You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4574 lines
154KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Markers used if VC-1 AP frame data */
  46. //@{
  47. enum VC1Code{
  48. VC1_CODE_RES0 = 0x00000100,
  49. VC1_CODE_ENDOFSEQ = 0x0000010A,
  50. VC1_CODE_SLICE,
  51. VC1_CODE_FIELD,
  52. VC1_CODE_FRAME,
  53. VC1_CODE_ENTRYPOINT,
  54. VC1_CODE_SEQHDR,
  55. };
  56. //@}
  57. /** Available Profiles */
  58. //@{
  59. enum Profile {
  60. PROFILE_SIMPLE,
  61. PROFILE_MAIN,
  62. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  63. PROFILE_ADVANCED
  64. };
  65. //@}
  66. /** Sequence quantizer mode */
  67. //@{
  68. enum QuantMode {
  69. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  70. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  71. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  72. QUANT_UNIFORM ///< Uniform quant used for all frames
  73. };
  74. //@}
  75. /** Where quant can be changed */
  76. //@{
  77. enum DQProfile {
  78. DQPROFILE_FOUR_EDGES,
  79. DQPROFILE_DOUBLE_EDGES,
  80. DQPROFILE_SINGLE_EDGE,
  81. DQPROFILE_ALL_MBS
  82. };
  83. //@}
  84. /** @name Where quant can be changed
  85. */
  86. //@{
  87. enum DQSingleEdge {
  88. DQSINGLE_BEDGE_LEFT,
  89. DQSINGLE_BEDGE_TOP,
  90. DQSINGLE_BEDGE_RIGHT,
  91. DQSINGLE_BEDGE_BOTTOM
  92. };
  93. //@}
  94. /** Which pair of edges is quantized with ALTPQUANT */
  95. //@{
  96. enum DQDoubleEdge {
  97. DQDOUBLE_BEDGE_TOPLEFT,
  98. DQDOUBLE_BEDGE_TOPRIGHT,
  99. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  100. DQDOUBLE_BEDGE_BOTTOMLEFT
  101. };
  102. //@}
  103. /** MV modes for P frames */
  104. //@{
  105. enum MVModes {
  106. MV_PMODE_1MV_HPEL_BILIN,
  107. MV_PMODE_1MV,
  108. MV_PMODE_1MV_HPEL,
  109. MV_PMODE_MIXED_MV,
  110. MV_PMODE_INTENSITY_COMP
  111. };
  112. //@}
  113. /** @name MV types for B frames */
  114. //@{
  115. enum BMVTypes {
  116. BMV_TYPE_BACKWARD,
  117. BMV_TYPE_FORWARD,
  118. BMV_TYPE_INTERPOLATED
  119. };
  120. //@}
  121. /** @name Block types for P/B frames */
  122. //@{
  123. enum TransformTypes {
  124. TT_8X8,
  125. TT_8X4_BOTTOM,
  126. TT_8X4_TOP,
  127. TT_8X4, //Both halves
  128. TT_4X8_RIGHT,
  129. TT_4X8_LEFT,
  130. TT_4X8, //Both halves
  131. TT_4X4
  132. };
  133. //@}
  134. /** Table for conversion between TTBLK and TTMB */
  135. static const int ttblk_to_tt[3][8] = {
  136. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  137. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  138. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  139. };
  140. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  141. /** MV P mode - the 5th element is only used for mode 1 */
  142. static const uint8_t mv_pmode_table[2][5] = {
  143. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  144. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  145. };
  146. static const uint8_t mv_pmode_table2[2][4] = {
  147. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  148. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  149. };
  150. /** One more frame type */
  151. #define BI_TYPE 7
  152. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  153. fps_dr[2] = { 1000, 1001 };
  154. static const uint8_t pquant_table[3][32] = {
  155. { /* Implicit quantizer */
  156. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  157. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  158. },
  159. { /* Explicit quantizer, pquantizer uniform */
  160. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  161. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  162. },
  163. { /* Explicit quantizer, pquantizer non-uniform */
  164. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  165. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  166. }
  167. };
  168. /** @name VC-1 VLC tables and defines
  169. * @todo TODO move this into the context
  170. */
  171. //@{
  172. #define VC1_BFRACTION_VLC_BITS 7
  173. static VLC vc1_bfraction_vlc;
  174. #define VC1_IMODE_VLC_BITS 4
  175. static VLC vc1_imode_vlc;
  176. #define VC1_NORM2_VLC_BITS 3
  177. static VLC vc1_norm2_vlc;
  178. #define VC1_NORM6_VLC_BITS 9
  179. static VLC vc1_norm6_vlc;
  180. /* Could be optimized, one table only needs 8 bits */
  181. #define VC1_TTMB_VLC_BITS 9 //12
  182. static VLC vc1_ttmb_vlc[3];
  183. #define VC1_MV_DIFF_VLC_BITS 9 //15
  184. static VLC vc1_mv_diff_vlc[4];
  185. #define VC1_CBPCY_P_VLC_BITS 9 //14
  186. static VLC vc1_cbpcy_p_vlc[4];
  187. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  188. static VLC vc1_4mv_block_pattern_vlc[4];
  189. #define VC1_TTBLK_VLC_BITS 5
  190. static VLC vc1_ttblk_vlc[3];
  191. #define VC1_SUBBLKPAT_VLC_BITS 6
  192. static VLC vc1_subblkpat_vlc[3];
  193. static VLC vc1_ac_coeff_table[8];
  194. //@}
  195. enum CodingSet {
  196. CS_HIGH_MOT_INTRA = 0,
  197. CS_HIGH_MOT_INTER,
  198. CS_LOW_MOT_INTRA,
  199. CS_LOW_MOT_INTER,
  200. CS_MID_RATE_INTRA,
  201. CS_MID_RATE_INTER,
  202. CS_HIGH_RATE_INTRA,
  203. CS_HIGH_RATE_INTER
  204. };
  205. /** @name Overlap conditions for Advanced Profile */
  206. //@{
  207. enum COTypes {
  208. CONDOVER_NONE = 0,
  209. CONDOVER_ALL,
  210. CONDOVER_SELECT
  211. };
  212. //@}
  213. /** The VC1 Context
  214. * @fixme Change size wherever another size is more efficient
  215. * Many members are only used for Advanced Profile
  216. */
  217. typedef struct VC1Context{
  218. MpegEncContext s;
  219. int bits;
  220. /** Simple/Main Profile sequence header */
  221. //@{
  222. int res_sm; ///< reserved, 2b
  223. int res_x8; ///< reserved
  224. int multires; ///< frame-level RESPIC syntax element present
  225. int res_fasttx; ///< reserved, always 1
  226. int res_transtab; ///< reserved, always 0
  227. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  228. ///< at frame level
  229. int res_rtm_flag; ///< reserved, set to 1
  230. int reserved; ///< reserved
  231. //@}
  232. /** Advanced Profile */
  233. //@{
  234. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  235. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  236. int postprocflag; ///< Per-frame processing suggestion flag present
  237. int broadcast; ///< TFF/RFF present
  238. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  239. int tfcntrflag; ///< TFCNTR present
  240. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  241. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  242. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  243. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  244. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  245. int hrd_param_flag; ///< Presence of Hypothetical Reference
  246. ///< Decoder parameters
  247. int psf; ///< Progressive Segmented Frame
  248. //@}
  249. /** Sequence header data for all Profiles
  250. * TODO: choose between ints, uint8_ts and monobit flags
  251. */
  252. //@{
  253. int profile; ///< 2bits, Profile
  254. int frmrtq_postproc; ///< 3bits,
  255. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  256. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  257. int extended_mv; ///< Ext MV in P/B (not in Simple)
  258. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  259. int vstransform; ///< variable-size [48]x[48] transform type + info
  260. int overlap; ///< overlapped transforms in use
  261. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  262. int finterpflag; ///< INTERPFRM present
  263. //@}
  264. /** Frame decoding info for all profiles */
  265. //@{
  266. uint8_t mv_mode; ///< MV coding monde
  267. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  268. int k_x; ///< Number of bits for MVs (depends on MV range)
  269. int k_y; ///< Number of bits for MVs (depends on MV range)
  270. int range_x, range_y; ///< MV range
  271. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  272. /** pquant parameters */
  273. //@{
  274. uint8_t dquantfrm;
  275. uint8_t dqprofile;
  276. uint8_t dqsbedge;
  277. uint8_t dqbilevel;
  278. //@}
  279. /** AC coding set indexes
  280. * @see 8.1.1.10, p(1)10
  281. */
  282. //@{
  283. int c_ac_table_index; ///< Chroma index from ACFRM element
  284. int y_ac_table_index; ///< Luma index from AC2FRM element
  285. //@}
  286. int ttfrm; ///< Transform type info present at frame level
  287. uint8_t ttmbf; ///< Transform type flag
  288. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  289. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  290. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  291. int pqindex; ///< raw pqindex used in coding set selection
  292. int a_avail, c_avail;
  293. uint8_t *mb_type_base, *mb_type[3];
  294. /** Luma compensation parameters */
  295. //@{
  296. uint8_t lumscale;
  297. uint8_t lumshift;
  298. //@}
  299. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  300. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  301. uint8_t respic; ///< Frame-level flag for resized images
  302. int buffer_fullness; ///< HRD info
  303. /** Ranges:
  304. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  305. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  306. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  307. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  308. */
  309. uint8_t mvrange;
  310. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  311. VLC *cbpcy_vlc; ///< CBPCY VLC table
  312. int tt_index; ///< Index for Transform Type tables
  313. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  314. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  315. int mv_type_is_raw; ///< mv type mb plane is not coded
  316. int dmb_is_raw; ///< direct mb plane is raw
  317. int skip_is_raw; ///< skip mb plane is not coded
  318. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  319. int use_ic; ///< use intensity compensation in B-frames
  320. int rnd; ///< rounding control
  321. /** Frame decoding info for S/M profiles only */
  322. //@{
  323. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  324. uint8_t interpfrm;
  325. //@}
  326. /** Frame decoding info for Advanced profile */
  327. //@{
  328. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  329. uint8_t numpanscanwin;
  330. uint8_t tfcntr;
  331. uint8_t rptfrm, tff, rff;
  332. uint16_t topleftx;
  333. uint16_t toplefty;
  334. uint16_t bottomrightx;
  335. uint16_t bottomrighty;
  336. uint8_t uvsamp;
  337. uint8_t postproc;
  338. int hrd_num_leaky_buckets;
  339. uint8_t bit_rate_exponent;
  340. uint8_t buffer_size_exponent;
  341. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  342. int acpred_is_raw;
  343. uint8_t* over_flags_plane; ///< Overflags bitplane
  344. int overflg_is_raw;
  345. uint8_t condover;
  346. uint16_t *hrd_rate, *hrd_buffer;
  347. uint8_t *hrd_fullness;
  348. uint8_t range_mapy_flag;
  349. uint8_t range_mapuv_flag;
  350. uint8_t range_mapy;
  351. uint8_t range_mapuv;
  352. //@}
  353. int p_frame_skipped;
  354. int bi_type;
  355. } VC1Context;
  356. /**
  357. * Get unary code of limited length
  358. * @fixme FIXME Slow and ugly
  359. * @param gb GetBitContext
  360. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  361. * @param[in] len Maximum length
  362. * @return Unary length/index
  363. */
  364. static int get_prefix(GetBitContext *gb, int stop, int len)
  365. {
  366. #if 1
  367. int i;
  368. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  369. return i;
  370. /* int i = 0, tmp = !stop;
  371. while (i != len && tmp != stop)
  372. {
  373. tmp = get_bits(gb, 1);
  374. i++;
  375. }
  376. if (i == len && tmp != stop) return len+1;
  377. return i;*/
  378. #else
  379. unsigned int buf;
  380. int log;
  381. OPEN_READER(re, gb);
  382. UPDATE_CACHE(re, gb);
  383. buf=GET_CACHE(re, gb); //Still not sure
  384. if (stop) buf = ~buf;
  385. log= av_log2(-buf); //FIXME: -?
