You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1238 lines
35KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{av_parse_graph()} function defined in
  17. @file{libavfilter/avfiltergraph}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your Libav build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section anull
  82. Pass the audio source unchanged to the output.
  83. @c man end AUDIO FILTERS
  84. @chapter Audio Sources
  85. @c man begin AUDIO SOURCES
  86. Below is a description of the currently available audio sources.
  87. @section anullsrc
  88. Null audio source, never return audio frames. It is mainly useful as a
  89. template and to be employed in analysis / debugging tools.
  90. It accepts as optional parameter a string of the form
  91. @var{sample_rate}:@var{channel_layout}.
  92. @var{sample_rate} specify the sample rate, and defaults to 44100.
  93. @var{channel_layout} specify the channel layout, and can be either an
  94. integer or a string representing a channel layout. The default value
  95. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  96. Check the channel_layout_map definition in
  97. @file{libavcodec/audioconvert.c} for the mapping between strings and
  98. channel layout values.
  99. Follow some examples:
  100. @example
  101. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  102. anullsrc=48000:4
  103. # same as
  104. anullsrc=48000:mono
  105. @end example
  106. @c man end AUDIO SOURCES
  107. @chapter Audio Sinks
  108. @c man begin AUDIO SINKS
  109. Below is a description of the currently available audio sinks.
  110. @section anullsink
  111. Null audio sink, do absolutely nothing with the input audio. It is
  112. mainly useful as a template and to be employed in analysis / debugging
  113. tools.
  114. @c man end AUDIO SINKS
  115. @chapter Video Filters
  116. @c man begin VIDEO FILTERS
  117. When you configure your Libav build, you can disable any of the
  118. existing filters using --disable-filters.
  119. The configure output will show the video filters included in your
  120. build.
  121. Below is a description of the currently available video filters.
  122. @section blackframe
  123. Detect frames that are (almost) completely black. Can be useful to
  124. detect chapter transitions or commercials. Output lines consist of
  125. the frame number of the detected frame, the percentage of blackness,
  126. the position in the file if known or -1 and the timestamp in seconds.
  127. In order to display the output lines, you need to set the loglevel at
  128. least to the AV_LOG_INFO value.
  129. The filter accepts the syntax:
  130. @example
  131. blackframe[=@var{amount}:[@var{threshold}]]
  132. @end example
  133. @var{amount} is the percentage of the pixels that have to be below the
  134. threshold, and defaults to 98.
  135. @var{threshold} is the threshold below which a pixel value is
  136. considered black, and defaults to 32.
  137. @section copy
  138. Copy the input source unchanged to the output. Mainly useful for
  139. testing purposes.
  140. @section crop
  141. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  142. The parameters are expressions containing the following constants:
  143. @table @option
  144. @item E, PI, PHI
  145. the corresponding mathematical approximated values for e
  146. (euler number), pi (greek PI), PHI (golden ratio)
  147. @item x, y
  148. the computed values for @var{x} and @var{y}. They are evaluated for
  149. each new frame.
  150. @item in_w, in_h
  151. the input width and heigth
  152. @item iw, ih
  153. same as @var{in_w} and @var{in_h}
  154. @item out_w, out_h
  155. the output (cropped) width and heigth
  156. @item ow, oh
  157. same as @var{out_w} and @var{out_h}
  158. @item n
  159. the number of input frame, starting from 0
  160. @item pos
  161. the position in the file of the input frame, NAN if unknown
  162. @item t
  163. timestamp expressed in seconds, NAN if the input timestamp is unknown
  164. @end table
  165. The @var{out_w} and @var{out_h} parameters specify the expressions for
  166. the width and height of the output (cropped) video. They are
  167. evaluated just at the configuration of the filter.
  168. The default value of @var{out_w} is "in_w", and the default value of
  169. @var{out_h} is "in_h".
