You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

891 lines
39KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  81. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 30 , PARAM },
  82. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  83. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  84. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  85. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  86. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  87. {"precision" , "set soxr resampling precision (in bits)"
  88. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  89. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  90. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  91. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  92. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  93. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  94. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  95. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  96. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  97. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  98. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  99. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  100. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  101. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  102. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  103. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  104. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  105. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  106. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  107. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  108. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  109. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  110. {0}
  111. };
  112. static const char* context_to_name(void* ptr) {
  113. return "SWR";
  114. }
  115. static const AVClass av_class = {
  116. .class_name = "SWResampler",
  117. .item_name = context_to_name,
  118. .option = options,
  119. .version = LIBAVUTIL_VERSION_INT,
  120. .log_level_offset_offset = OFFSET(log_level_offset),
  121. .parent_log_context_offset = OFFSET(log_ctx),
  122. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  123. };
  124. unsigned swresample_version(void)
  125. {
  126. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  127. return LIBSWRESAMPLE_VERSION_INT;
  128. }
  129. const char *swresample_configuration(void)
  130. {
  131. return FFMPEG_CONFIGURATION;
  132. }
  133. const char *swresample_license(void)
  134. {
  135. #define LICENSE_PREFIX "libswresample license: "
  136. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  137. }
  138. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  139. if(!s || s->in_convert) // s needs to be allocated but not initialized
  140. return AVERROR(EINVAL);
  141. s->channel_map = channel_map;
  142. return 0;
  143. }
  144. const AVClass *swr_get_class(void)
  145. {
  146. return &av_class;
  147. }
  148. av_cold struct SwrContext *swr_alloc(void){
  149. SwrContext *s= av_mallocz(sizeof(SwrContext));
  150. if(s){
  151. s->av_class= &av_class;
  152. av_opt_set_defaults(s);
  153. }
  154. return s;
  155. }
  156. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  157. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  158. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  159. int log_offset, void *log_ctx){
  160. if(!s) s= swr_alloc();
  161. if(!s) return NULL;
  162. s->log_level_offset= log_offset;
  163. s->log_ctx= log_ctx;
  164. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  165. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  166. av_opt_set_int(s, "osr", out_sample_rate, 0);
  167. av_opt_set_int(s, "icl", in_ch_layout, 0);
  168. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  169. av_opt_set_int(s, "isr", in_sample_rate, 0);
  170. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  171. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  172. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  173. av_opt_set_int(s, "uch", 0, 0);
  174. return s;
  175. }
  176. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  177. a->fmt = fmt;
  178. a->bps = av_get_bytes_per_sample(fmt);
  179. a->planar= av_sample_fmt_is_planar(fmt);
  180. }
  181. static void free_temp(AudioData *a){
  182. av_free(a->data);
  183. memset(a, 0, sizeof(*a));
  184. }
  185. av_cold void swr_free(SwrContext **ss){
  186. SwrContext *s= *ss;
  187. if(s){
  188. free_temp(&s->postin);
  189. free_temp(&s->midbuf);
  190. free_temp(&s->preout);
  191. free_temp(&s->in_buffer);
  192. free_temp(&s->dither.noise);
  193. free_temp(&s->dither.temp);
  194. swri_audio_convert_free(&s-> in_convert);
  195. swri_audio_convert_free(&s->out_convert);
  196. swri_audio_convert_free(&s->full_convert);
  197. if (s->resampler)
  198. s->resampler->free(&s->resample);
  199. swri_rematrix_free(s);
  200. }
  201. av_freep(ss);
  202. }
  203. av_cold int swr_init(struct SwrContext *s){
  204. int ret;
  205. s->in_buffer_index= 0;
  206. s->in_buffer_count= 0;
  207. s->resample_in_constraint= 0;
  208. free_temp(&s->postin);
  209. free_temp(&s->midbuf);
  210. free_temp(&s->preout);
  211. free_temp(&s->in_buffer);
  212. free_temp(&s->dither.noise);
  213. free_temp(&s->dither.temp);
  214. memset(s->in.ch, 0, sizeof(s->in.ch));
  215. memset(s->out.ch, 0, sizeof(s->out.ch));
  216. swri_audio_convert_free(&s-> in_convert);
  217. swri_audio_convert_free(&s->out_convert);
  218. swri_audio_convert_free(&s->full_convert);
  219. swri_rematrix_free(s);
  220. s->flushed = 0;
  221. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  222. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  223. return AVERROR(EINVAL);
  224. }
  225. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  226. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  227. return AVERROR(EINVAL);
  228. }
  229. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  230. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  231. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  232. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  233. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  234. }else{