  386. if (log < limit){
  387. LAST_SKIP_BITS(re, gb, log+1);
  388. CLOSE_READER(re, gb);
  389. return log;
  390. }
  391. LAST_SKIP_BITS(re, gb, limit);
  392. CLOSE_READER(re, gb);
  393. return limit;
  394. #endif
  395. }
  396. static inline int decode210(GetBitContext *gb){
  397. int n;
  398. n = get_bits1(gb);
  399. if (n == 1)
  400. return 0;
  401. else
  402. return 2 - get_bits1(gb);
  403. }
  404. /**
  405. * Init VC-1 specific tables and VC1Context members
  406. * @param v The VC1Context to initialize
  407. * @return Status
  408. */
  409. static int vc1_init_common(VC1Context *v)
  410. {
  411. static int done = 0;
  412. int i = 0;
  413. v->hrd_rate = v->hrd_buffer = NULL;
  414. /* VLC tables */
  415. if(!done)
  416. {
  417. done = 1;
  418. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  419. vc1_bfraction_bits, 1, 1,
  420. vc1_bfraction_codes, 1, 1, 1);
  421. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  422. vc1_norm2_bits, 1, 1,
  423. vc1_norm2_codes, 1, 1, 1);
  424. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  425. vc1_norm6_bits, 1, 1,
  426. vc1_norm6_codes, 2, 2, 1);
  427. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  428. vc1_imode_bits, 1, 1,
  429. vc1_imode_codes, 1, 1, 1);
  430. for (i=0; i<3; i++)
  431. {
  432. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  433. vc1_ttmb_bits[i], 1, 1,
  434. vc1_ttmb_codes[i], 2, 2, 1);
  435. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  436. vc1_ttblk_bits[i], 1, 1,
  437. vc1_ttblk_codes[i], 1, 1, 1);
  438. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  439. vc1_subblkpat_bits[i], 1, 1,
  440. vc1_subblkpat_codes[i], 1, 1, 1);
  441. }
  442. for(i=0; i<4; i++)
  443. {
  444. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  445. vc1_4mv_block_pattern_bits[i], 1, 1,
  446. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  447. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  448. vc1_cbpcy_p_bits[i], 1, 1,
  449. vc1_cbpcy_p_codes[i], 2, 2, 1);
  450. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  451. vc1_mv_diff_bits[i], 1, 1,
  452. vc1_mv_diff_codes[i], 2, 2, 1);
  453. }
  454. for(i=0; i<8; i++)
  455. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  456. &vc1_ac_tables[i][0][1], 8, 4,
  457. &vc1_ac_tables[i][0][0], 8, 4, 1);
  458. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  459. &ff_msmp4_mb_i_table[0][1], 4, 2,
  460. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  461. }
  462. /* Other defaults */
  463. v->pq = -1;
  464. v->mvrange = 0; /* 7.1.1.18, p80 */
  465. return 0;
  466. }
  467. /***********************************************************************/
  468. /**
  469. * @defgroup bitplane VC9 Bitplane decoding
  470. * @see 8.7, p56
  471. * @{
  472. */
  473. /** @addtogroup bitplane
  474. * Imode types
  475. * @{
  476. */
  477. enum Imode {
  478. IMODE_RAW,
  479. IMODE_NORM2,
  480. IMODE_DIFF2,
  481. IMODE_NORM6,
  482. IMODE_DIFF6,
  483. IMODE_ROWSKIP,
  484. IMODE_COLSKIP
  485. };
  486. /** @} */ //imode defines
  487. /** Decode rows by checking if they are skipped
  488. * @param plane Buffer to store decoded bits
  489. * @param[in] width Width of this buffer
  490. * @param[in] height Height of this buffer
  491. * @param[in] stride of this buffer
  492. */
  493. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  494. int x, y;
  495. for (y=0; y<height; y++){
  496. if (!get_bits(gb, 1)) //rowskip
  497. memset(plane, 0, width);
  498. else
  499. for (x=0; x<width; x++)
  500. plane[x] = get_bits(gb, 1);
  501. plane += stride;
  502. }
  503. }
  504. /** Decode columns by checking if they are skipped
  505. * @param plane Buffer to store decoded bits
  506. * @param[in] width Width of this buffer
  507. * @param[in] height Height of this buffer
  508. * @param[in] stride of this buffer
  509. * @fixme FIXME: Optimize
  510. */
  511. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  512. int x, y;
  513. for (x=0; x<width; x++){
  514. if (!get_bits(gb, 1)) //colskip
  515. for (y=0; y<height; y++)
  516. plane[y*stride] = 0;
  517. else
  518. for (y=0; y<height; y++)
  519. plane[y*stride] = get_bits(gb, 1);
  520. plane ++;
  521. }
  522. }
  523. /** Decode a bitplane's bits
  524. * @param bp Bitplane where to store the decode bits
  525. * @param v VC-1 context for bit reading and logging
  526. * @return Status
  527. * @fixme FIXME: Optimize
  528. */
  529. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  530. {
  531. GetBitContext *gb = &v->s.gb;
  532. int imode, x, y, code, offset;
  533. uint8_t invert, *planep = data;
  534. int width, height, stride;
  535. width = v->s.mb_width;
  536. height = v->s.mb_height;
  537. stride = v->s.mb_stride;
  538. invert = get_bits(gb, 1);
  539. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  540. *raw_flag = 0;
  541. switch (imode)
  542. {
  543. case IMODE_RAW:
  544. //Data is actually read in the MB layer (same for all tests == "raw")
  545. *raw_flag = 1; //invert ignored
  546. return invert;
  547. case IMODE_DIFF2:
  548. case IMODE_NORM2:
  549. if ((height * width) & 1)
  550. {
  551. *planep++ = get_bits(gb, 1);
  552. offset = 1;
  553. }
  554. else offset = 0;
  555. // decode bitplane as one long line
  556. for (y = offset; y < height * width; y += 2) {
  557. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  558. *planep++ = code & 1;
  559. offset++;
  560. if(offset == width) {
  561. offset = 0;
  562. planep += stride - width;
  563. }
  564. *planep++ = code >> 1;
  565. offset++;
  566. if(offset == width) {
  567. offset = 0;
  568. planep += stride - width;
  569. }
  570. }
  571. break;
  572. case IMODE_DIFF6:
  573. case IMODE_NORM6:
  574. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  575. for(y = 0; y < height; y+= 3) {
  576. for(x = width & 1; x < width; x += 2) {
  577. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  578. if(code < 0){
  579. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  580. return -1;
  581. }
  582. planep[x + 0] = (code >> 0) & 1;
  583. planep[x + 1] = (code >> 1) & 1;
  584. planep[x + 0 + stride] = (code >> 2) & 1;
  585. planep[x + 1 + stride] = (code >> 3) & 1;
  586. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  587. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  588. }
  589. planep += stride * 3;
  590. }
  591. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  592. } else { // 3x2
  593. planep += (height & 1) * stride;
  594. for(y = height & 1; y < height; y += 2) {
  595. for(x = width % 3; x < width; x += 3) {
  596. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  597. if(code < 0){
  598. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  599. return -1;
  600. }
  601. planep[x + 0] = (code >> 0) & 1;
  602. planep[x + 1] = (code >> 1) & 1;
  603. planep[x + 2] = (code >> 2) & 1;
  604. planep[x + 0 + stride] = (code >> 3) & 1;
  605. planep[x + 1 + stride] = (code >> 4) & 1;
  606. planep[x + 2 + stride] = (code >> 5) & 1;
  607. }
  608. planep += stride * 2;
  609. }
  610. x = width % 3;
  611. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  612. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  613. }
  614. break;
  615. case IMODE_ROWSKIP:
  616. decode_rowskip(data, width, height, stride, &v->s.gb);
  617. break;
  618. case IMODE_COLSKIP:
  619. decode_colskip(data, width, height, stride, &v->s.gb);
  620. break;
  621. default: break;
  622. }
  623. /* Applying diff operator */
  624. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  625. {
  626. planep = data;
  627. planep[0] ^= invert;
  628. for (x=1; x<width; x++)
  629. planep[x] ^= planep[x-1];
  630. for (y=1; y<height; y++)
  631. {
  632. planep += stride;
  633. planep[0] ^= planep[-stride];
  634. for (x=1; x<width; x++)
  635. {
  636. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  637. else planep[x] ^= planep[x-1];
  638. }
  639. }
  640. }
  641. else if (invert)
  642. {
  643. planep = data;
  644. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  645. }
  646. return (imode<<1) + invert;
  647. }
  648. /** @} */ //Bitplane group
  649. /***********************************************************************/
  650. /** VOP Dquant decoding
  651. * @param v VC-1 Context
  652. */
  653. static int vop_dquant_decoding(VC1Context *v)
  654. {
  655. GetBitContext *gb = &v->s.gb;
  656. int pqdiff;
  657. //variable size
  658. if (v->dquant == 2)
  659. {
  660. pqdiff = get_bits(gb, 3);
  661. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  662. else v->altpq = v->pq + pqdiff + 1;
  663. }
  664. else
  665. {
  666. v->dquantfrm = get_bits(gb, 1);
  667. if ( v->dquantfrm )
  668. {
  669. v->dqprofile = get_bits(gb, 2);
  670. switch (v->dqprofile)
  671. {
  672. case DQPROFILE_SINGLE_EDGE:
  673. case DQPROFILE_DOUBLE_EDGES:
  674. v->dqsbedge = get_bits(gb, 2);
  675. break;
  676. case DQPROFILE_ALL_MBS:
  677. v->dqbilevel = get_bits(gb, 1);
  678. default: break; //Forbidden ?
  679. }
  680. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  681. {
  682. pqdiff = get_bits(gb, 3);
  683. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  684. else v->altpq = v->pq + pqdiff + 1;
  685. }
  686. }
  687. }
  688. return 0;
  689. }
  690. /** Put block onto picture
  691. */
  692. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  693. {
  694. uint8_t *Y;
  695. int ys, us, vs;
  696. DSPContext *dsp = &v->s.dsp;
  697. if(v->rangeredfrm) {
  698. int i, j, k;
  699. for(k = 0; k < 6; k++)
  700. for(j = 0; j < 8; j++)
  701. for(i = 0; i < 8; i++)
  702. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  703. }
  704. ys = v->s.current_picture.linesize[0];
  705. us = v->s.current_picture.linesize[1];
  706. vs = v->s.current_picture.linesize[2];
  707. Y = v->s.dest[0];
  708. dsp->put_pixels_clamped(block[0], Y, ys);
  709. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  710. Y += ys * 8;
  711. dsp->put_pixels_clamped(block[2], Y, ys);
  712. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  713. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  714. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  715. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  716. }
  717. }
  718. /** Do motion compensation over 1 macroblock
  719. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  720. */
  721. static void vc1_mc_1mv(VC1Context *v, int dir)
  722. {
  723. MpegEncContext *s = &v->s;
  724. DSPContext *dsp = &v->s.dsp;
  725. uint8_t *srcY, *srcU, *srcV;
  726. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  727. if(!v->s.last_picture.data[0])return;
  728. mx = s->mv[dir][0][0];
  729. my = s->mv[dir][0][1];
  730. // store motion vectors for further use in B frames
  731. if(s->pict_type == P_TYPE) {
  732. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  733. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  734. }
  735. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  736. uvmy = (my + ((my & 3) == 3)) >> 1;
  737. if(v->fastuvmc) {
  738. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  739. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  740. }
  741. if(!dir) {
  742. srcY = s->last_picture.data[0];
  743. srcU = s->last_picture.data[1];
  744. srcV = s->last_picture.data[2];
  745. } else {
  746. srcY = s->next_picture.data[0];
  747. srcU = s->next_picture.data[1];
  748. srcV = s->next_picture.data[2];
  749. }
  750. src_x = s->mb_x * 16 + (mx >> 2);
  751. src_y = s->mb_y * 16 + (my >> 2);
  752. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  753. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  754. src_x = clip( src_x, -16, s->mb_width * 16);
  755. src_y = clip( src_y, -16, s->mb_height * 16);
  756. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  757. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  758. srcY += src_y * s->linesize + src_x;
  759. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  760. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  761. /* for grayscale we should not try to read from unknown area */
  762. if(s->flags & CODEC_FLAG_GRAY) {
  763. srcU = s->edge_emu_buffer + 18 * s->linesize;
  764. srcV = s->edge_emu_buffer + 18 * s->linesize;
  765. }
  766. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  767. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  768. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  769. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  770. srcY -= s->mspel * (1 + s->linesize);
  771. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  772. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  773. srcY = s->edge_emu_buffer;
  774. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  775. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  776. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  777. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  778. srcU = uvbuf;
  779. srcV = uvbuf + 16;
  780. /* if we deal with range reduction we need to scale source blocks */
  781. if(v->rangeredfrm) {
  782. int i, j;
  783. uint8_t *src, *src2;
  784. src = srcY;
  785. for(j = 0; j < 17 + s->mspel*2; j++) {
  786. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  787. src += s->linesize;
  788. }
  789. src = srcU; src2 = srcV;
  790. for(j = 0; j < 9; j++) {
  791. for(i = 0; i < 9; i++) {
  792. src[i] = ((src[i] - 128) >> 1) + 128;
  793. src2[i] = ((src2[i] - 128) >> 1) + 128;
  794. }
  795. src += s->uvlinesize;
  796. src2 += s->uvlinesize;
  797. }
  798. }
  799. /* if we deal with intensity compensation we need to scale source blocks */
  800. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  801. int i, j;
  802. uint8_t *src, *src2;
  803. src = srcY;
  804. for(j = 0; j < 17 + s->mspel*2; j++) {
  805. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  806. src += s->linesize;
  807. }
  808. src = srcU; src2 = srcV;
  809. for(j = 0; j < 9; j++) {
  810. for(i = 0; i < 9; i++) {
  811. src[i] = v->lutuv[src[i]];
  812. src2[i] = v->lutuv[src2[i]];
  813. }
  814. src += s->uvlinesize;
  815. src2 += s->uvlinesize;
  816. }
  817. }
  818. srcY += s->mspel * (1 + s->linesize);
  819. }
  820. if(s->mspel) {
  821. dxy = ((my & 3) << 2) | (mx & 3);
  822. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  823. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  824. srcY += s->linesize * 8;
  825. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  826. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  827. } else { // hpel mc - always used for luma
  828. dxy = (my & 2) | ((mx & 2) >> 1);
  829. if(!v->rnd)
  830. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  831. else
  832. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  833. }
  834. if(s->flags & CODEC_FLAG_GRAY) return;
  835. /* Chroma MC always uses qpel bilinear */
  836. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  837. uvmx = (uvmx&3)<<1;
  838. uvmy = (uvmy&3)<<1;
  839. if(!v->rnd){
  840. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  841. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  842. }else{
  843. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  844. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  845. }
  846. }
  847. /** Do motion compensation for 4-MV macroblock - luminance block
  848. */
  849. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  850. {
  851. MpegEncContext *s = &v->s;
  852. DSPContext *dsp = &v->s.dsp;
  853. uint8_t *srcY;
  854. int dxy, mx, my, src_x, src_y;
  855. int off;
  856. if(!v->s.last_picture.data[0])return;
  857. mx = s->mv[0][n][0];
  858. my = s->mv[0][n][1];
  859. srcY = s->last_picture.data[0];
  860. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  861. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  862. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  863. src_x = clip( src_x, -16, s->mb_width * 16);
  864. src_y = clip( src_y, -16, s->mb_height * 16);
  865. srcY += src_y * s->linesize + src_x;
  866. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  867. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  868. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  869. srcY -= s->mspel * (1 + s->linesize);
  870. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  871. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  872. srcY = s->edge_emu_buffer;
  873. /* if we deal with range reduction we need to scale source blocks */
  874. if(v->rangeredfrm) {
  875. int i, j;
  876. uint8_t *src;
  877. src = srcY;
  878. for(j = 0; j < 9 + s->mspel*2; j++) {
  879. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  880. src += s->linesize;
  881. }
  882. }
  883. /* if we deal with intensity compensation we need to scale source blocks */
  884. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  885. int i, j;
  886. uint8_t *src;
  887. src = srcY;
  888. for(j = 0; j < 9 + s->mspel*2; j++) {
  889. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  890. src += s->linesize;
  891. }
  892. }
  893. srcY += s->mspel * (1 + s->linesize);
  894. }
  895. if(s->mspel) {
  896. dxy = ((my & 3) << 2) | (mx & 3);
  897. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  898. } else { // hpel mc - always used for luma
  899. dxy = (my & 2) | ((mx & 2) >> 1);
  900. if(!v->rnd)
  901. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  902. else
  903. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  904. }
  905. }
  906. static inline int median4(int a, int b, int c, int d)
  907. {
  908. if(a < b) {
  909. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  910. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  911. } else {
  912. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  913. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  914. }
  915. }
  916. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  917. */
  918. static void vc1_mc_4mv_chroma(VC1Context *v)
  919. {
  920. MpegEncContext *s = &v->s;
  921. DSPContext *dsp = &v->s.dsp;
  922. uint8_t *srcU, *srcV;
  923. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  924. int i, idx, tx = 0, ty = 0;
  925. int mvx[4], mvy[4], intra[4];
  926. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  927. if(!v->s.last_picture.data[0])return;
  928. if(s->flags & CODEC_FLAG_GRAY) return;
  929. for(i = 0; i < 4; i++) {
  930. mvx[i] = s->mv[0][i][0];
  931. mvy[i] = s->mv[0][i][1];
  932. intra[i] = v->mb_type[0][s->block_index[i]];
  933. }
  934. /* calculate chroma MV vector from four luma MVs */
  935. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  936. if(!idx) { // all blocks are inter
  937. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  938. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  939. } else if(count[idx] == 1) { // 3 inter blocks
  940. switch(idx) {
  941. case 0x1:
  942. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  943. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  944. break;
  945. case 0x2:
  946. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  947. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  948. break;
  949. case 0x4:
  950. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  951. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  952. break;
  953. case 0x8:
  954. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  955. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  956. break;
  957. }
  958. } else if(count[idx] == 2) {
  959. int t1 = 0, t2 = 0;
  960. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  961. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  962. tx = (mvx[t1] + mvx[t2]) / 2;
  963. ty = (mvy[t1] + mvy[t2]) / 2;
  964. } else
  965. return; //no need to do MC for inter blocks
  966. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  967. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  968. uvmx = (tx + ((tx&3) == 3)) >> 1;
  969. uvmy = (ty + ((ty&3) == 3)) >> 1;
  970. if(v->fastuvmc) {
  971. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  972. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  973. }
  974. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  975. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  976. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  977. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  978. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  979. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  980. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  981. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  982. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  983. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  984. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  985. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  986. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  987. srcU = s->edge_emu_buffer;
  988. srcV = s->edge_emu_buffer + 16;
  989. /* if we deal with range reduction we need to scale source blocks */
  990. if(v->rangeredfrm) {
  991. int i, j;
  992. uint8_t *src, *src2;
  993. src = srcU; src2 = srcV;
  994. for(j = 0; j < 9; j++) {
  995. for(i = 0; i < 9; i++) {
  996. src[i] = ((src[i] - 128) >> 1) + 128;
  997. src2[i] = ((src2[i] - 128) >> 1) + 128;
  998. }
  999. src += s->uvlinesize;
  1000. src2 += s->uvlinesize;
  1001. }
  1002. }
  1003. /* if we deal with intensity compensation we need to scale source blocks */
  1004. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1005. int i, j;
  1006. uint8_t *src, *src2;
  1007. src = srcU; src2 = srcV;
  1008. for(j = 0; j < 9; j++) {
  1009. for(i = 0; i < 9; i++) {
  1010. src[i] = v->lutuv[src[i]];
  1011. src2[i] = v->lutuv[src2[i]];
  1012. }
  1013. src += s->uvlinesize;
