You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

898 lines
28KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file wmadec.c
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf("%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf("%4d: ", i);
  51. tprintf(" %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf("\n");
  54. }
  55. }
  56. static void dump_floats(const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf("%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf("%4d: ", i);
  63. tprintf(" %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf("\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf("\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMADecodeContext *s = avctx->priv_data;
  74. int i, flags1, flags2;
  75. uint8_t *extradata;
  76. /* extract flag infos */
  77. flags1 = 0;
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags1 = extradata[0] | (extradata[1] << 8);
  82. flags2 = extradata[2] | (extradata[3] << 8);
  83. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  84. flags1 = extradata[0] | (extradata[1] << 8) |
  85. (extradata[2] << 16) | (extradata[3] << 24);
  86. flags2 = extradata[4] | (extradata[5] << 8);
  87. }
  88. // for(i=0; i<avctx->extradata_size; i++)
  89. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  90. s->use_exp_vlc = flags2 & 0x0001;
  91. s->use_bit_reservoir = flags2 & 0x0002;
  92. s->use_variable_block_len = flags2 & 0x0004;
  93. ff_wma_init(avctx, flags2);
  94. /* init MDCT */
  95. for(i = 0; i < s->nb_block_sizes; i++)
  96. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
  97. if (s->use_noise_coding) {
  98. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  99. ff_wma_hgain_huffbits, 1, 1,
  100. ff_wma_hgain_huffcodes, 2, 2, 0);
  101. }
  102. if (s->use_exp_vlc) {
  103. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
  104. ff_wma_scale_huffbits, 1, 1,
  105. ff_wma_scale_huffcodes, 4, 4, 0);
  106. } else {
  107. wma_lsp_to_curve_init(s, s->frame_len);
  108. }
  109. return 0;
  110. }
  111. /* interpolate values for a bigger or smaller block. The block must
  112. have multiple sizes */
  113. static void interpolate_array(float *scale, int old_size, int new_size)
  114. {
  115. int i, j, jincr, k;
  116. float v;
  117. if (new_size > old_size) {
  118. jincr = new_size / old_size;
  119. j = new_size;
  120. for(i = old_size - 1; i >=0; i--) {
  121. v = scale[i];
  122. k = jincr;
  123. do {
  124. scale[--j] = v;
  125. } while (--k);
  126. }
  127. } else if (new_size < old_size) {
  128. j = 0;
  129. jincr = old_size / new_size;
  130. for(i = 0; i < new_size; i++) {
  131. scale[i] = scale[j];
  132. j += jincr;
  133. }
  134. }
  135. }
  136. /* compute x^-0.25 with an exponent and mantissa table. We use linear
  137. interpolation to reduce the mantissa table size at a small speed
  138. expense (linear interpolation approximately doubles the number of
  139. bits of precision). */
  140. static inline float pow_m1_4(WMADecodeContext *s, float x)
  141. {
  142. union {
  143. float f;
  144. unsigned int v;
  145. } u, t;
  146. unsigned int e, m;
  147. float a, b;
  148. u.f = x;
  149. e = u.v >> 23;
  150. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  151. /* build interpolation scale: 1 <= t < 2. */
  152. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  153. a = s->lsp_pow_m_table1[m];
  154. b = s->lsp_pow_m_table2[m];
  155. return s->lsp_pow_e_table[e] * (a + b * t.f);
  156. }
  157. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
  158. {
  159. float wdel, a, b;
  160. int i, e, m;
  161. wdel = M_PI / frame_len;
  162. for(i=0;i<frame_len;i++)
  163. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  164. /* tables for x^-0.25 computation */
  165. for(i=0;i<256;i++) {
  166. e = i - 126;
  167. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  168. }
  169. /* NOTE: these two tables are needed to avoid two operations in
  170. pow_m1_4 */