  170. The expression for @var{out_w} may depend on the value of @var{out_h},
  171. and the expression for @var{out_h} may depend on @var{out_w}, but they
  172. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  173. evaluated after @var{out_w} and @var{out_h}.
  174. The @var{x} and @var{y} parameters specify the expressions for the
  175. position of the top-left corner of the output (non-cropped) area. They
  176. are evaluated for each frame. If the evaluated value is not valid, it
  177. is approximated to the nearest valid value.
  178. The default value of @var{x} is "(in_w-out_w)/2", and the default
  179. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  180. the center of the input image.
  181. The expression for @var{x} may depend on @var{y}, and the expression
  182. for @var{y} may depend on @var{x}.
  183. Follow some examples:
  184. @example
  185. # crop the central input area with size 100x100
  186. crop=100:100
  187. # crop the central input area with size 2/3 of the input video
  188. "crop=2/3*in_w:2/3*in_h"
  189. # crop the input video central square
  190. crop=in_h
  191. # delimit the rectangle with the top-left corner placed at position
  192. # 100:100 and the right-bottom corner corresponding to the right-bottom
  193. # corner of the input image.
  194. crop=in_w-100:in_h-100:100:100
  195. # crop 10 pixels from the left and right borders, and 20 pixels from
  196. # the top and bottom borders
  197. "crop=in_w-2*10:in_h-2*20"
  198. # keep only the bottom right quarter of the input image
  199. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  200. # crop height for getting Greek harmony
  201. "crop=in_w:1/PHI*in_w"
  202. # trembling effect
  203. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  204. # erratic camera effect depending on timestamp
  205. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  206. # set x depending on the value of y
  207. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  208. @end example
  209. @section cropdetect
  210. Auto-detect crop size.
  211. Calculate necessary cropping parameters and prints the recommended
  212. parameters through the logging system. The detected dimensions
  213. correspond to the non-black area of the input video.
  214. It accepts the syntax:
  215. @example
  216. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  217. @end example
  218. @table @option
  219. @item limit
  220. Threshold, which can be optionally specified from nothing (0) to
  221. everything (255), defaults to 24.
  222. @item round
  223. Value which the width/height should be divisible by, defaults to
  224. 16. The offset is automatically adjusted to center the video. Use 2 to
  225. get only even dimensions (needed for 4:2:2 video). 16 is best when
  226. encoding to most video codecs.
  227. @item reset
  228. Counter that determines after how many frames cropdetect will reset
  229. the previously detected largest video area and start over to detect
  230. the current optimal crop area. Defaults to 0.
  231. This can be useful when channel logos distort the video area. 0
  232. indicates never reset and return the largest area encountered during
  233. playback.
  234. @end table
  235. @section drawbox
  236. Draw a colored box on the input image.
  237. It accepts the syntax:
  238. @example
  239. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  240. @end example
  241. @table @option
  242. @item x, y
  243. Specify the top left corner coordinates of the box. Default to 0.
  244. @item width, height
  245. Specify the width and height of the box, if 0 they are interpreted as
  246. the input width and height. Default to 0.
  247. @item color
  248. Specify the color of the box to write, it can be the name of a color
  249. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  250. @end table
  251. Follow some examples:
  252. @example
  253. # draw a black box around the edge of the input image
  254. drawbox
  255. # draw a box with color red and an opacity of 50%
  256. drawbox=10:20:200:60:red@@0.5"
  257. @end example
  258. @section fade
  259. Apply fade-in/out effect to input video.
  260. It accepts the parameters:
  261. @var{type}:@var{start_frame}:@var{nb_frames}
  262. @var{type} specifies if the effect type, can be either "in" for
  263. fade-in, or "out" for a fade-out effect.
  264. @var{start_frame} specifies the number of the start frame for starting
  265. to apply the fade effect.
  266. @var{nb_frames} specifies the number of frames for which the fade
  267. effect has to last. At the end of the fade-in effect the output video
  268. will have the same intensity as the input video, at the end of the
  269. fade-out transition the output video will be completely black.