  1014. src2 += s->uvlinesize;
  1015. }
  1016. }
  1017. }
  1018. /* Chroma MC always uses qpel bilinear */
  1019. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1020. uvmx = (uvmx&3)<<1;
  1021. uvmy = (uvmy&3)<<1;
  1022. if(!v->rnd){
  1023. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1024. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1025. }else{
  1026. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1027. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1028. }
  1029. }
  1030. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1031. /**
  1032. * Decode Simple/Main Profiles sequence header
  1033. * @see Figure 7-8, p16-17
  1034. * @param avctx Codec context
  1035. * @param gb GetBit context initialized from Codec context extra_data
  1036. * @return Status
  1037. */
  1038. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1039. {
  1040. VC1Context *v = avctx->priv_data;
  1041. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1042. v->profile = get_bits(gb, 2);
  1043. if (v->profile == 2)
  1044. {
  1045. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1046. return -1;
  1047. }
  1048. if (v->profile == PROFILE_ADVANCED)
  1049. {
  1050. return decode_sequence_header_adv(v, gb);
  1051. }
  1052. else
  1053. {
  1054. v->res_sm = get_bits(gb, 2); //reserved
  1055. if (v->res_sm)
  1056. {
  1057. av_log(avctx, AV_LOG_ERROR,
  1058. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1059. return -1;
  1060. }
  1061. }
  1062. // (fps-2)/4 (->30)
  1063. v->frmrtq_postproc = get_bits(gb, 3); //common
  1064. // (bitrate-32kbps)/64kbps
  1065. v->bitrtq_postproc = get_bits(gb, 5); //common
  1066. v->s.loop_filter = get_bits(gb, 1); //common
  1067. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1068. {
  1069. av_log(avctx, AV_LOG_ERROR,
  1070. "LOOPFILTER shell not be enabled in simple profile\n");
  1071. }
  1072. v->res_x8 = get_bits(gb, 1); //reserved
  1073. if (v->res_x8)
  1074. {
  1075. av_log(avctx, AV_LOG_ERROR,
  1076. "1 for reserved RES_X8 is forbidden\n");
  1077. //return -1;
  1078. }
  1079. v->multires = get_bits(gb, 1);
  1080. v->res_fasttx = get_bits(gb, 1);
  1081. if (!v->res_fasttx)
  1082. {
  1083. av_log(avctx, AV_LOG_ERROR,
  1084. "0 for reserved RES_FASTTX is forbidden\n");
  1085. //return -1;
  1086. }
  1087. v->fastuvmc = get_bits(gb, 1); //common
  1088. if (!v->profile && !v->fastuvmc)
  1089. {
  1090. av_log(avctx, AV_LOG_ERROR,
  1091. "FASTUVMC unavailable in Simple Profile\n");
  1092. return -1;
  1093. }
  1094. v->extended_mv = get_bits(gb, 1); //common
  1095. if (!v->profile && v->extended_mv)
  1096. {
  1097. av_log(avctx, AV_LOG_ERROR,
  1098. "Extended MVs unavailable in Simple Profile\n");
  1099. return -1;
  1100. }
  1101. v->dquant = get_bits(gb, 2); //common
  1102. v->vstransform = get_bits(gb, 1); //common
  1103. v->res_transtab = get_bits(gb, 1);
  1104. if (v->res_transtab)
  1105. {
  1106. av_log(avctx, AV_LOG_ERROR,
  1107. "1 for reserved RES_TRANSTAB is forbidden\n");
  1108. return -1;
  1109. }
  1110. v->overlap = get_bits(gb, 1); //common
  1111. v->s.resync_marker = get_bits(gb, 1);
  1112. v->rangered = get_bits(gb, 1);
  1113. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1114. {
  1115. av_log(avctx, AV_LOG_INFO,
  1116. "RANGERED should be set to 0 in simple profile\n");
  1117. }
  1118. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1119. v->quantizer_mode = get_bits(gb, 2); //common
  1120. v->finterpflag = get_bits(gb, 1); //common
  1121. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1122. if (!v->res_rtm_flag)
  1123. {
  1124. // av_log(avctx, AV_LOG_ERROR,
  1125. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1126. av_log(avctx, AV_LOG_ERROR,
  1127. "Old WMV3 version detected, only I-frames will be decoded\n");
  1128. //return -1;
  1129. }
  1130. av_log(avctx, AV_LOG_DEBUG,
  1131. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1132. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1133. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1134. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1135. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1136. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1137. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1138. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1139. );
  1140. return 0;
  1141. }
  1142. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1143. {
  1144. v->res_rtm_flag = 1;
  1145. v->level = get_bits(gb, 3);
  1146. if(v->level >= 5)
  1147. {
  1148. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1149. }
  1150. v->chromaformat = get_bits(gb, 2);
  1151. if (v->chromaformat != 1)
  1152. {
  1153. av_log(v->s.avctx, AV_LOG_ERROR,
  1154. "Only 4:2:0 chroma format supported\n");
  1155. return -1;
  1156. }
  1157. // (fps-2)/4 (->30)
  1158. v->frmrtq_postproc = get_bits(gb, 3); //common
  1159. // (bitrate-32kbps)/64kbps
  1160. v->bitrtq_postproc = get_bits(gb, 5); //common
  1161. v->postprocflag = get_bits(gb, 1); //common
  1162. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1163. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1164. v->s.avctx->width = v->s.avctx->coded_width;
  1165. v->s.avctx->height = v->s.avctx->coded_height;
  1166. v->broadcast = get_bits1(gb);
  1167. v->interlace = get_bits1(gb);
  1168. v->tfcntrflag = get_bits1(gb);
  1169. v->finterpflag = get_bits1(gb);
  1170. get_bits1(gb); // reserved
  1171. av_log(v->s.avctx, AV_LOG_DEBUG,
  1172. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1173. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1174. "TFCTRflag=%i, FINTERPflag=%i\n",
  1175. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1176. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1177. v->tfcntrflag, v->finterpflag
  1178. );
  1179. v->psf = get_bits1(gb);
  1180. if(v->psf) { //PsF, 6.1.13
  1181. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1182. return -1;
  1183. }
  1184. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  1185. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1186. int w, h, ar = 0;
  1187. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  1188. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  1189. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  1190. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  1191. if(get_bits1(gb))
  1192. ar = get_bits(gb, 4);
  1193. if(ar && ar < 14){
  1194. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  1195. }else if(ar == 15){
  1196. w = get_bits(gb, 8);
  1197. h = get_bits(gb, 8);
  1198. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  1199. }
  1200. if(get_bits1(gb)){ //framerate stuff
  1201. if(get_bits1(gb)) {
  1202. v->s.avctx->time_base.num = 32;
  1203. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  1204. } else {
  1205. int nr, dr;
  1206. nr = get_bits(gb, 8);
  1207. dr = get_bits(gb, 4);
  1208. if(nr && nr < 8 && dr && dr < 3){
  1209. v->s.avctx->time_base.num = fps_dr[dr - 1];
  1210. v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000;
  1211. }
  1212. }
  1213. }
  1214. if(get_bits1(gb)){
  1215. v->color_prim = get_bits(gb, 8);
  1216. v->transfer_char = get_bits(gb, 8);
  1217. v->matrix_coef = get_bits(gb, 8);
  1218. }
  1219. }
  1220. v->hrd_param_flag = get_bits1(gb);
  1221. if(v->hrd_param_flag) {
  1222. int i;
  1223. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1224. get_bits(gb, 4); //bitrate exponent
  1225. get_bits(gb, 4); //buffer size exponent
  1226. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1227. get_bits(gb, 16); //hrd_rate[n]
  1228. get_bits(gb, 16); //hrd_buffer[n]
  1229. }
  1230. }
  1231. return 0;
  1232. }
  1233. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1234. {
  1235. VC1Context *v = avctx->priv_data;
  1236. int i, blink, clentry, refdist;
  1237. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1238. blink = get_bits1(gb); // broken link
  1239. clentry = get_bits1(gb); // closed entry
  1240. v->panscanflag = get_bits1(gb);
  1241. refdist = get_bits1(gb); // refdist flag
  1242. v->s.loop_filter = get_bits1(gb);
  1243. v->fastuvmc = get_bits1(gb);
  1244. v->extended_mv = get_bits1(gb);
  1245. v->dquant = get_bits(gb, 2);
  1246. v->vstransform = get_bits1(gb);
  1247. v->overlap = get_bits1(gb);
  1248. v->quantizer_mode = get_bits(gb, 2);
  1249. if(v->hrd_param_flag){
  1250. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1251. get_bits(gb, 8); //hrd_full[n]
  1252. }
  1253. }
  1254. if(get_bits1(gb)){
  1255. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1256. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1257. }
  1258. if(v->extended_mv)
  1259. v->extended_dmv = get_bits1(gb);
  1260. if(get_bits1(gb)) {
  1261. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1262. skip_bits(gb, 3); // Y range, ignored for now
  1263. }
  1264. if(get_bits1(gb)) {
  1265. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1266. skip_bits(gb, 3); // UV range, ignored for now
  1267. }
  1268. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1269. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1270. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1271. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1272. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  1273. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1274. return 0;
  1275. }
  1276. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1277. {
  1278. int pqindex, lowquant, status;
  1279. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1280. skip_bits(gb, 2); //framecnt unused
  1281. v->rangeredfrm = 0;
  1282. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1283. v->s.pict_type = get_bits(gb, 1);
  1284. if (v->s.avctx->max_b_frames) {
  1285. if (!v->s.pict_type) {
  1286. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1287. else v->s.pict_type = B_TYPE;
  1288. } else v->s.pict_type = P_TYPE;
  1289. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1290. v->bi_type = 0;
  1291. if(v->s.pict_type == B_TYPE) {
  1292. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1293. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1294. if(v->bfraction == 0) {
  1295. v->s.pict_type = BI_TYPE;
  1296. }
  1297. }
  1298. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1299. get_bits(gb, 7); // skip buffer fullness
  1300. /* calculate RND */
  1301. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1302. v->rnd = 1;
  1303. if(v->s.pict_type == P_TYPE)
  1304. v->rnd ^= 1;
  1305. /* Quantizer stuff */
  1306. pqindex = get_bits(gb, 5);
  1307. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1308. v->pq = pquant_table[0][pqindex];
  1309. else
  1310. v->pq = pquant_table[1][pqindex];
  1311. v->pquantizer = 1;
  1312. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1313. v->pquantizer = pqindex < 9;
  1314. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1315. v->pquantizer = 0;
  1316. v->pqindex = pqindex;
  1317. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1318. else v->halfpq = 0;
  1319. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1320. v->pquantizer = get_bits(gb, 1);
  1321. v->dquantfrm = 0;
  1322. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1323. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1324. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1325. v->range_x = 1 << (v->k_x - 1);
  1326. v->range_y = 1 << (v->k_y - 1);
  1327. if (v->profile == PROFILE_ADVANCED)
  1328. {
  1329. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1330. }
  1331. else
  1332. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1333. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1334. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1335. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1336. switch(v->s.pict_type) {
  1337. case P_TYPE:
  1338. if (v->pq < 5) v->tt_index = 0;
  1339. else if(v->pq < 13) v->tt_index = 1;
  1340. else v->tt_index = 2;
  1341. lowquant = (v->pq > 12) ? 0 : 1;
  1342. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1343. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1344. {
  1345. int scale, shift, i;
  1346. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1347. v->lumscale = get_bits(gb, 6);
  1348. v->lumshift = get_bits(gb, 6);
  1349. v->use_ic = 1;
  1350. /* fill lookup tables for intensity compensation */
  1351. if(!v->lumscale) {
  1352. scale = -64;
  1353. shift = (255 - v->lumshift * 2) << 6;
  1354. if(v->lumshift > 31)
  1355. shift += 128 << 6;
  1356. } else {
  1357. scale = v->lumscale + 32;
  1358. if(v->lumshift > 31)
  1359. shift = (v->lumshift - 64) << 6;
  1360. else
  1361. shift = v->lumshift << 6;
  1362. }
  1363. for(i = 0; i < 256; i++) {
  1364. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1365. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1366. }
  1367. }
  1368. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1369. v->s.quarter_sample = 0;
  1370. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1371. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1372. v->s.quarter_sample = 0;
  1373. else
  1374. v->s.quarter_sample = 1;
  1375. } else
  1376. v->s.quarter_sample = 1;
  1377. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1378. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1379. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1380. || v->mv_mode == MV_PMODE_MIXED_MV)
  1381. {
  1382. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1383. if (status < 0) return -1;
  1384. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1385. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1386. } else {
  1387. v->mv_type_is_raw = 0;
  1388. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1389. }
  1390. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1391. if (status < 0) return -1;
  1392. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1393. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1394. /* Hopefully this is correct for P frames */
  1395. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1396. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1397. if (v->dquant)
  1398. {
  1399. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1400. vop_dquant_decoding(v);
  1401. }
  1402. v->ttfrm = 0; //FIXME Is that so ?
  1403. if (v->vstransform)
  1404. {
  1405. v->ttmbf = get_bits(gb, 1);
  1406. if (v->ttmbf)
  1407. {
  1408. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1409. }
  1410. } else {
  1411. v->ttmbf = 1;
  1412. v->ttfrm = TT_8X8;
  1413. }
  1414. break;
  1415. case B_TYPE:
  1416. if (v->pq < 5) v->tt_index = 0;
  1417. else if(v->pq < 13) v->tt_index = 1;
  1418. else v->tt_index = 2;
  1419. lowquant = (v->pq > 12) ? 0 : 1;
  1420. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1421. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1422. v->s.mspel = v->s.quarter_sample;
  1423. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1424. if (status < 0) return -1;
  1425. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1426. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1427. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1428. if (status < 0) return -1;
  1429. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1430. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1431. v->s.mv_table_index = get_bits(gb, 2);
  1432. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1433. if (v->dquant)
  1434. {
  1435. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1436. vop_dquant_decoding(v);
  1437. }
  1438. v->ttfrm = 0;
  1439. if (v->vstransform)
  1440. {
  1441. v->ttmbf = get_bits(gb, 1);
  1442. if (v->ttmbf)
  1443. {
  1444. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1445. }
  1446. } else {
  1447. v->ttmbf = 1;
  1448. v->ttfrm = TT_8X8;
  1449. }
  1450. break;
  1451. }
  1452. /* AC Syntax */
  1453. v->c_ac_table_index = decode012(gb);
  1454. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1455. {
  1456. v->y_ac_table_index = decode012(gb);
  1457. }
  1458. /* DC Syntax */
  1459. v->s.dc_table_index = get_bits(gb, 1);
  1460. if(v->s.pict_type == BI_TYPE) {
  1461. v->s.pict_type = B_TYPE;
  1462. v->bi_type = 1;
  1463. }
  1464. return 0;
  1465. }
  1466. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1467. {
  1468. int pqindex, lowquant;
  1469. int status;
  1470. v->p_frame_skipped = 0;
  1471. if(v->interlace){
  1472. v->fcm = decode012(gb);
  1473. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1474. }
  1475. switch(get_prefix(gb, 0, 4)) {
  1476. case 0:
  1477. v->s.pict_type = P_TYPE;
  1478. break;
  1479. case 1:
  1480. v->s.pict_type = B_TYPE;
  1481. break;
  1482. case 2:
  1483. v->s.pict_type = I_TYPE;
  1484. break;
  1485. case 3:
  1486. v->s.pict_type = BI_TYPE;
  1487. break;
  1488. case 4:
  1489. v->s.pict_type = P_TYPE; // skipped pic
  1490. v->p_frame_skipped = 1;
  1491. return 0;
  1492. }
  1493. if(v->tfcntrflag)
  1494. get_bits(gb, 8);
  1495. if(v->broadcast) {
  1496. if(!v->interlace || v->psf) {
  1497. v->rptfrm = get_bits(gb, 2);
  1498. } else {
  1499. v->tff = get_bits1(gb);
  1500. v->rptfrm = get_bits1(gb);
  1501. }
  1502. }
  1503. if(v->panscanflag) {
  1504. //...
  1505. }
  1506. v->rnd = get_bits1(gb);
  1507. if(v->interlace)
  1508. v->uvsamp = get_bits1(gb);
  1509. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1510. if(v->s.pict_type == B_TYPE) {
  1511. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1512. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1513. if(v->bfraction == 0) {
  1514. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1515. }
  1516. }
  1517. pqindex = get_bits(gb, 5);
  1518. v->pqindex = pqindex;
  1519. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1520. v->pq = pquant_table[0][pqindex];
  1521. else
  1522. v->pq = pquant_table[1][pqindex];
  1523. v->pquantizer = 1;
  1524. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1525. v->pquantizer = pqindex < 9;
  1526. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1527. v->pquantizer = 0;
  1528. v->pqindex = pqindex;
  1529. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1530. else v->halfpq = 0;
  1531. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1532. v->pquantizer = get_bits(gb, 1);
  1533. switch(v->s.pict_type) {
  1534. case I_TYPE:
  1535. case BI_TYPE:
  1536. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1537. if (status < 0) return -1;
  1538. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1539. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1540. v->condover = CONDOVER_NONE;
  1541. if(v->overlap && v->pq <= 8) {
  1542. v->condover = decode012(gb);
  1543. if(v->condover == CONDOVER_SELECT) {
  1544. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1545. if (status < 0) return -1;
  1546. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1547. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1548. }
  1549. }
  1550. break;
  1551. case P_TYPE:
  1552. if(v->postprocflag)
  1553. v->postproc = get_bits1(gb);
  1554. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1555. else v->mvrange = 0;
  1556. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1557. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1558. v->range_x = 1 << (v->k_x - 1);
  1559. v->range_y = 1 << (v->k_y - 1);
  1560. if (v->pq < 5) v->tt_index = 0;
  1561. else if(v->pq < 13) v->tt_index = 1;
  1562. else v->tt_index = 2;
  1563. lowquant = (v->pq > 12) ? 0 : 1;
  1564. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1565. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1566. {
  1567. int scale, shift, i;
  1568. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1569. v->lumscale = get_bits(gb, 6);
  1570. v->lumshift = get_bits(gb, 6);
  1571. /* fill lookup tables for intensity compensation */
  1572. if(!v->lumscale) {
  1573. scale = -64;
  1574. shift = (255 - v->lumshift * 2) << 6;
  1575. if(v->lumshift > 31)
  1576. shift += 128 << 6;
  1577. } else {
  1578. scale = v->lumscale + 32;
  1579. if(v->lumshift > 31)
  1580. shift = (v->lumshift - 64) << 6;
  1581. else
  1582. shift = v->lumshift << 6;
  1583. }
  1584. for(i = 0; i < 256; i++) {
  1585. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1586. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1587. }
  1588. }
  1589. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1590. v->s.quarter_sample = 0;
  1591. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1592. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1593. v->s.quarter_sample = 0;
  1594. else
  1595. v->s.quarter_sample = 1;
  1596. } else
  1597. v->s.quarter_sample = 1;
  1598. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1599. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1600. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1601. || v->mv_mode == MV_PMODE_MIXED_MV)
  1602. {
  1603. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1604. if (status < 0) return -1;
  1605. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1606. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1607. } else {
  1608. v->mv_type_is_raw = 0;
  1609. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1610. }
  1611. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1612. if (status < 0) return -1;
  1613. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1614. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1615. /* Hopefully this is correct for P frames */
  1616. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1617. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1618. if (v->dquant)
  1619. {
  1620. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1621. vop_dquant_decoding(v);
  1622. }
  1623. v->ttfrm = 0; //FIXME Is that so ?