  171. b = 1.0;
  172. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  173. m = (1 << LSP_POW_BITS) + i;
  174. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  175. a = pow(a, -0.25);
  176. s->lsp_pow_m_table1[i] = 2 * a - b;
  177. s->lsp_pow_m_table2[i] = b - a;
  178. b = a;
  179. }
  180. #if 0
  181. for(i=1;i<20;i++) {
  182. float v, r1, r2;
  183. v = 5.0 / i;
  184. r1 = pow_m1_4(s, v);
  185. r2 = pow(v,-0.25);
  186. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  187. }
  188. #endif
  189. }
  190. /* NOTE: We use the same code as Vorbis here */
  191. /* XXX: optimize it further with SSE/3Dnow */
  192. static void wma_lsp_to_curve(WMADecodeContext *s,
  193. float *out, float *val_max_ptr,
  194. int n, float *lsp)
  195. {
  196. int i, j;
  197. float p, q, w, v, val_max;
  198. val_max = 0;
  199. for(i=0;i<n;i++) {
  200. p = 0.5f;
  201. q = 0.5f;
  202. w = s->lsp_cos_table[i];
  203. for(j=1;j<NB_LSP_COEFS;j+=2){
  204. q *= w - lsp[j - 1];
  205. p *= w - lsp[j];
  206. }
  207. p *= p * (2.0f - w);
  208. q *= q * (2.0f + w);
  209. v = p + q;
  210. v = pow_m1_4(s, v);
  211. if (v > val_max)
  212. val_max = v;
  213. out[i] = v;
  214. }
  215. *val_max_ptr = val_max;
  216. }
  217. /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
  218. static void decode_exp_lsp(WMADecodeContext *s, int ch)
  219. {
  220. float lsp_coefs[NB_LSP_COEFS];
  221. int val, i;
  222. for(i = 0; i < NB_LSP_COEFS; i++) {
  223. if (i == 0 || i >= 8)
  224. val = get_bits(&s->gb, 3);
  225. else
  226. val = get_bits(&s->gb, 4);
  227. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  228. }
  229. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  230. s->block_len, lsp_coefs);
  231. }
  232. /* decode exponents coded with VLC codes */
  233. static int decode_exp_vlc(WMADecodeContext *s, int ch)
  234. {
  235. int last_exp, n, code;
  236. const uint16_t *ptr, *band_ptr;
  237. float v, *q, max_scale, *q_end;
  238. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  239. ptr = band_ptr;
  240. q = s->exponents[ch];
  241. q_end = q + s->block_len;
  242. max_scale = 0;
  243. if (s->version == 1) {
  244. last_exp = get_bits(&s->gb, 5) + 10;
  245. /* XXX: use a table */
  246. v = pow(10, last_exp * (1.0 / 16.0));
  247. max_scale = v;
  248. n = *ptr++;
  249. do {
  250. *q++ = v;
  251. } while (--n);
  252. }else
  253. last_exp = 36;
  254. while (q < q_end) {
  255. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  256. if (code < 0)
  257. return -1;
  258. /* NOTE: this offset is the same as MPEG4 AAC ! */
  259. last_exp += code - 60;
  260. /* XXX: use a table */
  261. v = pow(10, last_exp * (1.0 / 16.0));
  262. if (v > max_scale)
  263. max_scale = v;
  264. n = *ptr++;
  265. do {
  266. *q++ = v;
  267. } while (--n);
  268. }
  269. s->max_exponent[ch] = max_scale;
  270. return 0;
  271. }
  272. /* return 0 if OK. return 1 if last block of frame. return -1 if
  273. unrecorrable error. */
  274. static int wma_decode_block(WMADecodeContext *s)
  275. {
  276. int n, v, a, ch, code, bsize;
  277. int coef_nb_bits, total_gain, parse_exponents;
  278. int nb_coefs[MAX_CHANNELS];
  279. float mdct_norm;
  280. #ifdef TRACE
  281. tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  282. #endif
  283. /* compute current block length */
  284. if (s->use_variable_block_len) {
  285. n = av_log2(s->nb_block_sizes - 1) + 1;
  286. if (s->reset_block_lengths) {
  287. s->reset_block_lengths = 0;
  288. v = get_bits(&s->gb, n);
  289. if (v >= s->nb_block_sizes)
  290. return -1;
  291. s->prev_block_len_bits = s->frame_len_bits - v;
  292. v = get_bits(&s->gb, n);
  293. if (v >= s->nb_block_sizes)
  294. return -1;
  295. s->block_len_bits = s->frame_len_bits - v;
  296. } else {
  297. /* update block lengths */
  298. s->prev_block_len_bits = s->block_len_bits;
  299. s->block_len_bits = s->next_block_len_bits;
  300. }
  301. v = get_bits(&s->gb, n);