  270. A few usage examples follow, usable too as test scenarios.
  271. @example
  272. # fade in first 30 frames of video
  273. fade=in:0:30
  274. # fade out last 45 frames of a 200-frame video
  275. fade=out:155:45
  276. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  277. fade=in:0:25, fade=out:975:25
  278. # make first 5 frames black, then fade in from frame 5-24
  279. fade=in:5:20
  280. @end example
  281. @section fifo
  282. Buffer input images and send them when they are requested.
  283. This filter is mainly useful when auto-inserted by the libavfilter
  284. framework.
  285. The filter does not take parameters.
  286. @section format
  287. Convert the input video to one of the specified pixel formats.
  288. Libavfilter will try to pick one that is supported for the input to
  289. the next filter.
  290. The filter accepts a list of pixel format names, separated by ":",
  291. for example "yuv420p:monow:rgb24".
  292. Some examples follow:
  293. @example
  294. # convert the input video to the format "yuv420p"
  295. format=yuv420p
  296. # convert the input video to any of the formats in the list
  297. format=yuv420p:yuv444p:yuv410p
  298. @end example
  299. @anchor{frei0r}
  300. @section frei0r
  301. Apply a frei0r effect to the input video.
  302. To enable compilation of this filter you need to install the frei0r
  303. header and configure Libav with --enable-frei0r.
  304. The filter supports the syntax:
  305. @example
  306. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  307. @end example
  308. @var{filter_name} is the name to the frei0r effect to load. If the
  309. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  310. is searched in each one of the directories specified by the colon
  311. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  312. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  313. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  314. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  315. for the frei0r effect.
  316. A frei0r effect parameter can be a boolean (whose values are specified
  317. with "y" and "n"), a double, a color (specified by the syntax
  318. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  319. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  320. description), a position (specified by the syntax @var{X}/@var{Y},
  321. @var{X} and @var{Y} being float numbers) and a string.
  322. The number and kind of parameters depend on the loaded effect. If an
  323. effect parameter is not specified the default value is set.
  324. Some examples follow:
  325. @example
  326. # apply the distort0r effect, set the first two double parameters
  327. frei0r=distort0r:0.5:0.01
  328. # apply the colordistance effect, takes a color as first parameter
  329. frei0r=colordistance:0.2/0.3/0.4
  330. frei0r=colordistance:violet
  331. frei0r=colordistance:0x112233
  332. # apply the perspective effect, specify the top left and top right
  333. # image positions
  334. frei0r=perspective:0.2/0.2:0.8/0.2
  335. @end example
  336. For more information see:
  337. @url{http://piksel.org/frei0r}
  338. @section gradfun
  339. Fix the banding artifacts that are sometimes introduced into nearly flat
  340. regions by truncation to 8bit colordepth.
  341. Interpolate the gradients that should go where the bands are, and
  342. dither them.
  343. The filter takes two optional parameters, separated by ':':
  344. @var{strength}:@var{radius}
  345. @var{strength} is the maximum amount by which the filter will change
  346. any one pixel. Also the threshold for detecting nearly flat
  347. regions. Acceptable values range from .51 to 255, default value is
  348. 1.2, out-of-range values will be clipped to the valid range.
  349. @var{radius} is the neighborhood to fit the gradient to. A larger
  350. radius makes for smoother gradients, but also prevents the filter from
  351. modifying the pixels near detailed regions. Acceptable values are
  352. 8-32, default value is 16, out-of-range values will be clipped to the
  353. valid range.
  354. @example
  355. # default parameters
  356. gradfun=1.2:16
  357. # omitting radius
  358. gradfun=1.2
  359. @end example
  360. @section hflip
  361. Flip the input video horizontally.
  362. For example to horizontally flip the video in input with
  363. @file{ffmpeg}:
  364. @example
  365. ffmpeg -i in.avi -vf "hflip" out.avi
  366. @end example
  367. @section hqdn3d
  368. High precision/quality 3d denoise filter. This filter aims to reduce
  369. image noise producing smooth images and making still images really
  370. still. It should enhance compressibility.