  235. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  236. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  237. }
  238. }
  239. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  240. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  241. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  242. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  243. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  244. return AVERROR(EINVAL);
  245. }
  246. switch(s->engine){
  247. #if CONFIG_LIBSOXR
  248. extern struct Resampler const soxr_resampler;
  249. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  250. #endif
  251. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  252. default:
  253. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  254. return AVERROR(EINVAL);
  255. }
  256. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  257. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  258. if (s->async) {
  259. if (s->min_compensation >= FLT_MAX/2)
  260. s->min_compensation = 0.001;
  261. if (s->async > 1.0001) {
  262. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  263. }
  264. }
  265. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  266. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  267. }else
  268. s->resampler->free(&s->resample);
  269. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  270. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  271. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  272. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  273. && s->resample){
  274. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  275. return -1;
  276. }
  277. if(!s->used_ch_count)
  278. s->used_ch_count= s->in.ch_count;
  279. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  280. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  281. s-> in_ch_layout= 0;
  282. }
  283. if(!s-> in_ch_layout)
  284. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  285. if(!s->out_ch_layout)
  286. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  287. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  288. s->rematrix_custom;
  289. #define RSC 1 //FIXME finetune
  290. if(!s-> in.ch_count)
  291. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  292. if(!s->used_ch_count)
  293. s->used_ch_count= s->in.ch_count;
  294. if(!s->out.ch_count)
  295. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  296. if(!s-> in.ch_count){
  297. av_assert0(!s->in_ch_layout);
  298. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  299. return -1;
  300. }
  301. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  302. char l1[1024], l2[1024];
  303. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  304. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  305. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  306. "but there is not enough information to do it\n", l1, l2);
  307. return -1;
  308. }
  309. av_assert0(s->used_ch_count);
  310. av_assert0(s->out.ch_count);
  311. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  312. s->in_buffer= s->in;
  313. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  314. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  315. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  316. return 0;
  317. }
  318. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  319. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  320. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  321. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  322. if (!s->in_convert || !s->out_convert)
  323. return AVERROR(ENOMEM);
  324. s->postin= s->in;
  325. s->preout= s->out;
  326. s->midbuf= s->in;
  327. if(s->channel_map){
  328. s->postin.ch_count=
  329. s->midbuf.ch_count= s->used_ch_count;
  330. if(s->resample)
  331. s->in_buffer.ch_count= s->used_ch_count;
  332. }
  333. if(!s->resample_first){
  334. s->midbuf.ch_count= s->out.ch_count;
  335. if(s->resample)
  336. s->in_buffer.ch_count = s->out.ch_count;
  337. }
  338. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  339. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  340. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  341. if(s->resample){
  342. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  343. }
  344. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  345. return ret;
  346. if(s->rematrix || s->dither.method)
  347. return swri_rematrix_init(s);
  348. return 0;
  349. }
  350. int swri_realloc_audio(AudioData *a, int count){
  351. int i, countb;
  352. AudioData old;
  353. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  354. return AVERROR(EINVAL);
  355. if(a->count >= count)
  356. return 0;
  357. count*=2;
  358. countb= FFALIGN(count*a->bps, ALIGN);
  359. old= *a;
  360. av_assert0(a->bps);
  361. av_assert0(a->ch_count);
  362. a->data= av_mallocz(countb*a->ch_count);
  363. if(!a->data)
  364. return AVERROR(ENOMEM);
  365. for(i=0; i<a->ch_count; i++){
  366. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  367. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  368. }
  369. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  370. av_free(old.data);
  371. a->count= count;
  372. return 1;
  373. }
  374. static void copy(AudioData *out, AudioData *in,
  375. int count){
  376. av_assert0(out->planar == in->planar);
  377. av_assert0(out->bps == in->bps);
  378. av_assert0(out->ch_count == in->ch_count);
  379. if(out->planar){
  380. int ch;
  381. for(ch=0; ch<out->ch_count; ch++)
  382. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  383. }else
  384. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  385. }
  386. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  387. int i;
  388. if(!in_arg){
  389. memset(out->ch, 0, sizeof(out->ch));
  390. }else if(out->planar){
  391. for(i=0; i<out->ch_count; i++)
  392. out->ch[i]= in_arg[i];
  393. }else{
  394. for(i=0; i<out->ch_count; i++)
  395. out->ch[i]= in_arg[0] + i*out->bps;
  396. }
  397. }
  398. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  399. int i;
  400. if(out->planar){
  401. for(i=0; i<out->ch_count; i++)
  402. in_arg[i]= out->ch[i];
  403. }else{
  404. in_arg[0]= out->ch[0];
  405. }
  406. }
  407. /**
  408. *
  409. * out may be equal in.