  302. if (v >= s->nb_block_sizes)
  303. return -1;
  304. s->next_block_len_bits = s->frame_len_bits - v;
  305. } else {
  306. /* fixed block len */
  307. s->next_block_len_bits = s->frame_len_bits;
  308. s->prev_block_len_bits = s->frame_len_bits;
  309. s->block_len_bits = s->frame_len_bits;
  310. }
  311. /* now check if the block length is coherent with the frame length */
  312. s->block_len = 1 << s->block_len_bits;
  313. if ((s->block_pos + s->block_len) > s->frame_len)
  314. return -1;
  315. if (s->nb_channels == 2) {
  316. s->ms_stereo = get_bits(&s->gb, 1);
  317. }
  318. v = 0;
  319. for(ch = 0; ch < s->nb_channels; ch++) {
  320. a = get_bits(&s->gb, 1);
  321. s->channel_coded[ch] = a;
  322. v |= a;
  323. }
  324. /* if no channel coded, no need to go further */
  325. /* XXX: fix potential framing problems */
  326. if (!v)
  327. goto next;
  328. bsize = s->frame_len_bits - s->block_len_bits;
  329. /* read total gain and extract corresponding number of bits for
  330. coef escape coding */
  331. total_gain = 1;
  332. for(;;) {
  333. a = get_bits(&s->gb, 7);
  334. total_gain += a;
  335. if (a != 127)
  336. break;
  337. }
  338. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  339. /* compute number of coefficients */
  340. n = s->coefs_end[bsize] - s->coefs_start;
  341. for(ch = 0; ch < s->nb_channels; ch++)
  342. nb_coefs[ch] = n;
  343. /* complex coding */
  344. if (s->use_noise_coding) {
  345. for(ch = 0; ch < s->nb_channels; ch++) {
  346. if (s->channel_coded[ch]) {
  347. int i, n, a;
  348. n = s->exponent_high_sizes[bsize];
  349. for(i=0;i<n;i++) {
  350. a = get_bits(&s->gb, 1);
  351. s->high_band_coded[ch][i] = a;
  352. /* if noise coding, the coefficients are not transmitted */
  353. if (a)
  354. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  355. }
  356. }
  357. }
  358. for(ch = 0; ch < s->nb_channels; ch++) {
  359. if (s->channel_coded[ch]) {
  360. int i, n, val, code;
  361. n = s->exponent_high_sizes[bsize];
  362. val = (int)0x80000000;
  363. for(i=0;i<n;i++) {
  364. if (s->high_band_coded[ch][i]) {
  365. if (val == (int)0x80000000) {
  366. val = get_bits(&s->gb, 7) - 19;
  367. } else {
  368. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  369. if (code < 0)
  370. return -1;
  371. val += code - 18;
  372. }
  373. s->high_band_values[ch][i] = val;
  374. }
  375. }
  376. }
  377. }
  378. }
  379. /* exposant can be interpolated in short blocks. */
  380. parse_exponents = 1;
  381. if (s->block_len_bits != s->frame_len_bits) {
  382. parse_exponents = get_bits(&s->gb, 1);
  383. }
  384. if (parse_exponents) {
  385. for(ch = 0; ch < s->nb_channels; ch++) {
  386. if (s->channel_coded[ch]) {
  387. if (s->use_exp_vlc) {
  388. if (decode_exp_vlc(s, ch) < 0)
  389. return -1;
  390. } else {
  391. decode_exp_lsp(s, ch);
  392. }
  393. }
  394. }
  395. } else {
  396. for(ch = 0; ch < s->nb_channels; ch++) {
  397. if (s->channel_coded[ch]) {
  398. interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
  399. s->block_len);
  400. }
  401. }
  402. }
  403. /* parse spectral coefficients : just RLE encoding */
  404. for(ch = 0; ch < s->nb_channels; ch++) {
  405. if (s->channel_coded[ch]) {
  406. VLC *coef_vlc;
  407. int level, run, sign, tindex;
  408. int16_t *ptr, *eptr;
  409. const uint16_t *level_table, *run_table;
  410. /* special VLC tables are used for ms stereo because
  411. there is potentially less energy there */
  412. tindex = (ch == 1 && s->ms_stereo);
  413. coef_vlc = &s->coef_vlc[tindex];
  414. run_table = s->run_table[tindex];
  415. level_table = s->level_table[tindex];
  416. /* XXX: optimize */
  417. ptr = &s->coefs1[ch][0];
  418. eptr = ptr + nb_coefs[ch];
  419. memset(ptr, 0, s->block_len * sizeof(int16_t));
  420. for(;;) {
  421. code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
  422. if (code < 0)
  423. return -1;
  424. if (code == 1) {
  425. /* EOB */
  426. break;