  371. It accepts the following optional parameters:
  372. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  373. @table @option
  374. @item luma_spatial
  375. a non-negative float number which specifies spatial luma strength,
  376. defaults to 4.0
  377. @item chroma_spatial
  378. a non-negative float number which specifies spatial chroma strength,
  379. defaults to 3.0*@var{luma_spatial}/4.0
  380. @item luma_tmp
  381. a float number which specifies luma temporal strength, defaults to
  382. 6.0*@var{luma_spatial}/4.0
  383. @item chroma_tmp
  384. a float number which specifies chroma temporal strength, defaults to
  385. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  386. @end table
  387. @section noformat
  388. Force libavfilter not to use any of the specified pixel formats for the
  389. input to the next filter.
  390. The filter accepts a list of pixel format names, separated by ":",
  391. for example "yuv420p:monow:rgb24".
  392. Some examples follow:
  393. @example
  394. # force libavfilter to use a format different from "yuv420p" for the
  395. # input to the vflip filter
  396. noformat=yuv420p,vflip
  397. # convert the input video to any of the formats not contained in the list
  398. noformat=yuv420p:yuv444p:yuv410p
  399. @end example
  400. @section null
  401. Pass the video source unchanged to the output.
  402. @section ocv
  403. Apply video transform using libopencv.
  404. To enable this filter install libopencv library and headers and
  405. configure Libav with --enable-libopencv.
  406. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  407. @var{filter_name} is the name of the libopencv filter to apply.
  408. @var{filter_params} specifies the parameters to pass to the libopencv
  409. filter. If not specified the default values are assumed.
  410. Refer to the official libopencv documentation for more precise
  411. informations:
  412. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  413. Follows the list of supported libopencv filters.
  414. @anchor{dilate}
  415. @subsection dilate
  416. Dilate an image by using a specific structuring element.
  417. This filter corresponds to the libopencv function @code{cvDilate}.
  418. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  419. @var{struct_el} represents a structuring element, and has the syntax:
  420. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  421. @var{cols} and @var{rows} represent the number of colums and rows of
  422. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  423. point, and @var{shape} the shape for the structuring element, and
  424. can be one of the values "rect", "cross", "ellipse", "custom".
  425. If the value for @var{shape} is "custom", it must be followed by a
  426. string of the form "=@var{filename}". The file with name
  427. @var{filename} is assumed to represent a binary image, with each
  428. printable character corresponding to a bright pixel. When a custom
  429. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  430. or columns and rows of the read file are assumed instead.
  431. The default value for @var{struct_el} is "3x3+0x0/rect".
  432. @var{nb_iterations} specifies the number of times the transform is
  433. applied to the image, and defaults to 1.
  434. Follow some example:
  435. @example
  436. # use the default values
  437. ocv=dilate
  438. # dilate using a structuring element with a 5x5 cross, iterate two times
  439. ocv=dilate=5x5+2x2/cross:2
  440. # read the shape from the file diamond.shape, iterate two times
  441. # the file diamond.shape may contain a pattern of characters like this:
  442. # *
  443. # ***
  444. # *****
  445. # ***
  446. # *
  447. # the specified cols and rows are ignored (but not the anchor point coordinates)
  448. ocv=0x0+2x2/custom=diamond.shape:2
  449. @end example
  450. @subsection erode
  451. Erode an image by using a specific structuring element.
  452. This filter corresponds to the libopencv function @code{cvErode}.
  453. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  454. with the same meaning and use of those of the dilate filter
  455. (@pxref{dilate}).
  456. @subsection smooth
  457. Smooth the input video.
  458. The filter takes the following parameters:
  459. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  460. @var{type} is the type of smooth filter to apply, and can be one of
  461. the following values: "blur", "blur_no_scale", "median", "gaussian",
  462. "bilateral". The default value is "gaussian".