  1624. if (v->vstransform)
  1625. {
  1626. v->ttmbf = get_bits(gb, 1);
  1627. if (v->ttmbf)
  1628. {
  1629. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1630. }
  1631. } else {
  1632. v->ttmbf = 1;
  1633. v->ttfrm = TT_8X8;
  1634. }
  1635. break;
  1636. case B_TYPE:
  1637. if(v->postprocflag)
  1638. v->postproc = get_bits1(gb);
  1639. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1640. else v->mvrange = 0;
  1641. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1642. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1643. v->range_x = 1 << (v->k_x - 1);
  1644. v->range_y = 1 << (v->k_y - 1);
  1645. if (v->pq < 5) v->tt_index = 0;
  1646. else if(v->pq < 13) v->tt_index = 1;
  1647. else v->tt_index = 2;
  1648. lowquant = (v->pq > 12) ? 0 : 1;
  1649. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1650. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1651. v->s.mspel = v->s.quarter_sample;
  1652. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1653. if (status < 0) return -1;
  1654. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1655. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1656. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1657. if (status < 0) return -1;
  1658. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1659. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1660. v->s.mv_table_index = get_bits(gb, 2);
  1661. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1662. if (v->dquant)
  1663. {
  1664. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1665. vop_dquant_decoding(v);
  1666. }
  1667. v->ttfrm = 0;
  1668. if (v->vstransform)
  1669. {
  1670. v->ttmbf = get_bits(gb, 1);
  1671. if (v->ttmbf)
  1672. {
  1673. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1674. }
  1675. } else {
  1676. v->ttmbf = 1;
  1677. v->ttfrm = TT_8X8;
  1678. }
  1679. break;
  1680. }
  1681. /* AC Syntax */
  1682. v->c_ac_table_index = decode012(gb);
  1683. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1684. {
  1685. v->y_ac_table_index = decode012(gb);
  1686. }
  1687. /* DC Syntax */
  1688. v->s.dc_table_index = get_bits(gb, 1);
  1689. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1690. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1691. vop_dquant_decoding(v);
  1692. }
  1693. v->bi_type = 0;
  1694. if(v->s.pict_type == BI_TYPE) {
  1695. v->s.pict_type = B_TYPE;
  1696. v->bi_type = 1;
  1697. }
  1698. return 0;
  1699. }
  1700. /***********************************************************************/
  1701. /**
  1702. * @defgroup block VC-1 Block-level functions
  1703. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1704. * @{
  1705. */
  1706. /**
  1707. * @def GET_MQUANT
  1708. * @brief Get macroblock-level quantizer scale
  1709. */
  1710. #define GET_MQUANT() \
  1711. if (v->dquantfrm) \
  1712. { \
  1713. int edges = 0; \
  1714. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1715. { \
  1716. if (v->dqbilevel) \
  1717. { \
  1718. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1719. } \
  1720. else \
  1721. { \
  1722. mqdiff = get_bits(gb, 3); \
  1723. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1724. else mquant = get_bits(gb, 5); \
  1725. } \
  1726. } \
  1727. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1728. edges = 1 << v->dqsbedge; \
  1729. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1730. edges = (3 << v->dqsbedge) % 15; \
  1731. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1732. edges = 15; \
  1733. if((edges&1) && !s->mb_x) \
  1734. mquant = v->altpq; \
  1735. if((edges&2) && s->first_slice_line) \
  1736. mquant = v->altpq; \
  1737. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1738. mquant = v->altpq; \
  1739. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1740. mquant = v->altpq; \
  1741. }
  1742. /**
  1743. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1744. * @brief Get MV differentials
  1745. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1746. * @param _dmv_x Horizontal differential for decoded MV
  1747. * @param _dmv_y Vertical differential for decoded MV
  1748. */
  1749. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1750. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1751. VC1_MV_DIFF_VLC_BITS, 2); \
  1752. if (index > 36) \
  1753. { \
  1754. mb_has_coeffs = 1; \
  1755. index -= 37; \
  1756. } \
  1757. else mb_has_coeffs = 0; \
  1758. s->mb_intra = 0; \
  1759. if (!index) { _dmv_x = _dmv_y = 0; } \
  1760. else if (index == 35) \
  1761. { \
  1762. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1763. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1764. } \
  1765. else if (index == 36) \
  1766. { \
  1767. _dmv_x = 0; \
  1768. _dmv_y = 0; \
  1769. s->mb_intra = 1; \
  1770. } \
  1771. else \
  1772. { \
  1773. index1 = index%6; \
  1774. if (!s->quarter_sample && index1 == 5) val = 1; \
  1775. else val = 0; \
  1776. if(size_table[index1] - val > 0) \
  1777. val = get_bits(gb, size_table[index1] - val); \
  1778. else val = 0; \
  1779. sign = 0 - (val&1); \
  1780. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1781. \
  1782. index1 = index/6; \
  1783. if (!s->quarter_sample && index1 == 5) val = 1; \
  1784. else val = 0; \
  1785. if(size_table[index1] - val > 0) \
  1786. val = get_bits(gb, size_table[index1] - val); \
  1787. else val = 0; \
  1788. sign = 0 - (val&1); \
  1789. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1790. }
  1791. /** Predict and set motion vector
  1792. */
  1793. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1794. {
  1795. int xy, wrap, off = 0;
  1796. int16_t *A, *B, *C;
  1797. int px, py;
  1798. int sum;
  1799. /* scale MV difference to be quad-pel */
  1800. dmv_x <<= 1 - s->quarter_sample;
  1801. dmv_y <<= 1 - s->quarter_sample;
  1802. wrap = s->b8_stride;
  1803. xy = s->block_index[n];
  1804. if(s->mb_intra){
  1805. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1806. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1807. if(mv1) { /* duplicate motion data for 1-MV block */
  1808. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1809. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1810. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1811. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1812. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1813. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1814. }
  1815. return;
  1816. }
  1817. C = s->current_picture.motion_val[0][xy - 1];
  1818. A = s->current_picture.motion_val[0][xy - wrap];
  1819. if(mv1)
  1820. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1821. else {
  1822. //in 4-MV mode different blocks have different B predictor position
  1823. switch(n){
  1824. case 0:
  1825. off = (s->mb_x > 0) ? -1 : 1;
  1826. break;
  1827. case 1:
  1828. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1829. break;
  1830. case 2:
  1831. off = 1;
  1832. break;
  1833. case 3:
  1834. off = -1;
  1835. }
  1836. }
  1837. B = s->current_picture.motion_val[0][xy - wrap + off];
  1838. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1839. if(s->mb_width == 1) {
  1840. px = A[0];
  1841. py = A[1];
  1842. } else {
  1843. px = mid_pred(A[0], B[0], C[0]);
  1844. py = mid_pred(A[1], B[1], C[1]);
  1845. }
  1846. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1847. px = C[0];
  1848. py = C[1];
  1849. } else {
  1850. px = py = 0;
  1851. }
  1852. /* Pullback MV as specified in 8.3.5.3.4 */
  1853. {
  1854. int qx, qy, X, Y;
  1855. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1856. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1857. X = (s->mb_width << 6) - 4;
  1858. Y = (s->mb_height << 6) - 4;
  1859. if(mv1) {
  1860. if(qx + px < -60) px = -60 - qx;
  1861. if(qy + py < -60) py = -60 - qy;
  1862. } else {
  1863. if(qx + px < -28) px = -28 - qx;
  1864. if(qy + py < -28) py = -28 - qy;
  1865. }
  1866. if(qx + px > X) px = X - qx;
  1867. if(qy + py > Y) py = Y - qy;
  1868. }
  1869. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1870. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1871. if(is_intra[xy - wrap])
  1872. sum = FFABS(px) + FFABS(py);
  1873. else
  1874. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1875. if(sum > 32) {
  1876. if(get_bits1(&s->gb)) {
  1877. px = A[0];
  1878. py = A[1];
  1879. } else {
  1880. px = C[0];
  1881. py = C[1];
  1882. }
  1883. } else {
  1884. if(is_intra[xy - 1])
  1885. sum = FFABS(px) + FFABS(py);
  1886. else
  1887. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1888. if(sum > 32) {
  1889. if(get_bits1(&s->gb)) {
  1890. px = A[0];
  1891. py = A[1];
  1892. } else {
  1893. px = C[0];
  1894. py = C[1];
  1895. }
  1896. }
  1897. }
  1898. }
  1899. /* store MV using signed modulus of MV range defined in 4.11 */
  1900. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1901. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1902. if(mv1) { /* duplicate motion data for 1-MV block */
  1903. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1904. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1905. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1906. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1907. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1908. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1909. }
  1910. }
  1911. /** Motion compensation for direct or interpolated blocks in B-frames
  1912. */
  1913. static void vc1_interp_mc(VC1Context *v)
  1914. {
  1915. MpegEncContext *s = &v->s;
  1916. DSPContext *dsp = &v->s.dsp;
  1917. uint8_t *srcY, *srcU, *srcV;
  1918. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1919. if(!v->s.next_picture.data[0])return;
  1920. mx = s->mv[1][0][0];
  1921. my = s->mv[1][0][1];
  1922. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1923. uvmy = (my + ((my & 3) == 3)) >> 1;
  1924. if(v->fastuvmc) {
  1925. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1926. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1927. }
  1928. srcY = s->next_picture.data[0];
  1929. srcU = s->next_picture.data[1];
  1930. srcV = s->next_picture.data[2];
  1931. src_x = s->mb_x * 16 + (mx >> 2);
  1932. src_y = s->mb_y * 16 + (my >> 2);
  1933. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1934. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1935. src_x = clip( src_x, -16, s->mb_width * 16);
  1936. src_y = clip( src_y, -16, s->mb_height * 16);
  1937. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1938. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1939. srcY += src_y * s->linesize + src_x;
  1940. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1941. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1942. /* for grayscale we should not try to read from unknown area */
  1943. if(s->flags & CODEC_FLAG_GRAY) {
  1944. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1945. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1946. }
  1947. if(v->rangeredfrm
  1948. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1949. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1950. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1951. srcY -= s->mspel * (1 + s->linesize);
  1952. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1953. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1954. srcY = s->edge_emu_buffer;
  1955. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1956. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1957. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1958. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1959. srcU = uvbuf;
  1960. srcV = uvbuf + 16;
  1961. /* if we deal with range reduction we need to scale source blocks */
  1962. if(v->rangeredfrm) {
  1963. int i, j;
  1964. uint8_t *src, *src2;
  1965. src = srcY;
  1966. for(j = 0; j < 17 + s->mspel*2; j++) {
  1967. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1968. src += s->linesize;
  1969. }
  1970. src = srcU; src2 = srcV;
  1971. for(j = 0; j < 9; j++) {
  1972. for(i = 0; i < 9; i++) {
  1973. src[i] = ((src[i] - 128) >> 1) + 128;
  1974. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1975. }
  1976. src += s->uvlinesize;
  1977. src2 += s->uvlinesize;
  1978. }
  1979. }
  1980. srcY += s->mspel * (1 + s->linesize);
  1981. }
  1982. mx >>= 1;
  1983. my >>= 1;
  1984. dxy = ((my & 1) << 1) | (mx & 1);
  1985. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1986. if(s->flags & CODEC_FLAG_GRAY) return;
  1987. /* Chroma MC always uses qpel blilinear */
  1988. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1989. uvmx = (uvmx&3)<<1;
  1990. uvmy = (uvmy&3)<<1;
  1991. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1992. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1993. }
  1994. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1995. {
  1996. int n = bfrac;
  1997. #if B_FRACTION_DEN==256
  1998. if(inv)
  1999. n -= 256;
  2000. if(!qs)
  2001. return 2 * ((value * n + 255) >> 9);
  2002. return (value * n + 128) >> 8;
  2003. #else
  2004. if(inv)
  2005. n -= B_FRACTION_DEN;
  2006. if(!qs)
  2007. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  2008. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  2009. #endif
  2010. }
  2011. /** Reconstruct motion vector for B-frame and do motion compensation
  2012. */
  2013. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  2014. {
  2015. if(v->use_ic) {
  2016. v->mv_mode2 = v->mv_mode;
  2017. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  2018. }
  2019. if(direct) {
  2020. vc1_mc_1mv(v, 0);
  2021. vc1_interp_mc(v);
  2022. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2023. return;
  2024. }
  2025. if(mode == BMV_TYPE_INTERPOLATED) {
  2026. vc1_mc_1mv(v, 0);
  2027. vc1_interp_mc(v);
  2028. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2029. return;
  2030. }
  2031. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2032. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2033. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2034. }
  2035. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2036. {
  2037. MpegEncContext *s = &v->s;
  2038. int xy, wrap, off = 0;
  2039. int16_t *A, *B, *C;
  2040. int px, py;
  2041. int sum;
  2042. int r_x, r_y;
  2043. const uint8_t *is_intra = v->mb_type[0];
  2044. r_x = v->range_x;
  2045. r_y = v->range_y;
  2046. /* scale MV difference to be quad-pel */
  2047. dmv_x[0] <<= 1 - s->quarter_sample;
  2048. dmv_y[0] <<= 1 - s->quarter_sample;
  2049. dmv_x[1] <<= 1 - s->quarter_sample;
  2050. dmv_y[1] <<= 1 - s->quarter_sample;
  2051. wrap = s->b8_stride;
  2052. xy = s->block_index[0];
  2053. if(s->mb_intra) {
  2054. s->current_picture.motion_val[0][xy][0] =
  2055. s->current_picture.motion_val[0][xy][1] =
  2056. s->current_picture.motion_val[1][xy][0] =
  2057. s->current_picture.motion_val[1][xy][1] = 0;
  2058. return;
  2059. }
  2060. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2061. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2062. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2063. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2064. if(direct) {
  2065. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2066. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2067. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2068. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2069. return;
  2070. }
  2071. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2072. C = s->current_picture.motion_val[0][xy - 2];
  2073. A = s->current_picture.motion_val[0][xy - wrap*2];
  2074. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2075. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2076. if(!s->first_slice_line) { // predictor A is not out of bounds
  2077. if(s->mb_width == 1) {
  2078. px = A[0];
  2079. py = A[1];
  2080. } else {
  2081. px = mid_pred(A[0], B[0], C[0]);
  2082. py = mid_pred(A[1], B[1], C[1]);
  2083. }
  2084. } else if(s->mb_x) { // predictor C is not out of bounds
  2085. px = C[0];
  2086. py = C[1];
  2087. } else {
  2088. px = py = 0;
  2089. }
  2090. /* Pullback MV as specified in 8.3.5.3.4 */
  2091. {
  2092. int qx, qy, X, Y;
  2093. if(v->profile < PROFILE_ADVANCED) {
  2094. qx = (s->mb_x << 5);
  2095. qy = (s->mb_y << 5);
  2096. X = (s->mb_width << 5) - 4;
  2097. Y = (s->mb_height << 5) - 4;
  2098. if(qx + px < -28) px = -28 - qx;
  2099. if(qy + py < -28) py = -28 - qy;
  2100. if(qx + px > X) px = X - qx;
  2101. if(qy + py > Y) py = Y - qy;
  2102. } else {
  2103. qx = (s->mb_x << 6);
  2104. qy = (s->mb_y << 6);
  2105. X = (s->mb_width << 6) - 4;
  2106. Y = (s->mb_height << 6) - 4;
  2107. if(qx + px < -60) px = -60 - qx;
  2108. if(qy + py < -60) py = -60 - qy;
  2109. if(qx + px > X) px = X - qx;
  2110. if(qy + py > Y) py = Y - qy;
  2111. }
  2112. }
  2113. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2114. if(0 && !s->first_slice_line && s->mb_x) {