  410. */
  411. static void buf_set(AudioData *out, AudioData *in, int count){
  412. int ch;
  413. if(in->planar){
  414. for(ch=0; ch<out->ch_count; ch++)
  415. out->ch[ch]= in->ch[ch] + count*out->bps;
  416. }else{
  417. for(ch=out->ch_count-1; ch>=0; ch--)
  418. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  419. }
  420. }
  421. /**
  422. *
  423. * @return number of samples output per channel
  424. */
  425. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  426. const AudioData * in_param, int in_count){
  427. AudioData in, out, tmp;
  428. int ret_sum=0;
  429. int border=0;
  430. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  431. av_assert1(s->in_buffer.planar == in_param->planar);
  432. av_assert1(s->in_buffer.fmt == in_param->fmt);
  433. tmp=out=*out_param;
  434. in = *in_param;
  435. do{
  436. int ret, size, consumed;
  437. if(!s->resample_in_constraint && s->in_buffer_count){
  438. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  439. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  440. out_count -= ret;
  441. ret_sum += ret;
  442. buf_set(&out, &out, ret);
  443. s->in_buffer_count -= consumed;
  444. s->in_buffer_index += consumed;
  445. if(!in_count)
  446. break;
  447. if(s->in_buffer_count <= border){
  448. buf_set(&in, &in, -s->in_buffer_count);
  449. in_count += s->in_buffer_count;
  450. s->in_buffer_count=0;
  451. s->in_buffer_index=0;
  452. border = 0;
  453. }
  454. }
  455. if((s->flushed || in_count) && !s->in_buffer_count){
  456. s->in_buffer_index=0;
  457. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  458. out_count -= ret;
  459. ret_sum += ret;
  460. buf_set(&out, &out, ret);
  461. in_count -= consumed;
  462. buf_set(&in, &in, consumed);
  463. }
  464. //TODO is this check sane considering the advanced copy avoidance below
  465. size= s->in_buffer_index + s->in_buffer_count + in_count;
  466. if( size > s->in_buffer.count
  467. && s->in_buffer_count + in_count <= s->in_buffer_index){
  468. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  469. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  470. s->in_buffer_index=0;
  471. }else
  472. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  473. return ret;
  474. if(in_count){
  475. int count= in_count;
  476. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  477. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  478. copy(&tmp, &in, /*in_*/count);
  479. s->in_buffer_count += count;
  480. in_count -= count;
  481. border += count;
  482. buf_set(&in, &in, count);
  483. s->resample_in_constraint= 0;
  484. if(s->in_buffer_count != count || in_count)
  485. continue;
  486. }
  487. break;
  488. }while(1);
  489. s->resample_in_constraint= !!out_count;
  490. return ret_sum;
  491. }
  492. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  493. AudioData *in , int in_count){
  494. AudioData *postin, *midbuf, *preout;
  495. int ret/*, in_max*/;
  496. AudioData preout_tmp, midbuf_tmp;
  497. if(s->full_convert){
  498. av_assert0(!s->resample);
  499. swri_audio_convert(s->full_convert, out, in, in_count);
  500. return out_count;
  501. }
  502. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  503. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  504. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  505. return ret;
  506. if(s->resample_first){
  507. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  508. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  509. return ret;
  510. }else{
  511. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  512. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  513. return ret;
  514. }
  515. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  516. return ret;
  517. postin= &s->postin;
  518. midbuf_tmp= s->midbuf;
  519. midbuf= &midbuf_tmp;
  520. preout_tmp= s->preout;
  521. preout= &preout_tmp;
  522. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  523. postin= in;
  524. if(s->resample_first ? !s->resample : !s->rematrix)
  525. midbuf= postin;
  526. if(s->resample_first ? !s->rematrix : !s->resample)
  527. preout= midbuf;
  528. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  529. if(preout==in){
