=levels-1; i>=0; i--) {
  948. order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
  949. if(order < 0) order = 0;
  950. encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
  951. bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
  952. res, n, order+1, sub->obits, precision);
  953. if(bits[i] < bits[opt_index]) {
  954. opt_index = i;
  955. opt_order = order;
  956. }
  957. }
  958. opt_order++;
  959. } else if(omethod == ORDER_METHOD_SEARCH) {
  960. // brute-force optimal order search
  961. uint32_t bits[MAX_LPC_ORDER];
  962. opt_order = 0;
  963. bits[0] = UINT32_MAX;
  964. for(i=min_order-1; i<max_order; i++) {
  965. encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
  966. bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
  967. res, n, i+1, sub->obits, precision);
  968. if(bits[i] < bits[opt_order]) {
  969. opt_order = i;
  970. }
  971. }
  972. opt_order++;
  973. } else if(omethod == ORDER_METHOD_LOG) {
  974. uint32_t bits[MAX_LPC_ORDER];
  975. int step;
  976. opt_order= min_order - 1 + (max_order-min_order)/3;
  977. memset(bits, -1, sizeof(bits));
  978. for(step=16 ;step; step>>=1){
  979. int last= opt_order;
  980. for(i=last-step; i<=last+step; i+= step){
  981. if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
  982. continue;
  983. encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
  984. bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
  985. res, n, i+1, sub->obits, precision);
  986. if(bits[i] < bits[opt_order])
  987. opt_order= i;
  988. }
  989. }
  990. opt_order++;
  991. }
  992. sub->order = opt_order;
  993. sub->type = FLAC_SUBFRAME_LPC;
  994. sub->type_code = sub->type | (sub->order-1);
  995. sub->shift = shift[sub->order-1];
  996. for(i=0; i<sub->order; i++) {
  997. sub->coefs[i] = coefs[sub->order-1][i];
  998. }
  999. encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
  1000. return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
  1001. sub->obits, precision);
  1002. }
  1003. static int encode_residual_v(FlacEncodeContext *ctx, int ch)
  1004. {
  1005. int i, n;
  1006. FlacFrame *frame;
  1007. FlacSubframe *sub;
  1008. int32_t *res, *smp;
  1009. frame = &ctx->frame;
  1010. sub = &frame->subframes[ch];
  1011. res = sub->residual;
  1012. smp = sub->samples;
  1013. n = frame->blocksize;
  1014. /* CONSTANT */
  1015. for(i=1; i<n; i++) {
  1016. if(smp[i] != smp[0]) break;
  1017. }
  1018. if(i == n) {
  1019. sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
  1020. res[0] = smp[0];
  1021. return sub->obits;
  1022. }
  1023. /* VERBATIM */
  1024. sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
  1025. encode_residual_verbatim(res, smp, n);
  1026. return sub->obits * n;
  1027. }
  1028. static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
  1029. {
  1030. int i, best;
  1031. int32_t lt, rt;
  1032. uint64_t sum[4];
  1033. uint64_t score[4];
  1034. int k;
  1035. /* calculate sum of 2nd order residual for each channel */
  1036. sum[0] = sum[1] = sum[2] = sum[3] = 0;
  1037. for(i=2; i<n; i++) {
  1038. lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
  1039. rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
  1040. sum[2] += FFABS((lt + rt) >> 1);
  1041. sum[3] += FFABS(lt - rt);
  1042. sum[0] += FFABS(lt);
  1043. sum[1] += FFABS(rt);
  1044. }
  1045. /* estimate bit counts */
  1046. for(i=0; i<4; i++) {
  1047. k = find_optimal_param(2*sum[i], n);
  1048. sum[i] = rice_encode_count(2*sum[i], n, k);
  1049. }
  1050. /* calculate score for each mode */
  1051. score[0] = sum[0] + sum[1];
  1052. score[1] = sum[0] + sum[3];
  1053. score[2] = sum[1] + sum[3];
  1054. score[3] = sum[2] + sum[3];
  1055. /* return mode with lowest score */
  1056. best = 0;
  1057. for(i=1; i<4; i++) {
  1058. if(score[i] < score[best]) {
  1059. best = i;
  1060. }
  1061. }
  1062. if(best == 0) {
  1063. return FLAC_CHMODE_LEFT_RIGHT;
  1064. } else if(best == 1) {
  1065. return FLAC_CHMODE_LEFT_SIDE;
  1066. } else if(best == 2) {
  1067. return FLAC_CHMODE_RIGHT_SIDE;
  1068. } else {
  1069. return FLAC_CHMODE_MID_SIDE;
  1070. }
  1071. }
  1072. /**