  2115. if(is_intra[xy - wrap])
  2116. sum = FFABS(px) + FFABS(py);
  2117. else
  2118. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2119. if(sum > 32) {
  2120. if(get_bits1(&s->gb)) {
  2121. px = A[0];
  2122. py = A[1];
  2123. } else {
  2124. px = C[0];
  2125. py = C[1];
  2126. }
  2127. } else {
  2128. if(is_intra[xy - 2])
  2129. sum = FFABS(px) + FFABS(py);
  2130. else
  2131. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2132. if(sum > 32) {
  2133. if(get_bits1(&s->gb)) {
  2134. px = A[0];
  2135. py = A[1];
  2136. } else {
  2137. px = C[0];
  2138. py = C[1];
  2139. }
  2140. }
  2141. }
  2142. }
  2143. /* store MV using signed modulus of MV range defined in 4.11 */
  2144. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2145. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2146. }
  2147. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2148. C = s->current_picture.motion_val[1][xy - 2];
  2149. A = s->current_picture.motion_val[1][xy - wrap*2];
  2150. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2151. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2152. if(!s->first_slice_line) { // predictor A is not out of bounds
  2153. if(s->mb_width == 1) {
  2154. px = A[0];
  2155. py = A[1];
  2156. } else {
  2157. px = mid_pred(A[0], B[0], C[0]);
  2158. py = mid_pred(A[1], B[1], C[1]);
  2159. }
  2160. } else if(s->mb_x) { // predictor C is not out of bounds
  2161. px = C[0];
  2162. py = C[1];
  2163. } else {
  2164. px = py = 0;
  2165. }
  2166. /* Pullback MV as specified in 8.3.5.3.4 */
  2167. {
  2168. int qx, qy, X, Y;
  2169. if(v->profile < PROFILE_ADVANCED) {
  2170. qx = (s->mb_x << 5);
  2171. qy = (s->mb_y << 5);
  2172. X = (s->mb_width << 5) - 4;
  2173. Y = (s->mb_height << 5) - 4;
  2174. if(qx + px < -28) px = -28 - qx;
  2175. if(qy + py < -28) py = -28 - qy;
  2176. if(qx + px > X) px = X - qx;
  2177. if(qy + py > Y) py = Y - qy;
  2178. } else {
  2179. qx = (s->mb_x << 6);
  2180. qy = (s->mb_y << 6);
  2181. X = (s->mb_width << 6) - 4;
  2182. Y = (s->mb_height << 6) - 4;
  2183. if(qx + px < -60) px = -60 - qx;
  2184. if(qy + py < -60) py = -60 - qy;
  2185. if(qx + px > X) px = X - qx;
  2186. if(qy + py > Y) py = Y - qy;
  2187. }
  2188. }
  2189. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2190. if(0 && !s->first_slice_line && s->mb_x) {
  2191. if(is_intra[xy - wrap])
  2192. sum = FFABS(px) + FFABS(py);
  2193. else
  2194. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2195. if(sum > 32) {
  2196. if(get_bits1(&s->gb)) {
  2197. px = A[0];
  2198. py = A[1];
  2199. } else {
  2200. px = C[0];
  2201. py = C[1];
  2202. }
  2203. } else {
  2204. if(is_intra[xy - 2])
  2205. sum = FFABS(px) + FFABS(py);
  2206. else
  2207. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2208. if(sum > 32) {
  2209. if(get_bits1(&s->gb)) {
  2210. px = A[0];
  2211. py = A[1];
  2212. } else {
  2213. px = C[0];
  2214. py = C[1];
  2215. }
  2216. }
  2217. }
  2218. }
  2219. /* store MV using signed modulus of MV range defined in 4.11 */
  2220. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2221. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2222. }
  2223. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2224. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2225. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2226. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2227. }
  2228. /** Get predicted DC value for I-frames only
  2229. * prediction dir: left=0, top=1
  2230. * @param s MpegEncContext
  2231. * @param[in] n block index in the current MB
  2232. * @param dc_val_ptr Pointer to DC predictor
  2233. * @param dir_ptr Prediction direction for use in AC prediction
  2234. */
  2235. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2236. int16_t **dc_val_ptr, int *dir_ptr)
  2237. {
  2238. int a, b, c, wrap, pred, scale;
  2239. int16_t *dc_val;
  2240. static const uint16_t dcpred[32] = {
  2241. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2242. 114, 102, 93, 85, 79, 73, 68, 64,
  2243. 60, 57, 54, 51, 49, 47, 45, 43,
  2244. 41, 39, 38, 37, 35, 34, 33
  2245. };
  2246. /* find prediction - wmv3_dc_scale always used here in fact */
  2247. if (n < 4) scale = s->y_dc_scale;
  2248. else scale = s->c_dc_scale;
  2249. wrap = s->block_wrap[n];
  2250. dc_val= s->dc_val[0] + s->block_index[n];
  2251. /* B A
  2252. * C X
  2253. */
  2254. c = dc_val[ - 1];
  2255. b = dc_val[ - 1 - wrap];
  2256. a = dc_val[ - wrap];
  2257. if (pq < 9 || !overlap)
  2258. {
  2259. /* Set outer values */
  2260. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2261. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2262. }
  2263. else
  2264. {
  2265. /* Set outer values */
  2266. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2267. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2268. }
  2269. if (abs(a - b) <= abs(b - c)) {
  2270. pred = c;
  2271. *dir_ptr = 1;//left
  2272. } else {
  2273. pred = a;
  2274. *dir_ptr = 0;//top
  2275. }
  2276. /* update predictor */
  2277. *dc_val_ptr = &dc_val[0];
  2278. return pred;
  2279. }
  2280. /** Get predicted DC value
  2281. * prediction dir: left=0, top=1
  2282. * @param s MpegEncContext
  2283. * @param[in] n block index in the current MB
  2284. * @param dc_val_ptr Pointer to DC predictor
  2285. * @param dir_ptr Prediction direction for use in AC prediction
  2286. */
  2287. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2288. int a_avail, int c_avail,
  2289. int16_t **dc_val_ptr, int *dir_ptr)
  2290. {
  2291. int a, b, c, wrap, pred, scale;
  2292. int16_t *dc_val;
  2293. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2294. int q1, q2 = 0;
  2295. /* find prediction - wmv3_dc_scale always used here in fact */
  2296. if (n < 4) scale = s->y_dc_scale;
  2297. else scale = s->c_dc_scale;
  2298. wrap = s->block_wrap[n];
  2299. dc_val= s->dc_val[0] + s->block_index[n];
  2300. /* B A
  2301. * C X
  2302. */
  2303. c = dc_val[ - 1];
  2304. b = dc_val[ - 1 - wrap];
  2305. a = dc_val[ - wrap];
  2306. /* scale predictors if needed */
  2307. q1 = s->current_picture.qscale_table[mb_pos];
  2308. if(c_avail && (n!= 1 && n!=3)) {
  2309. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2310. if(q2 && q2 != q1)
  2311. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2312. }
  2313. if(a_avail && (n!= 2 && n!=3)) {
  2314. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2315. if(q2 && q2 != q1)
  2316. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2317. }
  2318. if(a_avail && c_avail && (n!=3)) {
  2319. int off = mb_pos;
  2320. if(n != 1) off--;
  2321. if(n != 2) off -= s->mb_stride;
  2322. q2 = s->current_picture.qscale_table[off];
  2323. if(q2 && q2 != q1)
  2324. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2325. }
  2326. if(a_avail && c_avail) {
  2327. if(abs(a - b) <= abs(b - c)) {
  2328. pred = c;
  2329. *dir_ptr = 1;//left
  2330. } else {
  2331. pred = a;
  2332. *dir_ptr = 0;//top
  2333. }
  2334. } else if(a_avail) {
  2335. pred = a;
  2336. *dir_ptr = 0;//top
  2337. } else if(c_avail) {
  2338. pred = c;
  2339. *dir_ptr = 1;//left
  2340. } else {
  2341. pred = 0;
  2342. *dir_ptr = 1;//left
  2343. }
  2344. /* update predictor */
  2345. *dc_val_ptr = &dc_val[0];
  2346. return pred;
  2347. }
  2348. /**
  2349. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2350. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2351. * @{
  2352. */
  2353. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2354. {
  2355. int xy, wrap, pred, a, b, c;
  2356. xy = s->block_index[n];
  2357. wrap = s->b8_stride;
  2358. /* B C
  2359. * A X
  2360. */
  2361. a = s->coded_block[xy - 1 ];
  2362. b = s->coded_block[xy - 1 - wrap];
  2363. c = s->coded_block[xy - wrap];
  2364. if (b == c) {
  2365. pred = a;
  2366. } else {
  2367. pred = c;
  2368. }
  2369. /* store value */
  2370. *coded_block_ptr = &s->coded_block[xy];
  2371. return pred;
  2372. }
  2373. /**
  2374. * Decode one AC coefficient
  2375. * @param v The VC1 context
  2376. * @param last Last coefficient
  2377. * @param skip How much zero coefficients to skip
  2378. * @param value Decoded AC coefficient value
  2379. * @see 8.1.3.4
  2380. */
  2381. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2382. {
  2383. GetBitContext *gb = &v->s.gb;
  2384. int index, escape, run = 0, level = 0, lst = 0;
  2385. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2386. if (index != vc1_ac_sizes[codingset] - 1) {
  2387. run = vc1_index_decode_table[codingset][index][0];
  2388. level = vc1_index_decode_table[codingset][index][1];
  2389. lst = index >= vc1_last_decode_table[codingset];
  2390. if(get_bits(gb, 1))
  2391. level = -level;
  2392. } else {
  2393. escape = decode210(gb);
  2394. if (escape != 2) {
  2395. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2396. run = vc1_index_decode_table[codingset][index][0];
  2397. level = vc1_index_decode_table[codingset][index][1];
  2398. lst = index >= vc1_last_decode_table[codingset];
  2399. if(escape == 0) {
  2400. if(lst)
  2401. level += vc1_last_delta_level_table[codingset][run];
  2402. else
  2403. level += vc1_delta_level_table[codingset][run];
  2404. } else {
  2405. if(lst)
  2406. run += vc1_last_delta_run_table[codingset][level] + 1;
  2407. else
  2408. run += vc1_delta_run_table[codingset][level] + 1;
  2409. }
  2410. if(get_bits(gb, 1))
  2411. level = -level;
  2412. } else {
  2413. int sign;
  2414. lst = get_bits(gb, 1);
  2415. if(v->s.esc3_level_length == 0) {
  2416. if(v->pq < 8 || v->dquantfrm) { // table 59
  2417. v->s.esc3_level_length = get_bits(gb, 3);
  2418. if(!v->s.esc3_level_length)
  2419. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2420. } else { //table 60
  2421. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2422. }
  2423. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2424. }
  2425. run = get_bits(gb, v->s.esc3_run_length);
  2426. sign = get_bits(gb, 1);
  2427. level = get_bits(gb, v->s.esc3_level_length);
  2428. if(sign)
  2429. level = -level;
  2430. }
  2431. }
  2432. *last = lst;
  2433. *skip = run;
  2434. *value = level;
  2435. }
  2436. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2437. * @param v VC1Context
  2438. * @param block block to decode
  2439. * @param coded are AC coeffs present or not
  2440. * @param codingset set of VLC to decode data
  2441. */
  2442. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2443. {
  2444. GetBitContext *gb = &v->s.gb;
  2445. MpegEncContext *s = &v->s;
  2446. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2447. int run_diff, i;
  2448. int16_t *dc_val;
  2449. int16_t *ac_val, *ac_val2;
  2450. int dcdiff;
  2451. /* Get DC differential */
  2452. if (n < 4) {
  2453. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2454. } else {
  2455. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2456. }
  2457. if (dcdiff < 0){
  2458. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2459. return -1;
  2460. }
  2461. if (dcdiff)
  2462. {
  2463. if (dcdiff == 119 /* ESC index value */)
  2464. {
  2465. /* TODO: Optimize */
  2466. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2467. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2468. else dcdiff = get_bits(gb, 8);
  2469. }
  2470. else
  2471. {
  2472. if (v->pq == 1)
  2473. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2474. else if (v->pq == 2)
  2475. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2476. }
  2477. if (get_bits(gb, 1))
  2478. dcdiff = -dcdiff;
  2479. }
  2480. /* Prediction */
  2481. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2482. *dc_val = dcdiff;
  2483. /* Store the quantized DC coeff, used for prediction */
  2484. if (n < 4) {
  2485. block[0] = dcdiff * s->y_dc_scale;
  2486. } else {
  2487. block[0] = dcdiff * s->c_dc_scale;
  2488. }
  2489. /* Skip ? */
  2490. run_diff = 0;
  2491. i = 0;
  2492. if (!coded) {
  2493. goto not_coded;
  2494. }
  2495. //AC Decoding
  2496. i = 1;
  2497. {
  2498. int last = 0, skip, value;
  2499. const int8_t *zz_table;
  2500. int scale;
  2501. int k;
  2502. scale = v->pq * 2 + v->halfpq;
  2503. if(v->s.ac_pred) {
  2504. if(!dc_pred_dir)
  2505. zz_table = vc1_horizontal_zz;
  2506. else
  2507. zz_table = vc1_vertical_zz;
  2508. } else
  2509. zz_table = vc1_normal_zz;
  2510. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2511. ac_val2 = ac_val;
  2512. if(dc_pred_dir) //left
  2513. ac_val -= 16;
  2514. else //top
  2515. ac_val -= 16 * s->block_wrap[n];
  2516. while (!last) {
  2517. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2518. i += skip;
  2519. if(i > 63)
  2520. break;
  2521. block[zz_table[i++]] = value;
  2522. }
  2523. /* apply AC prediction if needed */
  2524. if(s->ac_pred) {
  2525. if(dc_pred_dir) { //left
  2526. for(k = 1; k < 8; k++)
  2527. block[k << 3] += ac_val[k];
  2528. } else { //top
  2529. for(k = 1; k < 8; k++)
  2530. block[k] += ac_val[k + 8];
  2531. }
  2532. }
  2533. /* save AC coeffs for further prediction */
  2534. for(k = 1; k < 8; k++) {
  2535. ac_val2[k] = block[k << 3];
  2536. ac_val2[k + 8] = block[k];
  2537. }
  2538. /* scale AC coeffs */
  2539. for(k = 1; k < 64; k++)
  2540. if(block[k]) {
  2541. block[k] *= scale;
  2542. if(!v->pquantizer)
  2543. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2544. }
  2545. if(s->ac_pred) i = 63;
  2546. }
  2547. not_coded:
  2548. if(!coded) {
  2549. int k, scale;
  2550. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2551. ac_val2 = ac_val;
  2552. scale = v->pq * 2 + v->halfpq;
  2553. memset(ac_val2, 0, 16 * 2);
  2554. if(dc_pred_dir) {//left
  2555. ac_val -= 16;
  2556. if(s->ac_pred)
  2557. memcpy(ac_val2, ac_val, 8 * 2);
  2558. } else {//top
  2559. ac_val -= 16 * s->block_wrap[n];
  2560. if(s->ac_pred)
  2561. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2562. }
  2563. /* apply AC prediction if needed */
  2564. if(s->ac_pred) {
  2565. if(dc_pred_dir) { //left
  2566. for(k = 1; k < 8; k++) {
  2567. block[k << 3] = ac_val[k] * scale;
  2568. if(!v->pquantizer && block[k << 3])
  2569. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2570. }
  2571. } else { //top
  2572. for(k = 1; k < 8; k++) {
  2573. block[k] = ac_val[k + 8] * scale;
  2574. if(!v->pquantizer && block[k])
  2575. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2576. }
  2577. }
  2578. i = 63;
  2579. }
  2580. }
  2581. s->block_last_index[n] = i;
  2582. return 0;
  2583. }
  2584. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2585. * @param v VC1Context
  2586. * @param block block to decode
  2587. * @param coded are AC coeffs present or not
  2588. * @param codingset set of VLC to decode data
  2589. */
  2590. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2591. {
  2592. GetBitContext *gb = &v->s.gb;
  2593. MpegEncContext *s = &v->s;
  2594. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2595. int run_diff, i;
  2596. int16_t *dc_val;
  2597. int16_t *ac_val, *ac_val2;
  2598. int dcdiff;
  2599. int a_avail = v->a_avail, c_avail = v->c_avail;
  2600. int use_pred = s->ac_pred;
  2601. int scale;
  2602. int q1, q2 = 0;
  2603. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2604. /* Get DC differential */
  2605. if (n < 4) {
  2606. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2607. } else {
  2608. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2609. }
  2610. if (dcdiff < 0){
  2611. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2612. return -1;
  2613. }
  2614. if (dcdiff)
  2615. {
  2616. if (dcdiff == 119 /* ESC index value */)
  2617. {
  2618. /* TODO: Optimize */
  2619. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2620. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2621. else dcdiff = get_bits(gb, 8);
  2622. }
  2623. else
  2624. {
  2625. if (mquant == 1)
  2626. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2627. else if (mquant == 2)
  2628. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2629. }
  2630. if (get_bits(gb, 1))
  2631. dcdiff = -dcdiff;
  2632. }
  2633. /* Prediction */
  2634. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2635. *dc_val = dcdiff;
  2636. /* Store the quantized DC coeff, used for prediction */
  2637. if (n < 4) {
  2638. block[0] = dcdiff * s->y_dc_scale;
  2639. } else {
  2640. block[0] = dcdiff * s->c_dc_scale;
  2641. }
  2642. /* Skip ? */
  2643. run_diff = 0;
  2644. i = 0;
  2645. //AC Decoding
  2646. i = 1;
  2647. /* check if AC is needed at all and adjust direction if needed */
  2648. if(!a_avail) dc_pred_dir = 1;
  2649. if(!c_avail) dc_pred_dir = 0;
  2650. if(!a_avail && !c_avail) use_pred = 0;
  2651. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2652. ac_val2 = ac_val;
  2653. scale = mquant * 2 + v->halfpq;
  2654. if(dc_pred_dir) //left