  530. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  531. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  532. copy(out, in, out_count);
  533. return out_count;
  534. }
  535. else if(preout==postin) preout= midbuf= postin= out;
  536. else if(preout==midbuf) preout= midbuf= out;
  537. else preout= out;
  538. }
  539. if(in != postin){
  540. swri_audio_convert(s->in_convert, postin, in, in_count);
  541. }
  542. if(s->resample_first){
  543. if(postin != midbuf)
  544. out_count= resample(s, midbuf, out_count, postin, in_count);
  545. if(midbuf != preout)
  546. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  547. }else{
  548. if(postin != midbuf)
  549. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  550. if(midbuf != preout)
  551. out_count= resample(s, preout, out_count, midbuf, in_count);
  552. }
  553. if(preout != out && out_count){
  554. AudioData *conv_src = preout;
  555. if(s->dither.method){
  556. int ch;
  557. int dither_count= FFMAX(out_count, 1<<16);
  558. if (preout == in) {
  559. conv_src = &s->dither.temp;
  560. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  561. return ret;
  562. }
  563. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  564. return ret;
  565. if(ret)
  566. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  567. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  568. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  569. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  570. s->dither.noise_pos = 0;
  571. if (s->dither.method < SWR_DITHER_NS){
  572. if (s->mix_2_1_simd) {
  573. int len1= out_count&~15;
  574. int off = len1 * preout->bps;
  575. if(len1)
  576. for(ch=0; ch<preout->ch_count; ch++)
  577. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, len1);
  578. if(out_count != len1)
  579. for(ch=0; ch<preout->ch_count; ch++)
  580. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  581. } else {
  582. for(ch=0; ch<preout->ch_count; ch++)
  583. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  584. }
  585. } else {
  586. switch(s->int_sample_fmt) {
  587. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  588. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  589. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  590. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  591. }
  592. }
  593. s->dither.noise_pos += out_count;
  594. }
  595. //FIXME packed doesnt need more than 1 chan here!
  596. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  597. }
  598. return out_count;
  599. }
  600. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  601. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  602. AudioData * in= &s->in;
  603. AudioData *out= &s->out;
  604. if(s->drop_output > 0){
  605. int ret;
  606. AudioData tmp = s->out;
  607. uint8_t *tmp_arg[SWR_CH_MAX];
  608. tmp.count = 0;
  609. tmp.data = NULL;
  610. if((ret=swri_realloc_audio(&tmp, s->drop_output))<0)
  611. return ret;
  612. reversefill_audiodata(&tmp, tmp_arg);
  613. s->drop_output *= -1; //FIXME find a less hackish solution
  614. ret = swr_convert(s, tmp_arg, -s->drop_output, in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  615. s->drop_output *= -1;
  616. if(ret>0)
  617. s->drop_output -= ret;
  618. av_freep(&tmp.data);
  619. if(s->drop_output || !out_arg)
  620. return 0;
  621. in_count = 0;
  622. }
  623. if(!in_arg){
  624. if(s->resample){
  625. if (!s->flushed)
  626. s->resampler->flush(s);
  627. s->resample_in_constraint = 0;
  628. s->flushed = 1;
  629. }else if(!s->in_buffer_count){
  630. return 0;
  631. }
  632. }else
  633. fill_audiodata(in , (void*)in_arg);
  634. fill_audiodata(out, out_arg);
  635. if(s->resample){
  636. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  637. if(ret>0 && !s->drop_output)
  638. s->outpts += ret * (int64_t)s->in_sample_rate;
  639. return ret;
  640. }else{
  641. AudioData tmp= *in;
  642. int ret2=0;
  643. int ret, size;
  644. size = FFMIN(out_count, s->in_buffer_count);
  645. if(size){
  646. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  647. ret= swr_convert_internal(s, out, size, &tmp, size);
  648. if(ret<0)