  463. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  464. parameters whose meanings depend on smooth type. @var{param1} and
  465. @var{param2} accept integer positive values or 0, @var{param3} and
  466. @var{param4} accept float values.
  467. The default value for @var{param1} is 3, the default value for the
  468. other parameters is 0.
  469. These parameters correspond to the parameters assigned to the
  470. libopencv function @code{cvSmooth}.
  471. @section overlay
  472. Overlay one video on top of another.
  473. It takes two inputs and one output, the first input is the "main"
  474. video on which the second input is overlayed.
  475. It accepts the parameters: @var{x}:@var{y}.
  476. @var{x} is the x coordinate of the overlayed video on the main video,
  477. @var{y} is the y coordinate. The parameters are expressions containing
  478. the following parameters:
  479. @table @option
  480. @item main_w, main_h
  481. main input width and height
  482. @item W, H
  483. same as @var{main_w} and @var{main_h}
  484. @item overlay_w, overlay_h
  485. overlay input width and height
  486. @item w, h
  487. same as @var{overlay_w} and @var{overlay_h}
  488. @end table
  489. Be aware that frames are taken from each input video in timestamp
  490. order, hence, if their initial timestamps differ, it is a a good idea
  491. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  492. have them begin in the same zero timestamp, as it does the example for
  493. the @var{movie} filter.
  494. Follow some examples:
  495. @example
  496. # draw the overlay at 10 pixels from the bottom right
  497. # corner of the main video.
  498. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  499. # insert a transparent PNG logo in the bottom left corner of the input
  500. movie=logo.png [logo];
  501. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  502. # insert 2 different transparent PNG logos (second logo on bottom
  503. # right corner):
  504. movie=logo1.png [logo1];
  505. movie=logo2.png [logo2];
  506. [in][logo1] overlay=10:H-h-10 [in+logo1];
  507. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  508. # add a transparent color layer on top of the main video,
  509. # WxH specifies the size of the main input to the overlay filter
  510. color=red@.3:WxH [over]; [in][over] overlay [out]
  511. @end example
  512. You can chain togheter more overlays but the efficiency of such
  513. approach is yet to be tested.
  514. @section pad
  515. Add paddings to the input image, and places the original input at the
  516. given coordinates @var{x}, @var{y}.
  517. It accepts the following parameters:
  518. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  519. Follows the description of the accepted parameters.
  520. @table @option
  521. @item width, height
  522. Specify the size of the output image with the paddings added. If the
  523. value for @var{width} or @var{height} is 0, the corresponding input size
  524. is used for the output.
  525. The default value of @var{width} and @var{height} is 0.
  526. @item x, y
  527. Specify the offsets where to place the input image in the padded area
  528. with respect to the top/left border of the output image.
  529. The default value of @var{x} and @var{y} is 0.
  530. @item color
  531. Specify the color of the padded area, it can be the name of a color
  532. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  533. The default value of @var{color} is "black".
  534. @end table
  535. For example:
  536. @example
  537. # Add paddings with color "violet" to the input video. Output video
  538. # size is 640x480, the top-left corner of the input video is placed at
  539. # row 0, column 40.
  540. pad=640:480:0:40:violet
  541. @end example
  542. @section pixdesctest
  543. Pixel format descriptor test filter, mainly useful for internal
  544. testing. The output video should be equal to the input video.
  545. For example:
  546. @example
  547. format=monow, pixdesctest
  548. @end example
  549. can be used to test the monowhite pixel format descriptor definition.
  550. @section scale
  551. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  552. For example the command:
  553. @example
  554. ./ffmpeg -i in.avi -vf "scale=200:100" out.avi
  555. @end example
  556. will scale the input video to a size of 200x100.
  557. If the input image format is different from the format requested by
  558. the next filter, the scale filter will convert the input to the
  559. requested format.
  560. If the value for @var{width} or @var{height} is 0, the respective input
  561. size is used for the output.