  1073. * Perform stereo channel decorrelation
  1074. */
  1075. static void channel_decorrelation(FlacEncodeContext *ctx)
  1076. {
  1077. FlacFrame *frame;
  1078. int32_t *left, *right;
  1079. int i, n;
  1080. frame = &ctx->frame;
  1081. n = frame->blocksize;
  1082. left = frame->subframes[0].samples;
  1083. right = frame->subframes[1].samples;
  1084. if(ctx->channels != 2) {
  1085. frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
  1086. return;
  1087. }
  1088. frame->ch_mode = estimate_stereo_mode(left, right, n);
  1089. /* perform decorrelation and adjust bits-per-sample */
  1090. if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
  1091. return;
  1092. }
  1093. if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
  1094. int32_t tmp;
  1095. for(i=0; i<n; i++) {
  1096. tmp = left[i];
  1097. left[i] = (tmp + right[i]) >> 1;
  1098. right[i] = tmp - right[i];
  1099. }
  1100. frame->subframes[1].obits++;
  1101. } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
  1102. for(i=0; i<n; i++) {
  1103. right[i] = left[i] - right[i];
  1104. }
  1105. frame->subframes[1].obits++;
  1106. } else {
  1107. for(i=0; i<n; i++) {
  1108. left[i] -= right[i];
  1109. }
  1110. frame->subframes[0].obits++;
  1111. }
  1112. }
  1113. static void put_sbits(PutBitContext *pb, int bits, int32_t val)
  1114. {
  1115. assert(bits >= 0 && bits <= 31);
  1116. put_bits(pb, bits, val & ((1<<bits)-1));
  1117. }
  1118. static void write_utf8(PutBitContext *pb, uint32_t val)
  1119. {
  1120. uint8_t tmp;
  1121. PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
  1122. }
  1123. static void output_frame_header(FlacEncodeContext *s)
  1124. {
  1125. FlacFrame *frame;
  1126. int crc;
  1127. frame = &s->frame;
  1128. put_bits(&s->pb, 16, 0xFFF8);
  1129. put_bits(&s->pb, 4, frame->bs_code[0]);
  1130. put_bits(&s->pb, 4, s->sr_code[0]);
  1131. if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
  1132. put_bits(&s->pb, 4, s->ch_code);
  1133. } else {
  1134. put_bits(&s->pb, 4, frame->ch_mode);
  1135. }
  1136. put_bits(&s->pb, 3, 4); /* bits-per-sample code */
  1137. put_bits(&s->pb, 1, 0);
  1138. write_utf8(&s->pb, s->frame_count);
  1139. if(frame->bs_code[0] == 6) {
  1140. put_bits(&s->pb, 8, frame->bs_code[1]);
  1141. } else if(frame->bs_code[0] == 7) {
  1142. put_bits(&s->pb, 16, frame->bs_code[1]);
  1143. }
  1144. if(s->sr_code[0] == 12) {
  1145. put_bits(&s->pb, 8, s->sr_code[1]);
  1146. } else if(s->sr_code[0] > 12) {
  1147. put_bits(&s->pb, 16, s->sr_code[1]);
  1148. }
  1149. flush_put_bits(&s->pb);
  1150. crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
  1151. s->pb.buf, put_bits_count(&s->pb)>>3);
  1152. put_bits(&s->pb, 8, crc);
  1153. }
  1154. static void output_subframe_constant(FlacEncodeContext *s, int ch)
  1155. {
  1156. FlacSubframe *sub;
  1157. int32_t res;
  1158. sub = &s->frame.subframes[ch];
  1159. res = sub->residual[0];
  1160. put_sbits(&s->pb, sub->obits, res);
  1161. }
  1162. static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
  1163. {
  1164. int i;
  1165. FlacFrame *frame;
  1166. FlacSubframe *sub;
  1167. int32_t res;
  1168. frame = &s->frame;
  1169. sub = &frame->subframes[ch];
  1170. for(i=0; i<frame->blocksize; i++) {
  1171. res = sub->residual[i];
  1172. put_sbits(&s->pb, sub->obits, res);
  1173. }
  1174. }
  1175. static void output_residual(FlacEncodeContext *ctx, int ch)
  1176. {
  1177. int i, j, p, n, parts;
  1178. int k, porder, psize, res_cnt;
  1179. FlacFrame *frame;
  1180. FlacSubframe *sub;
  1181. int32_t *res;
  1182. frame = &ctx->frame;
  1183. sub = &frame->subframes[ch];
  1184. res = sub->residual;
  1185. n = frame->blocksize;
  1186. /* rice-encoded block */
  1187. put_bits(&ctx->pb, 2, 0);
  1188. /* partition order */
  1189. porder = sub->rc.porder;
  1190. psize = n >> porder;
  1191. parts = (1 << porder);
  1192. put_bits(&ctx->pb, 4, porder);
  1193. res_cnt = psize - sub->order;
  1194. /* residual */
  1195. j = sub->order;
  1196. for(p=0; p<parts; p++) {
  1197. k = sub->rc.params[p];
  1198. put_bits(&ctx->pb, 4, k);
  1199. if(p == 1) res_cnt = psize;
  1200. for(i=0; i<res_cnt && j<n; i++, j++) {