  649. return ret;
  650. ret2= ret;
  651. s->in_buffer_count -= ret;
  652. s->in_buffer_index += ret;
  653. buf_set(out, out, ret);
  654. out_count -= ret;
  655. if(!s->in_buffer_count)
  656. s->in_buffer_index = 0;
  657. }
  658. if(in_count){
  659. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  660. if(in_count > out_count) { //FIXME move after swr_convert_internal
  661. if( size > s->in_buffer.count
  662. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  663. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  664. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  665. s->in_buffer_index=0;
  666. }else
  667. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  668. return ret;
  669. }
  670. if(out_count){
  671. size = FFMIN(in_count, out_count);
  672. ret= swr_convert_internal(s, out, size, in, size);
  673. if(ret<0)
  674. return ret;
  675. buf_set(in, in, ret);
  676. in_count -= ret;
  677. ret2 += ret;
  678. }
  679. if(in_count){
  680. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  681. copy(&tmp, in, in_count);
  682. s->in_buffer_count += in_count;
  683. }
  684. }
  685. if(ret2>0 && !s->drop_output)
  686. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  687. return ret2;
  688. }
  689. }
  690. int swr_drop_output(struct SwrContext *s, int count){
  691. s->drop_output += count;
  692. if(s->drop_output <= 0)
  693. return 0;
  694. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  695. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  696. }
  697. int swr_inject_silence(struct SwrContext *s, int count){
  698. int ret, i;
  699. AudioData silence = s->in;
  700. uint8_t *tmp_arg[SWR_CH_MAX];
  701. if(count <= 0)
  702. return 0;
  703. silence.count = 0;
  704. silence.data = NULL;
  705. if((ret=swri_realloc_audio(&silence, count))<0)
  706. return ret;
  707. if(silence.planar) for(i=0; i<silence.ch_count; i++) {
  708. memset(silence.ch[i], silence.bps==1 ? 0x80 : 0, count*silence.bps);
  709. } else
  710. memset(silence.ch[0], silence.bps==1 ? 0x80 : 0, count*silence.bps*silence.ch_count);
  711. reversefill_audiodata(&silence, tmp_arg);
  712. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  713. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  714. av_freep(&silence.data);
  715. return ret;
  716. }
  717. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  718. if (s->resampler && s->resample){
  719. return s->resampler->get_delay(s, base);
  720. }else{
  721. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  722. }
  723. }
  724. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  725. int ret;
  726. if (!s || compensation_distance < 0)
  727. return AVERROR(EINVAL);
  728. if (!compensation_distance && sample_delta)
  729. return AVERROR(EINVAL);
  730. if (!s->resample) {
  731. s->flags |= SWR_FLAG_RESAMPLE;
  732. ret = swr_init(s);
  733. if (ret < 0)
  734. return ret;
  735. }
  736. if (!s->resampler->set_compensation){
  737. return AVERROR(EINVAL);
  738. }else{
  739. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  740. }
  741. }
  742. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  743. if(pts == INT64_MIN)
  744. return s->outpts;
  745. if(s->min_compensation >= FLT_MAX) {
  746. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  747. } else {
  748. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts;
  749. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  750. if(fabs(fdelta) > s->min_compensation) {
  751. if(!s->outpts || fabs(fdelta) > s->min_hard_compensation){
  752. int ret;
  753. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  754. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  755. if(ret<0){
  756. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  757. }
  758. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  759. int duration = s->out_sample_rate * s->soft_compensation_duration;
  760. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  761. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  762. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  763. swr_set_compensation(s, comp, duration);
  764. }
  765. }
  766. return s->outpts;
  767. }
  768. }