  562. If the value for @var{width} or @var{height} is -1, the scale filter will
  563. use, for the respective output size, a value that maintains the aspect
  564. ratio of the input image.
  565. The default value of @var{width} and @var{height} is 0.
  566. @section setpts
  567. Change the PTS (presentation timestamp) of the input video frames.
  568. Accept in input an expression evaluated through the eval API, which
  569. can contain the following constants:
  570. @table @option
  571. @item PTS
  572. the presentation timestamp in input
  573. @item PI
  574. Greek PI
  575. @item PHI
  576. golden ratio
  577. @item E
  578. Euler number
  579. @item N
  580. the count of the input frame, starting from 0.
  581. @item STARTPTS
  582. the PTS of the first video frame
  583. @item INTERLACED
  584. tell if the current frame is interlaced
  585. @item POS
  586. original position in the file of the frame, or undefined if undefined
  587. for the current frame
  588. @item PREV_INPTS
  589. previous input PTS
  590. @item PREV_OUTPTS
  591. previous output PTS
  592. @end table
  593. Some examples follow:
  594. @example
  595. # start counting PTS from zero
  596. setpts=PTS-STARTPTS
  597. # fast motion
  598. setpts=0.5*PTS
  599. # slow motion
  600. setpts=2.0*PTS
  601. # fixed rate 25 fps
  602. setpts=N/(25*TB)
  603. # fixed rate 25 fps with some jitter
  604. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  605. @end example
  606. @section settb
  607. Set the timebase to use for the output frames timestamps.
  608. It is mainly useful for testing timebase configuration.
  609. It accepts in input an arithmetic expression representing a rational.
  610. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  611. default timebase), and "intb" (the input timebase).
  612. The default value for the input is "intb".
  613. Follow some examples.
  614. @example
  615. # set the timebase to 1/25
  616. settb=1/25
  617. # set the timebase to 1/10
  618. settb=0.1
  619. #set the timebase to 1001/1000
  620. settb=1+0.001
  621. #set the timebase to 2*intb
  622. settb=2*intb
  623. #set the default timebase value
  624. settb=AVTB
  625. @end example
  626. @section slicify
  627. Pass the images of input video on to next video filter as multiple
  628. slices.
  629. @example
  630. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  631. @end example
  632. The filter accepts the slice height as parameter. If the parameter is
  633. not specified it will use the default value of 16.
  634. Adding this in the beginning of filter chains should make filtering
  635. faster due to better use of the memory cache.
  636. @section transpose
  637. Transpose rows with columns in the input video and optionally flip it.
  638. It accepts a parameter representing an integer, which can assume the
  639. values:
  640. @table @samp
  641. @item 0
  642. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  643. @example
  644. L.R L.l
  645. . . -> . .
  646. l.r R.r
  647. @end example
  648. @item 1
  649. Rotate by 90 degrees clockwise, that is:
  650. @example
  651. L.R l.L
  652. . . -> . .
  653. l.r r.R
  654. @end example
  655. @item 2
  656. Rotate by 90 degrees counterclockwise, that is:
  657. @example
  658. L.R R.r
  659. . . -> . .
  660. l.r L.l
  661. @end example
  662. @item 3
  663. Rotate by 90 degrees clockwise and vertically flip, that is:
  664. @example
  665. L.R r.R
  666. . . -> . .
  667. l.r l.L
  668. @end example
  669. @end table
  670. @section unsharp
  671. Sharpen or blur the input video.
  672. It accepts the following parameters:
  673. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  674. Negative values for the amount will blur the input video, while positive
  675. values will sharpen. All parameters are optional and default to the
  676. equivalent of the string '5:5:1.0:0:0:0.0'.
  677. @table @option
  678. @item luma_msize_x
  679. Set the luma matrix horizontal size. It can be an integer between 3
  680. and 13, default value is 5.