  1201. set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
  1202. }
  1203. }
  1204. }
  1205. static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
  1206. {
  1207. int i;
  1208. FlacFrame *frame;
  1209. FlacSubframe *sub;
  1210. frame = &ctx->frame;
  1211. sub = &frame->subframes[ch];
  1212. /* warm-up samples */
  1213. for(i=0; i<sub->order; i++) {
  1214. put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
  1215. }
  1216. /* residual */
  1217. output_residual(ctx, ch);
  1218. }
  1219. static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
  1220. {
  1221. int i, cbits;
  1222. FlacFrame *frame;
  1223. FlacSubframe *sub;
  1224. frame = &ctx->frame;
  1225. sub = &frame->subframes[ch];
  1226. /* warm-up samples */
  1227. for(i=0; i<sub->order; i++) {
  1228. put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
  1229. }
  1230. /* LPC coefficients */
  1231. cbits = ctx->options.lpc_coeff_precision;
  1232. put_bits(&ctx->pb, 4, cbits-1);
  1233. put_sbits(&ctx->pb, 5, sub->shift);
  1234. for(i=0; i<sub->order; i++) {
  1235. put_sbits(&ctx->pb, cbits, sub->coefs[i]);
  1236. }
  1237. /* residual */
  1238. output_residual(ctx, ch);
  1239. }
  1240. static void output_subframes(FlacEncodeContext *s)
  1241. {
  1242. FlacFrame *frame;
  1243. FlacSubframe *sub;
  1244. int ch;
  1245. frame = &s->frame;
  1246. for(ch=0; ch<s->channels; ch++) {
  1247. sub = &frame->subframes[ch];
  1248. /* subframe header */
  1249. put_bits(&s->pb, 1, 0);
  1250. put_bits(&s->pb, 6, sub->type_code);
  1251. put_bits(&s->pb, 1, 0); /* no wasted bits */
  1252. /* subframe */
  1253. if(sub->type == FLAC_SUBFRAME_CONSTANT) {
  1254. output_subframe_constant(s, ch);
  1255. } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
  1256. output_subframe_verbatim(s, ch);
  1257. } else if(sub->type == FLAC_SUBFRAME_FIXED) {
  1258. output_subframe_fixed(s, ch);
  1259. } else if(sub->type == FLAC_SUBFRAME_LPC) {
  1260. output_subframe_lpc(s, ch);
  1261. }
  1262. }
  1263. }
  1264. static void output_frame_footer(FlacEncodeContext *s)
  1265. {
  1266. int crc;
  1267. flush_put_bits(&s->pb);
  1268. crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1269. s->pb.buf, put_bits_count(&s->pb)>>3));
  1270. put_bits(&s->pb, 16, crc);
  1271. flush_put_bits(&s->pb);
  1272. }
  1273. static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
  1274. int buf_size, void *data)
  1275. {
  1276. int ch;
  1277. FlacEncodeContext *s;
  1278. int16_t *samples = data;
  1279. int out_bytes;
  1280. s = avctx->priv_data;
  1281. s->blocksize = avctx->frame_size;
  1282. init_frame(s);
  1283. copy_samples(s, samples);
  1284. channel_decorrelation(s);
  1285. for(ch=0; ch<s->channels; ch++) {
  1286. encode_residual(s, ch);
  1287. }
  1288. init_put_bits(&s->pb, frame, buf_size);
  1289. output_frame_header(s);
  1290. output_subframes(s);
  1291. output_frame_footer(s);
  1292. out_bytes = put_bits_count(&s->pb) >> 3;
  1293. if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
  1294. /* frame too large. use verbatim mode */
  1295. for(ch=0; ch<s->channels; ch++) {
  1296. encode_residual_v(s, ch);
  1297. }
  1298. init_put_bits(&s->pb, frame, buf_size);
  1299. output_frame_header(s);
  1300. output_subframes(s);
  1301. output_frame_footer(s);
  1302. out_bytes = put_bits_count(&s->pb) >> 3;
  1303. if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
  1304. /* still too large. must be an error. */
  1305. av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
  1306. return -1;
  1307. }
  1308. }
  1309. s->frame_count++;
  1310. return out_bytes;
  1311. }
  1312. static int flac_encode_close(AVCodecContext *avctx)
  1313. {
  1314. av_freep(&avctx->extradata);
  1315. avctx->extradata_size = 0;
  1316. av_freep(&avctx->coded_frame);
  1317. return 0;
  1318. }
  1319. AVCodec flac_encoder = {
  1320. "flac",
  1321. CODEC_TYPE_AUDIO,
  1322. CODEC_ID_FLAC,
  1323. sizeof(FlacEncodeContext),
  1324. flac_encode_init,
  1325. flac_encode_frame,
  1326. flac_encode_close,
  1327. NULL,
  1328. .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
  1329. };