  2655. ac_val -= 16;
  2656. else //top
  2657. ac_val -= 16 * s->block_wrap[n];
  2658. q1 = s->current_picture.qscale_table[mb_pos];
  2659. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2660. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2661. if(n && n<4) q2 = q1;
  2662. if(coded) {
  2663. int last = 0, skip, value;
  2664. const int8_t *zz_table;
  2665. int k;
  2666. if(v->s.ac_pred) {
  2667. if(!dc_pred_dir)
  2668. zz_table = vc1_horizontal_zz;
  2669. else
  2670. zz_table = vc1_vertical_zz;
  2671. } else
  2672. zz_table = vc1_normal_zz;
  2673. while (!last) {
  2674. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2675. i += skip;
  2676. if(i > 63)
  2677. break;
  2678. block[zz_table[i++]] = value;
  2679. }
  2680. /* apply AC prediction if needed */
  2681. if(use_pred) {
  2682. /* scale predictors if needed*/
  2683. if(q2 && q1!=q2) {
  2684. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2685. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2686. if(dc_pred_dir) { //left
  2687. for(k = 1; k < 8; k++)
  2688. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2689. } else { //top
  2690. for(k = 1; k < 8; k++)
  2691. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2692. }
  2693. } else {
  2694. if(dc_pred_dir) { //left
  2695. for(k = 1; k < 8; k++)
  2696. block[k << 3] += ac_val[k];
  2697. } else { //top
  2698. for(k = 1; k < 8; k++)
  2699. block[k] += ac_val[k + 8];
  2700. }
  2701. }
  2702. }
  2703. /* save AC coeffs for further prediction */
  2704. for(k = 1; k < 8; k++) {
  2705. ac_val2[k] = block[k << 3];
  2706. ac_val2[k + 8] = block[k];
  2707. }
  2708. /* scale AC coeffs */
  2709. for(k = 1; k < 64; k++)
  2710. if(block[k]) {
  2711. block[k] *= scale;
  2712. if(!v->pquantizer)
  2713. block[k] += (block[k] < 0) ? -mquant : mquant;
  2714. }
  2715. if(use_pred) i = 63;
  2716. } else { // no AC coeffs
  2717. int k;
  2718. memset(ac_val2, 0, 16 * 2);
  2719. if(dc_pred_dir) {//left
  2720. if(use_pred) {
  2721. memcpy(ac_val2, ac_val, 8 * 2);
  2722. if(q2 && q1!=q2) {
  2723. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2724. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2725. for(k = 1; k < 8; k++)
  2726. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2727. }
  2728. }
  2729. } else {//top
  2730. if(use_pred) {
  2731. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2732. if(q2 && q1!=q2) {
  2733. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2734. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2735. for(k = 1; k < 8; k++)
  2736. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2737. }
  2738. }
  2739. }
  2740. /* apply AC prediction if needed */
  2741. if(use_pred) {
  2742. if(dc_pred_dir) { //left
  2743. for(k = 1; k < 8; k++) {
  2744. block[k << 3] = ac_val2[k] * scale;
  2745. if(!v->pquantizer && block[k << 3])
  2746. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2747. }
  2748. } else { //top
  2749. for(k = 1; k < 8; k++) {
  2750. block[k] = ac_val2[k + 8] * scale;
  2751. if(!v->pquantizer && block[k])
  2752. block[k] += (block[k] < 0) ? -mquant : mquant;
  2753. }
  2754. }
  2755. i = 63;
  2756. }
  2757. }
  2758. s->block_last_index[n] = i;
  2759. return 0;
  2760. }
  2761. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2762. * @param v VC1Context
  2763. * @param block block to decode
  2764. * @param coded are AC coeffs present or not
  2765. * @param mquant block quantizer
  2766. * @param codingset set of VLC to decode data
  2767. */
  2768. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2769. {
  2770. GetBitContext *gb = &v->s.gb;
  2771. MpegEncContext *s = &v->s;
  2772. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2773. int run_diff, i;
  2774. int16_t *dc_val;
  2775. int16_t *ac_val, *ac_val2;
  2776. int dcdiff;
  2777. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2778. int a_avail = v->a_avail, c_avail = v->c_avail;
  2779. int use_pred = s->ac_pred;
  2780. int scale;
  2781. int q1, q2 = 0;
  2782. /* XXX: Guard against dumb values of mquant */
  2783. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2784. /* Set DC scale - y and c use the same */
  2785. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2786. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2787. /* Get DC differential */
  2788. if (n < 4) {
  2789. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2790. } else {
  2791. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2792. }
  2793. if (dcdiff < 0){
  2794. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2795. return -1;
  2796. }
  2797. if (dcdiff)
  2798. {
  2799. if (dcdiff == 119 /* ESC index value */)
  2800. {
  2801. /* TODO: Optimize */
  2802. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2803. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2804. else dcdiff = get_bits(gb, 8);
  2805. }
  2806. else
  2807. {
  2808. if (mquant == 1)
  2809. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2810. else if (mquant == 2)
  2811. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2812. }
  2813. if (get_bits(gb, 1))
  2814. dcdiff = -dcdiff;
  2815. }
  2816. /* Prediction */
  2817. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2818. *dc_val = dcdiff;
  2819. /* Store the quantized DC coeff, used for prediction */
  2820. if (n < 4) {
  2821. block[0] = dcdiff * s->y_dc_scale;
  2822. } else {
  2823. block[0] = dcdiff * s->c_dc_scale;
  2824. }
  2825. /* Skip ? */
  2826. run_diff = 0;
  2827. i = 0;
  2828. //AC Decoding
  2829. i = 1;
  2830. /* check if AC is needed at all and adjust direction if needed */
  2831. if(!a_avail) dc_pred_dir = 1;
  2832. if(!c_avail) dc_pred_dir = 0;
  2833. if(!a_avail && !c_avail) use_pred = 0;
  2834. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2835. ac_val2 = ac_val;
  2836. scale = mquant * 2 + v->halfpq;
  2837. if(dc_pred_dir) //left
  2838. ac_val -= 16;
  2839. else //top
  2840. ac_val -= 16 * s->block_wrap[n];
  2841. q1 = s->current_picture.qscale_table[mb_pos];
  2842. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2843. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2844. if(n && n<4) q2 = q1;
  2845. if(coded) {
  2846. int last = 0, skip, value;
  2847. const int8_t *zz_table;
  2848. int k;
  2849. zz_table = vc1_simple_progressive_8x8_zz;
  2850. while (!last) {
  2851. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2852. i += skip;
  2853. if(i > 63)
  2854. break;
  2855. block[zz_table[i++]] = value;
  2856. }
  2857. /* apply AC prediction if needed */
  2858. if(use_pred) {
  2859. /* scale predictors if needed*/
  2860. if(q2 && q1!=q2) {
  2861. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2862. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2863. if(dc_pred_dir) { //left
  2864. for(k = 1; k < 8; k++)
  2865. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2866. } else { //top
  2867. for(k = 1; k < 8; k++)
  2868. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2869. }
  2870. } else {
  2871. if(dc_pred_dir) { //left
  2872. for(k = 1; k < 8; k++)
  2873. block[k << 3] += ac_val[k];
  2874. } else { //top
  2875. for(k = 1; k < 8; k++)
  2876. block[k] += ac_val[k + 8];
  2877. }
  2878. }
  2879. }
  2880. /* save AC coeffs for further prediction */
  2881. for(k = 1; k < 8; k++) {
  2882. ac_val2[k] = block[k << 3];
  2883. ac_val2[k + 8] = block[k];
  2884. }
  2885. /* scale AC coeffs */
  2886. for(k = 1; k < 64; k++)
  2887. if(block[k]) {
  2888. block[k] *= scale;
  2889. if(!v->pquantizer)
  2890. block[k] += (block[k] < 0) ? -mquant : mquant;
  2891. }
  2892. if(use_pred) i = 63;
  2893. } else { // no AC coeffs
  2894. int k;
  2895. memset(ac_val2, 0, 16 * 2);
  2896. if(dc_pred_dir) {//left
  2897. if(use_pred) {
  2898. memcpy(ac_val2, ac_val, 8 * 2);
  2899. if(q2 && q1!=q2) {
  2900. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2901. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2902. for(k = 1; k < 8; k++)
  2903. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2904. }
  2905. }
  2906. } else {//top
  2907. if(use_pred) {
  2908. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2909. if(q2 && q1!=q2) {
  2910. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2911. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2912. for(k = 1; k < 8; k++)
  2913. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2914. }
  2915. }
  2916. }
  2917. /* apply AC prediction if needed */
  2918. if(use_pred) {
  2919. if(dc_pred_dir) { //left
  2920. for(k = 1; k < 8; k++) {
  2921. block[k << 3] = ac_val2[k] * scale;
  2922. if(!v->pquantizer && block[k << 3])
  2923. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2924. }
  2925. } else { //top
  2926. for(k = 1; k < 8; k++) {
  2927. block[k] = ac_val2[k + 8] * scale;
  2928. if(!v->pquantizer && block[k])
  2929. block[k] += (block[k] < 0) ? -mquant : mquant;
  2930. }
  2931. }
  2932. i = 63;
  2933. }
  2934. }
  2935. s->block_last_index[n] = i;
  2936. return 0;
  2937. }
  2938. /** Decode P block
  2939. */
  2940. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2941. {
  2942. MpegEncContext *s = &v->s;
  2943. GetBitContext *gb = &s->gb;
  2944. int i, j;
  2945. int subblkpat = 0;
  2946. int scale, off, idx, last, skip, value;
  2947. int ttblk = ttmb & 7;
  2948. if(ttmb == -1) {
  2949. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2950. }
  2951. if(ttblk == TT_4X4) {
  2952. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2953. }
  2954. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2955. subblkpat = decode012(gb);
  2956. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2957. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2958. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2959. }
  2960. scale = 2 * mquant + v->halfpq;
  2961. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2962. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2963. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2964. ttblk = TT_8X4;
  2965. }
  2966. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2967. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2968. ttblk = TT_4X8;
  2969. }
  2970. switch(ttblk) {
  2971. case TT_8X8:
  2972. i = 0;
  2973. last = 0;
  2974. while (!last) {
  2975. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2976. i += skip;
  2977. if(i > 63)
  2978. break;
  2979. idx = vc1_simple_progressive_8x8_zz[i++];
  2980. block[idx] = value * scale;
  2981. if(!v->pquantizer)
  2982. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2983. }
  2984. s->dsp.vc1_inv_trans_8x8(block);
  2985. break;
  2986. case TT_4X4:
  2987. for(j = 0; j < 4; j++) {
  2988. last = subblkpat & (1 << (3 - j));
  2989. i = 0;
  2990. off = (j & 1) * 4 + (j & 2) * 16;
  2991. while (!last) {
  2992. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2993. i += skip;
  2994. if(i > 15)
  2995. break;
  2996. idx = vc1_simple_progressive_4x4_zz[i++];
  2997. block[idx + off] = value * scale;
  2998. if(!v->pquantizer)
  2999. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3000. }
  3001. if(!(subblkpat & (1 << (3 - j))))
  3002. s->dsp.vc1_inv_trans_4x4(block, j);
  3003. }
  3004. break;
  3005. case TT_8X4:
  3006. for(j = 0; j < 2; j++) {
  3007. last = subblkpat & (1 << (1 - j));
  3008. i = 0;
  3009. off = j * 32;
  3010. while (!last) {
  3011. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3012. i += skip;
  3013. if(i > 31)
  3014. break;
  3015. if(v->profile < PROFILE_ADVANCED)
  3016. idx = vc1_simple_progressive_8x4_zz[i++];
  3017. else
  3018. idx = vc1_adv_progressive_8x4_zz[i++];
  3019. block[idx + off] = value * scale;
  3020. if(!v->pquantizer)
  3021. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3022. }
  3023. if(!(subblkpat & (1 << (1 - j))))
  3024. s->dsp.vc1_inv_trans_8x4(block, j);
  3025. }
  3026. break;
  3027. case TT_4X8:
  3028. for(j = 0; j < 2; j++) {
  3029. last = subblkpat & (1 << (1 - j));
  3030. i = 0;
  3031. off = j * 4;
  3032. while (!last) {
  3033. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3034. i += skip;
  3035. if(i > 31)
  3036. break;
  3037. if(v->profile < PROFILE_ADVANCED)
  3038. idx = vc1_simple_progressive_4x8_zz[i++];
  3039. else
  3040. idx = vc1_adv_progressive_4x8_zz[i++];
  3041. block[idx + off] = value * scale;
  3042. if(!v->pquantizer)
  3043. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3044. }
  3045. if(!(subblkpat & (1 << (1 - j))))
  3046. s->dsp.vc1_inv_trans_4x8(block, j);
  3047. }
  3048. break;
  3049. }
  3050. return 0;
  3051. }
  3052. /** Decode one P-frame MB (in Simple/Main profile)
  3053. */
  3054. static int vc1_decode_p_mb(VC1Context *v)
  3055. {
  3056. MpegEncContext *s = &v->s;
  3057. GetBitContext *gb = &s->gb;
  3058. int i, j;
  3059. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3060. int cbp; /* cbp decoding stuff */
  3061. int mqdiff, mquant; /* MB quantization */
  3062. int ttmb = v->ttfrm; /* MB Transform type */
  3063. int status;
  3064. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3065. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3066. int mb_has_coeffs = 1; /* last_flag */
  3067. int dmv_x, dmv_y; /* Differential MV components */
  3068. int index, index1; /* LUT indices */
  3069. int val, sign; /* temp values */
  3070. int first_block = 1;
  3071. int dst_idx, off;
  3072. int skipped, fourmv;
  3073. mquant = v->pq; /* Loosy initialization */
  3074. if (v->mv_type_is_raw)
  3075. fourmv = get_bits1(gb);
  3076. else
  3077. fourmv = v->mv_type_mb_plane[mb_pos];
  3078. if (v->skip_is_raw)
  3079. skipped = get_bits1(gb);
  3080. else
  3081. skipped = v->s.mbskip_table[mb_pos];
  3082. s->dsp.clear_blocks(s->block[0]);
  3083. if (!fourmv) /* 1MV mode */
  3084. {
  3085. if (!skipped)
  3086. {
  3087. GET_MVDATA(dmv_x, dmv_y);
  3088. if (s->mb_intra) {
  3089. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3090. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3091. }
  3092. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3093. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3094. /* FIXME Set DC val for inter block ? */
  3095. if (s->mb_intra && !mb_has_coeffs)
  3096. {
  3097. GET_MQUANT();
  3098. s->ac_pred = get_bits(gb, 1);
  3099. cbp = 0;
  3100. }
  3101. else if (mb_has_coeffs)
  3102. {
  3103. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3104. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3105. GET_MQUANT();
  3106. }
  3107. else
  3108. {
  3109. mquant = v->pq;
  3110. cbp = 0;
  3111. }
  3112. s->current_picture.qscale_table[mb_pos] = mquant;
  3113. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3114. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3115. VC1_TTMB_VLC_BITS, 2);
  3116. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3117. dst_idx = 0;
  3118. for (i=0; i<6; i++)
  3119. {
  3120. s->dc_val[0][s->block_index[i]] = 0;
  3121. dst_idx += i >> 2;
  3122. val = ((cbp >> (5 - i)) & 1);
  3123. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3124. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3125. if(s->mb_intra) {
  3126. /* check if prediction blocks A and C are available */
  3127. v->a_avail = v->c_avail = 0;
  3128. if(i == 2 || i == 3 || !s->first_slice_line)
  3129. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3130. if(i == 1 || i == 3 || s->mb_x)
  3131. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3132. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3133. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3134. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3135. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3136. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3137. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3138. if(v->pq >= 9 && v->overlap) {
  3139. if(v->c_avail)
  3140. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3141. if(v->a_avail)
  3142. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3143. }
  3144. } else if(val) {
  3145. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3146. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3147. first_block = 0;
  3148. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3149. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3150. }
  3151. }
  3152. }
  3153. else //Skipped
  3154. {
  3155. s->mb_intra = 0;
  3156. for(i = 0; i < 6; i++) {
  3157. v->mb_type[0][s->block_index[i]] = 0;
  3158. s->dc_val[0][s->block_index[i]] = 0;
  3159. }
  3160. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3161. s->current_picture.qscale_table[mb_pos] = 0;
  3162. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3163. vc1_mc_1mv(v, 0);
  3164. return 0;
  3165. }
  3166. } //1MV mode
  3167. else //4MV mode
  3168. {
  3169. if (!skipped /* unskipped MB */)
  3170. {
  3171. int intra_count = 0, coded_inter = 0;
  3172. int is_intra[6], is_coded[6];
  3173. /* Get CBPCY */