  681. @item luma_msize_y
  682. Set the luma matrix vertical size. It can be an integer between 3
  683. and 13, default value is 5.
  684. @item luma_amount
  685. Set the luma effect strength. It can be a float number between -2.0
  686. and 5.0, default value is 1.0.
  687. @item chroma_msize_x
  688. Set the chroma matrix horizontal size. It can be an integer between 3
  689. and 13, default value is 0.
  690. @item chroma_msize_y
  691. Set the chroma matrix vertical size. It can be an integer between 3
  692. and 13, default value is 0.
  693. @item luma_amount
  694. Set the chroma effect strength. It can be a float number between -2.0
  695. and 5.0, default value is 0.0.
  696. @end table
  697. @example
  698. # Strong luma sharpen effect parameters
  699. unsharp=7:7:2.5
  700. # Strong blur of both luma and chroma parameters
  701. unsharp=7:7:-2:7:7:-2
  702. # Use the default values with @command{ffmpeg}
  703. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  704. @end example
  705. @section vflip
  706. Flip the input video vertically.
  707. @example
  708. ./ffmpeg -i in.avi -vf "vflip" out.avi
  709. @end example
  710. @section yadif
  711. Deinterlace the input video ("yadif" means "yet another deinterlacing
  712. filter").
  713. It accepts the optional parameters: @var{mode}:@var{parity}.
  714. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  715. following values:
  716. @table @option
  717. @item 0
  718. output 1 frame for each frame
  719. @item 1
  720. output 1 frame for each field
  721. @item 2
  722. like 0 but skips spatial interlacing check
  723. @item 3
  724. like 1 but skips spatial interlacing check
  725. @end table
  726. Default value is 0.
  727. @var{parity} specifies the picture field parity assumed for the input
  728. interlaced video, accepts one of the following values:
  729. @table @option
  730. @item 0
  731. assume bottom field first
  732. @item 1
  733. assume top field first
  734. @item -1
  735. enable automatic detection
  736. @end table
  737. Default value is -1.
  738. If interlacing is unknown or decoder does not export this information,
  739. top field first will be assumed.
  740. @c man end VIDEO FILTERS
  741. @chapter Video Sources
  742. @c man begin VIDEO SOURCES
  743. Below is a description of the currently available video sources.
  744. @section buffer
  745. Buffer video frames, and make them available to the filter chain.
  746. This source is mainly intended for a programmatic use, in particular
  747. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  748. It accepts the following parameters:
  749. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}
  750. All the parameters need to be explicitely defined.
  751. Follows the list of the accepted parameters.
  752. @table @option
  753. @item width, height
  754. Specify the width and height of the buffered video frames.
  755. @item pix_fmt_string
  756. A string representing the pixel format of the buffered video frames.
  757. It may be a number corresponding to a pixel format, or a pixel format
  758. name.
  759. @item timebase_num, timebase_den
  760. Specify numerator and denomitor of the timebase assumed by the
  761. timestamps of the buffered frames.
  762. @end table
  763. For example:
  764. @example
  765. buffer=320:240:yuv410p:1:24
  766. @end example
  767. will instruct the source to accept video frames with size 320x240 and
  768. with format "yuv410p" and assuming 1/24 as the timestamps timebase.
  769. Since the pixel format with name "yuv410p" corresponds to the number 6
  770. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  771. this example corresponds to:
  772. @example
  773. buffer=320:240:6:1:24
  774. @end example
  775. @section color
  776. Provide an uniformly colored input.
  777. It accepts the following parameters:
  778. @var{color}:@var{frame_size}:@var{frame_rate}
  779. Follows the description of the accepted parameters.
  780. @table @option
  781. @item color
  782. Specify the color of the source. It can be the name of a color (case
  783. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  784. alpha specifier. The default value is "black".
  785. @item frame_size
  786. Specify the size of the sourced video, it may be a string of the form
  787. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  788. default value is "320x240".