  427. } else if (code == 0) {
  428. /* escape */
  429. level = get_bits(&s->gb, coef_nb_bits);
  430. /* NOTE: this is rather suboptimal. reading
  431. block_len_bits would be better */
  432. run = get_bits(&s->gb, s->frame_len_bits);
  433. } else {
  434. /* normal code */
  435. run = run_table[code];
  436. level = level_table[code];
  437. }
  438. sign = get_bits(&s->gb, 1);
  439. if (!sign)
  440. level = -level;
  441. ptr += run;
  442. if (ptr >= eptr)
  443. {
  444. av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  445. break;
  446. }
  447. *ptr++ = level;
  448. /* NOTE: EOB can be omitted */
  449. if (ptr >= eptr)
  450. break;
  451. }
  452. }
  453. if (s->version == 1 && s->nb_channels >= 2) {
  454. align_get_bits(&s->gb);
  455. }
  456. }
  457. /* normalize */
  458. {
  459. int n4 = s->block_len / 2;
  460. mdct_norm = 1.0 / (float)n4;
  461. if (s->version == 1) {
  462. mdct_norm *= sqrt(n4);
  463. }
  464. }
  465. /* finally compute the MDCT coefficients */
  466. for(ch = 0; ch < s->nb_channels; ch++) {
  467. if (s->channel_coded[ch]) {
  468. int16_t *coefs1;
  469. float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
  470. int i, j, n, n1, last_high_band;
  471. float exp_power[HIGH_BAND_MAX_SIZE];
  472. coefs1 = s->coefs1[ch];
  473. exponents = s->exponents[ch];
  474. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  475. mult *= mdct_norm;
  476. coefs = s->coefs[ch];
  477. if (s->use_noise_coding) {
  478. mult1 = mult;
  479. /* very low freqs : noise */
  480. for(i = 0;i < s->coefs_start; i++) {
  481. *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
  482. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  483. }
  484. n1 = s->exponent_high_sizes[bsize];
  485. /* compute power of high bands */
  486. exp_ptr = exponents +
  487. s->high_band_start[bsize] -
  488. s->coefs_start;
  489. last_high_band = 0; /* avoid warning */
  490. for(j=0;j<n1;j++) {
  491. n = s->exponent_high_bands[s->frame_len_bits -
  492. s->block_len_bits][j];
  493. if (s->high_band_coded[ch][j]) {
  494. float e2, v;
  495. e2 = 0;
  496. for(i = 0;i < n; i++) {
  497. v = exp_ptr[i];
  498. e2 += v * v;
  499. }
  500. exp_power[j] = e2 / n;
  501. last_high_band = j;
  502. tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
  503. }
  504. exp_ptr += n;
  505. }
  506. /* main freqs and high freqs */
  507. for(j=-1;j<n1;j++) {
  508. if (j < 0) {
  509. n = s->high_band_start[bsize] -
  510. s->coefs_start;
  511. } else {
  512. n = s->exponent_high_bands[s->frame_len_bits -
  513. s->block_len_bits][j];
  514. }
  515. if (j >= 0 && s->high_band_coded[ch][j]) {
  516. /* use noise with specified power */
  517. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  518. /* XXX: use a table */
  519. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  520. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  521. mult1 *= mdct_norm;
  522. for(i = 0;i < n; i++) {
  523. noise = s->noise_table[s->noise_index];
  524. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  525. *coefs++ = (*exponents++) * noise * mult1;
  526. }
  527. } else {
  528. /* coded values + small noise */
  529. for(i = 0;i < n; i++) {
  530. noise = s->noise_table[s->noise_index];
  531. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  532. *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
  533. }
  534. }
  535. }
  536. /* very high freqs : noise */
  537. n = s->block_len - s->coefs_end[bsize];
  538. mult1 = mult * exponents[-1];
  539. for(i = 0; i < n; i++) {
  540. *coefs++ = s->noise_table[s->noise_index] * mult1;
  541. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  542. }
  543. } else {
  544. /* XXX: optimize more */
  545. for(i = 0;i < s->coefs_start; i++)
  546. *coefs++ = 0.0;
  547. n = nb_coefs[ch];
  548. for(i = 0;i < n; i++) {
  549. *coefs++ = coefs1[i] * exponents[i] * mult;
  550. }
  551. n = s->block_len - s->coefs_end[bsize];
  552. for(i = 0;i < n; i++)