  3174. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3175. for (i=0; i<6; i++)
  3176. {
  3177. val = ((cbp >> (5 - i)) & 1);
  3178. s->dc_val[0][s->block_index[i]] = 0;
  3179. s->mb_intra = 0;
  3180. if(i < 4) {
  3181. dmv_x = dmv_y = 0;
  3182. s->mb_intra = 0;
  3183. mb_has_coeffs = 0;
  3184. if(val) {
  3185. GET_MVDATA(dmv_x, dmv_y);
  3186. }
  3187. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3188. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3189. intra_count += s->mb_intra;
  3190. is_intra[i] = s->mb_intra;
  3191. is_coded[i] = mb_has_coeffs;
  3192. }
  3193. if(i&4){
  3194. is_intra[i] = (intra_count >= 3);
  3195. is_coded[i] = val;
  3196. }
  3197. if(i == 4) vc1_mc_4mv_chroma(v);
  3198. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3199. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3200. }
  3201. // if there are no coded blocks then don't do anything more
  3202. if(!intra_count && !coded_inter) return 0;
  3203. dst_idx = 0;
  3204. GET_MQUANT();
  3205. s->current_picture.qscale_table[mb_pos] = mquant;
  3206. /* test if block is intra and has pred */
  3207. {
  3208. int intrapred = 0;
  3209. for(i=0; i<6; i++)
  3210. if(is_intra[i]) {
  3211. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3212. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3213. intrapred = 1;
  3214. break;
  3215. }
  3216. }
  3217. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3218. else s->ac_pred = 0;
  3219. }
  3220. if (!v->ttmbf && coded_inter)
  3221. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3222. for (i=0; i<6; i++)
  3223. {
  3224. dst_idx += i >> 2;
  3225. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3226. s->mb_intra = is_intra[i];
  3227. if (is_intra[i]) {
  3228. /* check if prediction blocks A and C are available */
  3229. v->a_avail = v->c_avail = 0;
  3230. if(i == 2 || i == 3 || !s->first_slice_line)
  3231. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3232. if(i == 1 || i == 3 || s->mb_x)
  3233. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3234. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3235. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3236. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3237. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3238. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3239. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3240. if(v->pq >= 9 && v->overlap) {
  3241. if(v->c_avail)
  3242. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3243. if(v->a_avail)
  3244. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3245. }
  3246. } else if(is_coded[i]) {
  3247. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3248. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3249. first_block = 0;
  3250. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3251. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3252. }
  3253. }
  3254. return status;
  3255. }
  3256. else //Skipped MB
  3257. {
  3258. s->mb_intra = 0;
  3259. s->current_picture.qscale_table[mb_pos] = 0;
  3260. for (i=0; i<6; i++) {
  3261. v->mb_type[0][s->block_index[i]] = 0;
  3262. s->dc_val[0][s->block_index[i]] = 0;
  3263. }
  3264. for (i=0; i<4; i++)
  3265. {
  3266. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3267. vc1_mc_4mv_luma(v, i);
  3268. }
  3269. vc1_mc_4mv_chroma(v);
  3270. s->current_picture.qscale_table[mb_pos] = 0;
  3271. return 0;
  3272. }
  3273. }
  3274. /* Should never happen */
  3275. return -1;
  3276. }
  3277. /** Decode one B-frame MB (in Main profile)
  3278. */
  3279. static void vc1_decode_b_mb(VC1Context *v)
  3280. {
  3281. MpegEncContext *s = &v->s;
  3282. GetBitContext *gb = &s->gb;
  3283. int i, j;
  3284. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3285. int cbp = 0; /* cbp decoding stuff */
  3286. int mqdiff, mquant; /* MB quantization */
  3287. int ttmb = v->ttfrm; /* MB Transform type */
  3288. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3289. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3290. int mb_has_coeffs = 0; /* last_flag */
  3291. int index, index1; /* LUT indices */
  3292. int val, sign; /* temp values */
  3293. int first_block = 1;
  3294. int dst_idx, off;
  3295. int skipped, direct;
  3296. int dmv_x[2], dmv_y[2];
  3297. int bmvtype = BMV_TYPE_BACKWARD;
  3298. mquant = v->pq; /* Loosy initialization */
  3299. s->mb_intra = 0;
  3300. if (v->dmb_is_raw)
  3301. direct = get_bits1(gb);
  3302. else
  3303. direct = v->direct_mb_plane[mb_pos];
  3304. if (v->skip_is_raw)
  3305. skipped = get_bits1(gb);
  3306. else
  3307. skipped = v->s.mbskip_table[mb_pos];
  3308. s->dsp.clear_blocks(s->block[0]);
  3309. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3310. for(i = 0; i < 6; i++) {
  3311. v->mb_type[0][s->block_index[i]] = 0;
  3312. s->dc_val[0][s->block_index[i]] = 0;
  3313. }
  3314. s->current_picture.qscale_table[mb_pos] = 0;
  3315. if (!direct) {
  3316. if (!skipped) {
  3317. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3318. dmv_x[1] = dmv_x[0];
  3319. dmv_y[1] = dmv_y[0];
  3320. }
  3321. if(skipped || !s->mb_intra) {
  3322. bmvtype = decode012(gb);
  3323. switch(bmvtype) {
  3324. case 0:
  3325. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3326. break;
  3327. case 1:
  3328. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3329. break;
  3330. case 2:
  3331. bmvtype = BMV_TYPE_INTERPOLATED;
  3332. dmv_x[0] = dmv_y[0] = 0;
  3333. }
  3334. }
  3335. }
  3336. for(i = 0; i < 6; i++)
  3337. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3338. if (skipped) {
  3339. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3340. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3341. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3342. return;
  3343. }
  3344. if (direct) {
  3345. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3346. GET_MQUANT();
  3347. s->mb_intra = 0;
  3348. mb_has_coeffs = 0;
  3349. s->current_picture.qscale_table[mb_pos] = mquant;
  3350. if(!v->ttmbf)
  3351. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3352. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3353. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3354. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3355. } else {
  3356. if(!mb_has_coeffs && !s->mb_intra) {
  3357. /* no coded blocks - effectively skipped */
  3358. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3359. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3360. return;
  3361. }
  3362. if(s->mb_intra && !mb_has_coeffs) {
  3363. GET_MQUANT();
  3364. s->current_picture.qscale_table[mb_pos] = mquant;
  3365. s->ac_pred = get_bits1(gb);
  3366. cbp = 0;
  3367. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3368. } else {
  3369. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3370. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3371. if(!mb_has_coeffs) {
  3372. /* interpolated skipped block */
  3373. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3374. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3375. return;
  3376. }
  3377. }
  3378. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3379. if(!s->mb_intra) {
  3380. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3381. }
  3382. if(s->mb_intra)
  3383. s->ac_pred = get_bits1(gb);
  3384. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3385. GET_MQUANT();
  3386. s->current_picture.qscale_table[mb_pos] = mquant;
  3387. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3388. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3389. }
  3390. }
  3391. dst_idx = 0;
  3392. for (i=0; i<6; i++)
  3393. {
  3394. s->dc_val[0][s->block_index[i]] = 0;
  3395. dst_idx += i >> 2;
  3396. val = ((cbp >> (5 - i)) & 1);
  3397. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3398. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3399. if(s->mb_intra) {
  3400. /* check if prediction blocks A and C are available */
  3401. v->a_avail = v->c_avail = 0;
  3402. if(i == 2 || i == 3 || !s->first_slice_line)
  3403. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3404. if(i == 1 || i == 3 || s->mb_x)
  3405. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3406. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3407. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3408. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3409. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3410. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3411. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3412. } else if(val) {
  3413. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3414. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3415. first_block = 0;
  3416. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3417. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3418. }
  3419. }
  3420. }
  3421. /** Decode blocks of I-frame
  3422. */
  3423. static void vc1_decode_i_blocks(VC1Context *v)
  3424. {
  3425. int k, j;
  3426. MpegEncContext *s = &v->s;
  3427. int cbp, val;
  3428. uint8_t *coded_val;
  3429. int mb_pos;
  3430. /* select codingmode used for VLC tables selection */
  3431. switch(v->y_ac_table_index){
  3432. case 0:
  3433. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3434. break;
  3435. case 1:
  3436. v->codingset = CS_HIGH_MOT_INTRA;
  3437. break;
  3438. case 2:
  3439. v->codingset = CS_MID_RATE_INTRA;
  3440. break;
  3441. }
  3442. switch(v->c_ac_table_index){
  3443. case 0:
  3444. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3445. break;
  3446. case 1:
  3447. v->codingset2 = CS_HIGH_MOT_INTER;
  3448. break;
  3449. case 2:
  3450. v->codingset2 = CS_MID_RATE_INTER;
  3451. break;
  3452. }
  3453. /* Set DC scale - y and c use the same */
  3454. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3455. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3456. //do frame decode
  3457. s->mb_x = s->mb_y = 0;
  3458. s->mb_intra = 1;
  3459. s->first_slice_line = 1;
  3460. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3461. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3462. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3463. ff_init_block_index(s);
  3464. ff_update_block_index(s);
  3465. s->dsp.clear_blocks(s->block[0]);
  3466. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3467. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3468. s->current_picture.qscale_table[mb_pos] = v->pq;
  3469. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3470. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3471. // do actual MB decoding and displaying
  3472. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3473. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3474. for(k = 0; k < 6; k++) {
  3475. val = ((cbp >> (5 - k)) & 1);
  3476. if (k < 4) {
  3477. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3478. val = val ^ pred;
  3479. *coded_val = val;
  3480. }
  3481. cbp |= val << (5 - k);
  3482. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3483. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3484. if(v->pq >= 9 && v->overlap) {
  3485. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3486. }
  3487. }
  3488. vc1_put_block(v, s->block);
  3489. if(v->pq >= 9 && v->overlap) {
  3490. if(s->mb_x) {
  3491. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3492. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3493. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3494. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3495. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3496. }
  3497. }
  3498. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3499. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3500. if(!s->first_slice_line) {
  3501. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3502. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3503. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3504. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3505. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3506. }
  3507. }
  3508. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3509. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3510. }
  3511. if(get_bits_count(&s->gb) > v->bits) {
  3512. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3513. return;
  3514. }
  3515. }
  3516. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3517. s->first_slice_line = 0;
  3518. }
  3519. }
  3520. /** Decode blocks of I-frame for advanced profile
  3521. */
  3522. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3523. {
  3524. int k, j;
  3525. MpegEncContext *s = &v->s;
  3526. int cbp, val;
  3527. uint8_t *coded_val;
  3528. int mb_pos;
  3529. int mquant = v->pq;
  3530. int mqdiff;
  3531. int overlap;
  3532. GetBitContext *gb = &s->gb;
  3533. /* select codingmode used for VLC tables selection */
  3534. switch(v->y_ac_table_index){
  3535. case 0:
  3536. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3537. break;
  3538. case 1:
  3539. v->codingset = CS_HIGH_MOT_INTRA;
  3540. break;
  3541. case 2:
  3542. v->codingset = CS_MID_RATE_INTRA;
  3543. break;
  3544. }
  3545. switch(v->c_ac_table_index){
  3546. case 0:
  3547. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3548. break;
  3549. case 1:
  3550. v->codingset2 = CS_HIGH_MOT_INTER;
  3551. break;
  3552. case 2:
  3553. v->codingset2 = CS_MID_RATE_INTER;
  3554. break;
  3555. }
  3556. //do frame decode
  3557. s->mb_x = s->mb_y = 0;
  3558. s->mb_intra = 1;
  3559. s->first_slice_line = 1;
  3560. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3561. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3562. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3563. ff_init_block_index(s);
  3564. ff_update_block_index(s);
  3565. s->dsp.clear_blocks(s->block[0]);
  3566. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3567. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3568. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3569. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3570. // do actual MB decoding and displaying
  3571. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3572. if(v->acpred_is_raw)
  3573. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3574. else
  3575. v->s.ac_pred = v->acpred_plane[mb_pos];
  3576. if(v->condover == CONDOVER_SELECT) {
  3577. if(v->overflg_is_raw)
  3578. overlap = get_bits(&v->s.gb, 1);
  3579. else
  3580. overlap = v->over_flags_plane[mb_pos];
  3581. } else
  3582. overlap = (v->condover == CONDOVER_ALL);
  3583. GET_MQUANT();
  3584. s->current_picture.qscale_table[mb_pos] = mquant;
  3585. /* Set DC scale - y and c use the same */
  3586. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3587. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3588. for(k = 0; k < 6; k++) {
  3589. val = ((cbp >> (5 - k)) & 1);
  3590. if (k < 4) {
  3591. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3592. val = val ^ pred;
  3593. *coded_val = val;
  3594. }
  3595. cbp |= val << (5 - k);
  3596. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3597. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3598. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3599. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3600. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3601. }
  3602. vc1_put_block(v, s->block);
  3603. if(overlap) {
  3604. if(s->mb_x) {
  3605. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3606. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3607. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3608. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3609. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3610. }
  3611. }
  3612. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3613. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3614. if(!s->first_slice_line) {
  3615. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3616. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3617. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3618. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3619. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3620. }
  3621. }
  3622. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3623. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3624. }
  3625. if(get_bits_count(&s->gb) > v->bits) {
  3626. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3627. return;
  3628. }
  3629. }
  3630. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3631. s->first_slice_line = 0;
  3632. }
  3633. }
  3634. static void vc1_decode_p_blocks(VC1Context *v)
  3635. {
  3636. MpegEncContext *s = &v->s;
  3637. /* select codingmode used for VLC tables selection */
  3638. switch(v->c_ac_table_index){
  3639. case 0:
  3640. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3641. break;
  3642. case 1:
  3643. v->codingset = CS_HIGH_MOT_INTRA;
  3644. break;
  3645. case 2:
  3646. v->codingset = CS_MID_RATE_INTRA;
  3647. break;
  3648. }
  3649. switch(v->c_ac_table_index){
  3650. case 0:
  3651. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3652. break;
  3653. case 1:
  3654. v->codingset2 = CS_HIGH_MOT_INTER;
  3655. break;
  3656. case 2:
  3657. v->codingset2 = CS_MID_RATE_INTER;
  3658. break;
  3659. }
  3660. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3661. s->first_slice_line = 1;
  3662. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3663. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3664. ff_init_block_index(s);
  3665. ff_update_block_index(s);
  3666. s->dsp.clear_blocks(s->block[0]);
  3667. vc1_decode_p_mb(v);
  3668. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3669. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3670. return;
  3671. }
  3672. }
  3673. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3674. s->first_slice_line = 0;
  3675. }
  3676. }
  3677. static void vc1_decode_b_blocks(VC1Context *v)
  3678. {
  3679. MpegEncContext *s = &v->s;
  3680. /* select codingmode used for VLC tables selection */
  3681. switch(v->c_ac_table_index){
  3682. case 0:
  3683. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3684. break;
  3685. case 1:
  3686. v->codingset = CS_HIGH_MOT_INTRA;
  3687. break;
  3688. case 2:
  3689. v->codingset = CS_MID_RATE_INTRA;
  3690. break;
  3691. }
  3692. switch(v->c_ac_table_index){
  3693. case 0:
  3694. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3695. break;
  3696. case 1:
  3697. v->codingset2 = CS_HIGH_MOT_INTER;
  3698. break;
  3699. case 2:
  3700. v->codingset2 = CS_MID_RATE_INTER;
  3701. break;
  3702. }
  3703. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3704. s->first_slice_line = 1;
  3705. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3706. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3707. ff_init_block_index(s);
  3708. ff_update_block_index(s);
  3709. s->dsp.clear_blocks(s->block[0]);
  3710. vc1_decode_b_mb(v);
  3711. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3712. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3713. return;
  3714. }
  3715. }
  3716. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3717. s->first_slice_line = 0;
  3718. }
  3719. }
  3720. static void vc1_decode_skip_blocks(VC1Context *v)
  3721. {
  3722. MpegEncContext *s = &v->s;
  3723. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3724. s->first_slice_line = 1;
  3725. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3726. s->mb_x = 0;
  3727. ff_init_block_index(s);
  3728. ff_update_block_index(s);
  3729. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3730. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3731. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3732. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3733. s->first_slice_line = 0;
  3734. }
  3735. s->pict_type = P_TYPE;
  3736. }
  3737. static void vc1_decode_blocks(VC1Context *v)
  3738. {
  3739. v->s.esc3_level_length = 0;
  3740. switch(v->s.pict_type) {
  3741. case I_TYPE:
  3742. if(v->profile == PROFILE_ADVANCED)
  3743. vc1_decode_i_blocks_adv(v);
  3744. else
  3745. vc1_decode_i_blocks(v);
  3746. break;
  3747. case P_TYPE:
  3748. if(v->p_frame_skipped)
  3749. vc1_decode_skip_blocks(v);
  3750. else
  3751. vc1_decode_p_blocks(v);
  3752. break;
  3753. case B_TYPE:
  3754. if(v->bi_type){
  3755. if(v->profile == PROFILE_ADVANCED)
  3756. vc1_decode_i_blocks_adv(v);
  3757. else
  3758. vc1_decode_i_blocks(v);
  3759. }else
  3760. vc1_decode_b_blocks(v);
  3761. break;
  3762. }
  3763. }
  3764. #define IS_MARKER(x) (((x) & ~0xFF) == VC1_CODE_RES0)
  3765. /** Find VC-1 marker in buffer
  3766. * @return position where next marker starts or end of buffer if no marker found
  3767. */
  3768. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3769. {
  3770. uint32_t mrk = 0xFFFFFFFF;
  3771. if(end-src < 4) return end;
  3772. while(src < end){
  3773. mrk = (mrk << 8) | *src++;
  3774. if(IS_MARKER(mrk))
  3775. return src-4;
  3776. }
  3777. return end;
  3778. }
  3779. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3780. {
  3781. int dsize = 0, i;
  3782. if(size < 4){
  3783. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3784. return size;
  3785. }
  3786. for(i = 0; i < size; i++, src++) {
  3787. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3788. dst[dsize++] = src[1];
  3789. src++;
  3790. i++;
  3791. } else
  3792. dst[dsize++] = *src;
  3793. }
  3794. return dsize;
  3795. }
  3796. /** Initialize a VC1/WMV3 decoder
  3797. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3798. * @todo TODO: Decypher remaining bits in extra_data
  3799. */
  3800. static int vc1_decode_init(AVCodecContext *avctx)
  3801. {
  3802. VC1Context *v = avctx->priv_data;
  3803. MpegEncContext *s = &v->s;
  3804. GetBitContext gb;
  3805. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3806. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3807. avctx->pix_fmt = PIX_FMT_YUV420P;
  3808. else
  3809. avctx->pix_fmt = PIX_FMT_GRAY8;
  3810. v->s.avctx = avctx;
  3811. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3812. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3813. if(ff_h263_decode_init(avctx) < 0)
  3814. return -1;
  3815. if (vc1_init_common(v) < 0) return -1;
  3816. avctx->coded_width = avctx->width;
  3817. avctx->coded_height = avctx->height;
  3818. if (avctx->codec_id == CODEC_ID_WMV3)
  3819. {
  3820. int count = 0;
  3821. // looks like WMV3 has a sequence header stored in the extradata
  3822. // advanced sequence header may be before the first frame
  3823. // the last byte of the extradata is a version number, 1 for the
  3824. // samples we can decode
  3825. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3826. if (decode_sequence_header(avctx, &gb) < 0)
  3827. return -1;
  3828. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3829. if (count>0)
  3830. {
  3831. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3832. count, get_bits(&gb, count));
  3833. }
  3834. else if (count < 0)
  3835. {
  3836. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3837. }
  3838. } else { // VC1/WVC1
  3839. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3840. uint8_t *next; int size, buf2_size;
  3841. uint8_t *buf2 = NULL;
  3842. int seq_inited = 0, ep_inited = 0;
  3843. if(avctx->extradata_size < 16) {
  3844. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3845. return -1;
  3846. }
  3847. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3848. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3849. next = start;
  3850. for(; next < end; start = next){
  3851. next = find_next_marker(start + 4, end);
  3852. size = next - start - 4;
  3853. if(size <= 0) continue;
  3854. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3855. init_get_bits(&gb, buf2, buf2_size * 8);
  3856. switch(AV_RB32(start)){
  3857. case VC1_CODE_SEQHDR:
  3858. if(decode_sequence_header(avctx, &gb) < 0){
  3859. av_free(buf2);
  3860. return -1;
  3861. }
  3862. seq_inited = 1;
  3863. break;
  3864. case VC1_CODE_ENTRYPOINT:
  3865. if(decode_entry_point(avctx, &gb) < 0){
  3866. av_free(buf2);
  3867. return -1;
  3868. }
  3869. ep_inited = 1;
  3870. break;
  3871. }
  3872. }
  3873. av_free(buf2);
  3874. if(!seq_inited || !ep_inited){
  3875. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3876. return -1;
  3877. }
  3878. }
  3879. avctx->has_b_frames= !!(avctx->max_b_frames);
  3880. s->low_delay = !avctx->has_b_frames;
  3881. s->mb_width = (avctx->coded_width+15)>>4;
  3882. s->mb_height = (avctx->coded_height+15)>>4;
  3883. /* Allocate mb bitplanes */
  3884. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3885. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3886. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3887. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3888. /* allocate block type info in that way so it could be used with s->block_index[] */
  3889. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3890. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3891. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3892. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3893. /* Init coded blocks info */
  3894. if (v->profile == PROFILE_ADVANCED)
  3895. {
  3896. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3897. // return -1;
  3898. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3899. // return -1;
  3900. }
  3901. return 0;
  3902. }
  3903. /** Decode a VC1/WMV3 frame
  3904. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3905. */
  3906. static int vc1_decode_frame(AVCodecContext *avctx,
  3907. void *data, int *data_size,
  3908. uint8_t *buf, int buf_size)
  3909. {
  3910. VC1Context *v = avctx->priv_data;
  3911. MpegEncContext *s = &v->s;
  3912. AVFrame *pict = data;
  3913. uint8_t *buf2 = NULL;
  3914. /* no supplementary picture */
  3915. if (buf_size == 0) {
  3916. /* special case for last picture */
  3917. if (s->low_delay==0 && s->next_picture_ptr) {
  3918. *pict= *(AVFrame*)s->next_picture_ptr;
  3919. s->next_picture_ptr= NULL;
  3920. *data_size = sizeof(AVFrame);
  3921. }
  3922. return 0;
  3923. }
  3924. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3925. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3926. int i= ff_find_unused_picture(s, 0);
  3927. s->current_picture_ptr= &s->picture[i];
  3928. }
  3929. //for advanced profile we may need to parse and unescape data
  3930. if (avctx->codec_id == CODEC_ID_VC1) {
  3931. int buf_size2 = 0;
  3932. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3933. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3934. uint8_t *dst = buf2, *start, *end, *next;
  3935. int size;
  3936. next = buf;
  3937. for(start = buf, end = buf + buf_size; next < end; start = next){
  3938. next = find_next_marker(start + 4, end);
  3939. size = next - start - 4;
  3940. if(size <= 0) continue;
  3941. switch(AV_RB32(start)){
  3942. case VC1_CODE_FRAME:
  3943. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3944. break;
  3945. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3946. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3947. init_get_bits(&s->gb, buf2, buf_size2*8);
  3948. decode_entry_point(avctx, &s->gb);
  3949. break;
  3950. case VC1_CODE_SLICE:
  3951. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3952. av_free(buf2);
  3953. return -1;
  3954. }
  3955. }
  3956. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3957. uint8_t *divider;
  3958. divider = find_next_marker(buf, buf + buf_size);
  3959. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3960. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3961. return -1;
  3962. }
  3963. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3964. // TODO
  3965. av_free(buf2);return -1;
  3966. }else{
  3967. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3968. }
  3969. init_get_bits(&s->gb, buf2, buf_size2*8);
  3970. } else
  3971. init_get_bits(&s->gb, buf, buf_size*8);
  3972. // do parse frame header
  3973. if(v->profile < PROFILE_ADVANCED) {
  3974. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3975. av_free(buf2);
  3976. return -1;
  3977. }
  3978. } else {
  3979. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3980. av_free(buf2);
  3981. return -1;
  3982. }
  3983. }
  3984. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3985. av_free(buf2);
  3986. return -1;
  3987. }
  3988. // for hurry_up==5
  3989. s->current_picture.pict_type= s->pict_type;
  3990. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3991. /* skip B-frames if we don't have reference frames */
  3992. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3993. av_free(buf2);
  3994. return -1;//buf_size;
  3995. }
  3996. /* skip b frames if we are in a hurry */
  3997. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3998. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3999. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  4000. || avctx->skip_frame >= AVDISCARD_ALL) {
  4001. av_free(buf2);
  4002. return buf_size;
  4003. }
  4004. /* skip everything if we are in a hurry>=5 */
  4005. if(avctx->hurry_up>=5) {
  4006. av_free(buf2);
  4007. return -1;//buf_size;
  4008. }
  4009. if(s->next_p_frame_damaged){
  4010. if(s->pict_type==B_TYPE)
  4011. return buf_size;
  4012. else
  4013. s->next_p_frame_damaged=0;
  4014. }
  4015. if(MPV_frame_start(s, avctx) < 0) {
  4016. av_free(buf2);
  4017. return -1;
  4018. }
  4019. ff_er_frame_start(s);
  4020. v->bits = buf_size * 8;
  4021. vc1_decode_blocks(v);
  4022. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  4023. // if(get_bits_count(&s->gb) > buf_size * 8)
  4024. // return -1;
  4025. ff_er_frame_end(s);
  4026. MPV_frame_end(s);
  4027. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  4028. assert(s->current_picture.pict_type == s->pict_type);
  4029. if (s->pict_type == B_TYPE || s->low_delay) {
  4030. *pict= *(AVFrame*)s->current_picture_ptr;
  4031. } else if (s->last_picture_ptr != NULL) {
  4032. *pict= *(AVFrame*)s->last_picture_ptr;
  4033. }
  4034. if(s->last_picture_ptr || s->low_delay){
  4035. *data_size = sizeof(AVFrame);
  4036. ff_print_debug_info(s, pict);
  4037. }
  4038. /* Return the Picture timestamp as the frame number */
  4039. /* we substract 1 because it is added on utils.c */
  4040. avctx->frame_number = s->picture_number - 1;
  4041. av_free(buf2);
  4042. return buf_size;
  4043. }
  4044. /** Close a VC1/WMV3 decoder
  4045. * @warning Initial try at using MpegEncContext stuff
  4046. */
  4047. static int vc1_decode_end(AVCodecContext *avctx)
  4048. {
  4049. VC1Context *v = avctx->priv_data;
  4050. av_freep(&v->hrd_rate);
  4051. av_freep(&v->hrd_buffer);
  4052. MPV_common_end(&v->s);
  4053. av_freep(&v->mv_type_mb_plane);
  4054. av_freep(&v->direct_mb_plane);
  4055. av_freep(&v->acpred_plane);
  4056. av_freep(&v->over_flags_plane);
  4057. av_freep(&v->mb_type_base);
  4058. return 0;
  4059. }
  4060. AVCodec vc1_decoder = {
  4061. "vc1",
  4062. CODEC_TYPE_VIDEO,
  4063. CODEC_ID_VC1,
  4064. sizeof(VC1Context),
  4065. vc1_decode_init,
  4066. NULL,
  4067. vc1_decode_end,
  4068. vc1_decode_frame,
  4069. CODEC_CAP_DELAY,
  4070. NULL
  4071. };
  4072. AVCodec wmv3_decoder = {
  4073. "wmv3",
  4074. CODEC_TYPE_VIDEO,
  4075. CODEC_ID_WMV3,
  4076. sizeof(VC1Context),
  4077. vc1_decode_init,
  4078. NULL,
  4079. vc1_decode_end,
  4080. vc1_decode_frame,
  4081. CODEC_CAP_DELAY,
  4082. NULL
  4083. };
  4084. #ifdef CONFIG_VC1_PARSER
  4085. /**
  4086. * finds the end of the current frame in the bitstream.
  4087. * @return the position of the first byte of the next frame, or -1
  4088. */
  4089. static int vc1_find_frame_end(ParseContext *pc, const uint8_t *buf,
  4090. int buf_size) {
  4091. int pic_found, i;
  4092. uint32_t state;
  4093. pic_found= pc->frame_start_found;
  4094. state= pc->state;
  4095. i=0;
  4096. if(!pic_found){
  4097. for(i=0; i<buf_size; i++){
  4098. state= (state<<8) | buf[i];
  4099. if(state == VC1_CODE_FRAME || state == VC1_CODE_FIELD){
  4100. i++;
  4101. pic_found=1;
  4102. break;
  4103. }
  4104. }
  4105. }
  4106. if(pic_found){
  4107. /* EOF considered as end of frame */
  4108. if (buf_size == 0)
  4109. return 0;
  4110. for(; i<buf_size; i++){
  4111. state= (state<<8) | buf[i];
  4112. if(IS_MARKER(state) && state != VC1_CODE_FIELD && state != VC1_CODE_SLICE){
  4113. pc->frame_start_found=0;
  4114. pc->state=-1;
  4115. return i-3;
  4116. }
  4117. }
  4118. }
  4119. pc->frame_start_found= pic_found;
  4120. pc->state= state;
  4121. return END_NOT_FOUND;
  4122. }
  4123. static int vc1_parse(AVCodecParserContext *s,
  4124. AVCodecContext *avctx,
  4125. uint8_t **poutbuf, int *poutbuf_size,
  4126. const uint8_t *buf, int buf_size)
  4127. {
  4128. ParseContext *pc = s->priv_data;
  4129. int next;
  4130. if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){
  4131. next= buf_size;
  4132. }else{
  4133. next= vc1_find_frame_end(pc, buf, buf_size);
  4134. if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
  4135. *poutbuf = NULL;
  4136. *poutbuf_size = 0;
  4137. return buf_size;
  4138. }
  4139. }
  4140. *poutbuf = (uint8_t *)buf;
  4141. *poutbuf_size = buf_size;
  4142. return next;
  4143. }
  4144. int vc1_split(AVCodecContext *avctx,
  4145. const uint8_t *buf, int buf_size)
  4146. {
  4147. int i;
  4148. uint32_t state= -1;
  4149. for(i=0; i<buf_size; i++){
  4150. state= (state<<8) | buf[i];
  4151. if(IS_MARKER(state) && state != VC1_CODE_SEQHDR && state != VC1_CODE_ENTRYPOINT)
  4152. return i-3;
  4153. }
  4154. return 0;
  4155. }
  4156. AVCodecParser vc1_parser = {
  4157. { CODEC_ID_VC1 },
  4158. sizeof(ParseContext1),
  4159. NULL,
  4160. vc1_parse,
  4161. ff_parse1_close,
  4162. vc1_split,
  4163. };
  4164. #endif /* CONFIG_VC1_PARSER */