  789. @item frame_rate
  790. Specify the frame rate of the sourced video, as the number of frames
  791. generated per second. It has to be a string in the format
  792. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  793. number or a valid video frame rate abbreviation. The default value is
  794. "25".
  795. @end table
  796. For example the following graph description will generate a red source
  797. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  798. frames per second, which will be overlayed over the source connected
  799. to the pad with identifier "in".
  800. @example
  801. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  802. @end example
  803. @section movie
  804. Read a video stream from a movie container.
  805. It accepts the syntax: @var{movie_name}[:@var{options}] where
  806. @var{movie_name} is the name of the resource to read (not necessarily
  807. a file but also a device or a stream accessed through some protocol),
  808. and @var{options} is an optional sequence of @var{key}=@var{value}
  809. pairs, separated by ":".
  810. The description of the accepted options follows.
  811. @table @option
  812. @item format_name, f
  813. Specifies the format assumed for the movie to read, and can be either
  814. the name of a container or an input device. If not specified the
  815. format is guessed from @var{movie_name} or by probing.
  816. @item seek_point, sp
  817. Specifies the seek point in seconds, the frames will be output
  818. starting from this seek point, the parameter is evaluated with
  819. @code{av_strtod} so the numerical value may be suffixed by an IS
  820. postfix. Default value is "0".
  821. @item stream_index, si
  822. Specifies the index of the video stream to read. If the value is -1,
  823. the best suited video stream will be automatically selected. Default
  824. value is "-1".
  825. @end table
  826. This filter allows to overlay a second video on top of main input of
  827. a filtergraph as shown in this graph:
  828. @example
  829. input -----------> deltapts0 --> overlay --> output
  830. ^
  831. |
  832. movie --> scale--> deltapts1 -------+
  833. @end example
  834. Some examples follow:
  835. @example
  836. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  837. # on top of the input labelled as "in".
  838. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  839. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  840. # read from a video4linux2 device, and overlay it on top of the input
  841. # labelled as "in"
  842. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  843. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  844. @end example
  845. @section nullsrc
  846. Null video source, never return images. It is mainly useful as a
  847. template and to be employed in analysis / debugging tools.
  848. It accepts as optional parameter a string of the form
  849. @var{width}:@var{height}:@var{timebase}.
  850. @var{width} and @var{height} specify the size of the configured
  851. source. The default values of @var{width} and @var{height} are
  852. respectively 352 and 288 (corresponding to the CIF size format).
  853. @var{timebase} specifies an arithmetic expression representing a
  854. timebase. The expression can contain the constants "PI", "E", "PHI",
  855. "AVTB" (the default timebase), and defaults to the value "AVTB".
  856. @section frei0r_src
  857. Provide a frei0r source.
  858. To enable compilation of this filter you need to install the frei0r
  859. header and configure Libav with --enable-frei0r.
  860. The source supports the syntax:
  861. @example
  862. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  863. @end example
  864. @var{size} is the size of the video to generate, may be a string of the
  865. form @var{width}x@var{height} or a frame size abbreviation.
  866. @var{rate} is the rate of the video to generate, may be a string of
  867. the form @var{num}/@var{den} or a frame rate abbreviation.
  868. @var{src_name} is the name to the frei0r source to load. For more
  869. information regarding frei0r and how to set the parameters read the
  870. section "frei0r" (@pxref{frei0r}) in the description of the video
  871. filters.
  872. Some examples follow:
  873. @example
  874. # generate a frei0r partik0l source with size 200x200 and framerate 10
  875. # which is overlayed on the overlay filter main input
  876. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  877. @end example
  878. @c man end VIDEO SOURCES
  879. @chapter Video Sinks
  880. @c man begin VIDEO SINKS
  881. Below is a description of the currently available video sinks.
  882. @section nullsink
  883. Null video sink, do absolutely nothing with the input video. It is
  884. mainly useful as a template and to be employed in analysis / debugging
  885. tools.
  886. @c man end VIDEO SINKS