  553. *coefs++ = 0.0;
  554. }
  555. }
  556. }
  557. #ifdef TRACE
  558. for(ch = 0; ch < s->nb_channels; ch++) {
  559. if (s->channel_coded[ch]) {
  560. dump_floats("exponents", 3, s->exponents[ch], s->block_len);
  561. dump_floats("coefs", 1, s->coefs[ch], s->block_len);
  562. }
  563. }
  564. #endif
  565. if (s->ms_stereo && s->channel_coded[1]) {
  566. float a, b;
  567. int i;
  568. /* nominal case for ms stereo: we do it before mdct */
  569. /* no need to optimize this case because it should almost
  570. never happen */
  571. if (!s->channel_coded[0]) {
  572. tprintf("rare ms-stereo case happened\n");
  573. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  574. s->channel_coded[0] = 1;
  575. }
  576. for(i = 0; i < s->block_len; i++) {
  577. a = s->coefs[0][i];
  578. b = s->coefs[1][i];
  579. s->coefs[0][i] = a + b;
  580. s->coefs[1][i] = a - b;
  581. }
  582. }
  583. /* build the window : we ensure that when the windows overlap
  584. their squared sum is always 1 (MDCT reconstruction rule) */
  585. /* XXX: merge with output */
  586. {
  587. int i, next_block_len, block_len, prev_block_len, n;
  588. float *wptr;
  589. block_len = s->block_len;
  590. prev_block_len = 1 << s->prev_block_len_bits;
  591. next_block_len = 1 << s->next_block_len_bits;
  592. /* right part */
  593. wptr = s->window + block_len;
  594. if (block_len <= next_block_len) {
  595. for(i=0;i<block_len;i++)
  596. *wptr++ = s->windows[bsize][i];
  597. } else {
  598. /* overlap */
  599. n = (block_len / 2) - (next_block_len / 2);
  600. for(i=0;i<n;i++)
  601. *wptr++ = 1.0;
  602. for(i=0;i<next_block_len;i++)
  603. *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
  604. for(i=0;i<n;i++)
  605. *wptr++ = 0.0;
  606. }
  607. /* left part */
  608. wptr = s->window + block_len;
  609. if (block_len <= prev_block_len) {
  610. for(i=0;i<block_len;i++)
  611. *--wptr = s->windows[bsize][i];
  612. } else {
  613. /* overlap */
  614. n = (block_len / 2) - (prev_block_len / 2);
  615. for(i=0;i<n;i++)
  616. *--wptr = 1.0;
  617. for(i=0;i<prev_block_len;i++)
  618. *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
  619. for(i=0;i<n;i++)
  620. *--wptr = 0.0;
  621. }
  622. }
  623. for(ch = 0; ch < s->nb_channels; ch++) {
  624. if (s->channel_coded[ch]) {
  625. float *ptr;
  626. int n4, index, n;
  627. n = s->block_len;
  628. n4 = s->block_len / 2;
  629. s->mdct_ctx[bsize].fft.imdct_calc(&s->mdct_ctx[bsize],
  630. s->output, s->coefs[ch], s->mdct_tmp);
  631. /* XXX: optimize all that by build the window and
  632. multipying/adding at the same time */
  633. /* multiply by the window and add in the frame */
  634. index = (s->frame_len / 2) + s->block_pos - n4;
  635. ptr = &s->frame_out[ch][index];
  636. s->dsp.vector_fmul_add_add(ptr,s->window,s->output,ptr,0,2*n,1);
  637. /* specific fast case for ms-stereo : add to second
  638. channel if it is not coded */
  639. if (s->ms_stereo && !s->channel_coded[1]) {
  640. ptr = &s->frame_out[1][index];
  641. s->dsp.vector_fmul_add_add(ptr,s->window,s->output,ptr,0,2*n,1);
  642. }
  643. }
  644. }
  645. next:
  646. /* update block number */
  647. s->block_num++;
  648. s->block_pos += s->block_len;
  649. if (s->block_pos >= s->frame_len)
  650. return 1;
  651. else
  652. return 0;
  653. }
  654. /* decode a frame of frame_len samples */
  655. static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
  656. {
  657. int ret, i, n, a, ch, incr;
  658. int16_t *ptr;
  659. float *iptr;
  660. #ifdef TRACE
  661. tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  662. #endif
  663. /* read each block */
  664. s->block_num = 0;
  665. s->block_pos = 0;
  666. for(;;) {
  667. ret = wma_decode_block(s);
  668. if (ret < 0)
  669. return -1;
  670. if (ret)
  671. break;
  672. }
  673. /* convert frame to integer */
  674. n = s->frame_len;
  675. incr = s->nb_channels;
  676. for(ch = 0; ch < s->nb_channels; ch++) {
  677. ptr = samples + ch;
  678. iptr = s->frame_out[ch];
  679. for(i=0;i<n;i++) {
  680. a = lrintf(*iptr++);
  681. if (a > 32767)
  682. a = 32767;
  683. else if (a < -32768)
  684. a = -32768;
  685. *ptr = a;
  686. ptr += incr;
  687. }
  688. /* prepare for next block */
  689. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  690. s->frame_len * sizeof(float));
  691. /* XXX: suppress this */
  692. memset(&s->frame_out[ch][s->frame_len], 0,
  693. s->frame_len * sizeof(float));
  694. }
  695. #ifdef TRACE
  696. dump_shorts("samples", samples, n * s->nb_channels);
  697. #endif
  698. return 0;
  699. }
  700. static int wma_decode_superframe(AVCodecContext *avctx,
  701. void *data, int *data_size,
  702. uint8_t *buf, int buf_size)
  703. {
  704. WMADecodeContext *s = avctx->priv_data;
  705. int nb_frames, bit_offset, i, pos, len;
  706. uint8_t *q;
  707. int16_t *samples;
  708. tprintf("***decode_superframe:\n");
  709. if(buf_size==0){
  710. s->last_superframe_len = 0;
  711. return 0;
  712. }
  713. samples = data;
  714. init_get_bits(&s->gb, buf, buf_size*8);
  715. if (s->use_bit_reservoir) {
  716. /* read super frame header */
  717. get_bits(&s->gb, 4); /* super frame index */
  718. nb_frames = get_bits(&s->gb, 4) - 1;
  719. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  720. if (s->last_superframe_len > 0) {
  721. // printf("skip=%d\n", s->last_bitoffset);
  722. /* add bit_offset bits to last frame */
  723. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  724. MAX_CODED_SUPERFRAME_SIZE)
  725. goto fail;
  726. q = s->last_superframe + s->last_superframe_len;
  727. len = bit_offset;
  728. while (len > 7) {
  729. *q++ = (get_bits)(&s->gb, 8);
  730. len -= 8;
  731. }
  732. if (len > 0) {
  733. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  734. }
  735. /* XXX: bit_offset bits into last frame */
  736. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  737. /* skip unused bits */
  738. if (s->last_bitoffset > 0)
  739. skip_bits(&s->gb, s->last_bitoffset);
  740. /* this frame is stored in the last superframe and in the
  741. current one */
  742. if (wma_decode_frame(s, samples) < 0)
  743. goto fail;
  744. samples += s->nb_channels * s->frame_len;
  745. }
  746. /* read each frame starting from bit_offset */
  747. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  748. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  749. len = pos & 7;
  750. if (len > 0)
  751. skip_bits(&s->gb, len);
  752. s->reset_block_lengths = 1;
  753. for(i=0;i<nb_frames;i++) {
  754. if (wma_decode_frame(s, samples) < 0)
  755. goto fail;
  756. samples += s->nb_channels * s->frame_len;
  757. }
  758. /* we copy the end of the frame in the last frame buffer */
  759. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  760. s->last_bitoffset = pos & 7;
  761. pos >>= 3;
  762. len = buf_size - pos;
  763. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  764. goto fail;
  765. }
  766. s->last_superframe_len = len;
  767. memcpy(s->last_superframe, buf + pos, len);
  768. } else {
  769. /* single frame decode */
  770. if (wma_decode_frame(s, samples) < 0)
  771. goto fail;
  772. samples += s->nb_channels * s->frame_len;
  773. }
  774. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  775. *data_size = (int8_t *)samples - (int8_t *)data;
  776. return s->block_align;
  777. fail:
  778. /* when error, we reset the bit reservoir */
  779. s->last_superframe_len = 0;
  780. return -1;
  781. }
  782. AVCodec wmav1_decoder =
  783. {
  784. "wmav1",
  785. CODEC_TYPE_AUDIO,
  786. CODEC_ID_WMAV1,
  787. sizeof(WMADecodeContext),
  788. wma_decode_init,
  789. NULL,
  790. ff_wma_end,
  791. wma_decode_superframe,
  792. };
  793. AVCodec wmav2_decoder =
  794. {
  795. "wmav2",
  796. CODEC_TYPE_AUDIO,
  797. CODEC_ID_WMAV2,
  798. sizeof(WMADecodeContext),
  799. wma_decode_init,
  800. NULL,
  801. ff_wma_end,
  802. wma_decode_superframe,
  803. };