You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2956 lines
96KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED = 3 //XXX: ??
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  127. /** MV P mode - the 5th element is only used for mode 1 */
  128. static const uint8_t mv_pmode_table[2][5] = {
  129. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  130. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  131. };
  132. static const uint8_t mv_pmode_table2[2][4] = {
  133. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  134. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  135. };
  136. /** One more frame type */
  137. #define BI_TYPE 7
  138. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  139. fps_dr[2] = { 1000, 1001 };
  140. static const uint8_t pquant_table[3][32] = {
  141. { /* Implicit quantizer */
  142. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  143. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  144. },
  145. { /* Explicit quantizer, pquantizer uniform */
  146. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  147. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  148. },
  149. { /* Explicit quantizer, pquantizer non-uniform */
  150. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  151. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  152. }
  153. };
  154. /** @name VC-1 VLC tables and defines
  155. * @todo TODO move this into the context
  156. */
  157. //@{
  158. #define VC1_BFRACTION_VLC_BITS 7
  159. static VLC vc1_bfraction_vlc;
  160. #define VC1_IMODE_VLC_BITS 4
  161. static VLC vc1_imode_vlc;
  162. #define VC1_NORM2_VLC_BITS 3
  163. static VLC vc1_norm2_vlc;
  164. #define VC1_NORM6_VLC_BITS 9
  165. static VLC vc1_norm6_vlc;
  166. /* Could be optimized, one table only needs 8 bits */
  167. #define VC1_TTMB_VLC_BITS 9 //12
  168. static VLC vc1_ttmb_vlc[3];
  169. #define VC1_MV_DIFF_VLC_BITS 9 //15
  170. static VLC vc1_mv_diff_vlc[4];
  171. #define VC1_CBPCY_P_VLC_BITS 9 //14
  172. static VLC vc1_cbpcy_p_vlc[4];
  173. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  174. static VLC vc1_4mv_block_pattern_vlc[4];
  175. #define VC1_TTBLK_VLC_BITS 5
  176. static VLC vc1_ttblk_vlc[3];
  177. #define VC1_SUBBLKPAT_VLC_BITS 6
  178. static VLC vc1_subblkpat_vlc[3];
  179. static VLC vc1_ac_coeff_table[8];
  180. //@}
  181. enum CodingSet {
  182. CS_HIGH_MOT_INTRA = 0,
  183. CS_HIGH_MOT_INTER,
  184. CS_LOW_MOT_INTRA,
  185. CS_LOW_MOT_INTER,
  186. CS_MID_RATE_INTRA,
  187. CS_MID_RATE_INTER,
  188. CS_HIGH_RATE_INTRA,
  189. CS_HIGH_RATE_INTER
  190. };
  191. /** The VC1 Context
  192. * @fixme Change size wherever another size is more efficient
  193. * Many members are only used for Advanced Profile
  194. */
  195. typedef struct VC1Context{
  196. MpegEncContext s;
  197. int bits;
  198. /** Simple/Main Profile sequence header */
  199. //@{
  200. int res_sm; ///< reserved, 2b
  201. int res_x8; ///< reserved
  202. int multires; ///< frame-level RESPIC syntax element present
  203. int res_fasttx; ///< reserved, always 1
  204. int res_transtab; ///< reserved, always 0
  205. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  206. ///< at frame level
  207. int res_rtm_flag; ///< reserved, set to 1
  208. int reserved; ///< reserved
  209. //@}
  210. /** Advanced Profile */
  211. //@{
  212. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  213. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  214. int postprocflag; ///< Per-frame processing suggestion flag present
  215. int broadcast; ///< TFF/RFF present
  216. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  217. int tfcntrflag; ///< TFCNTR present
  218. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  219. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  220. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  221. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  222. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  223. int hrd_param_flag; ///< Presence of Hypothetical Reference
  224. ///< Decoder parameters
  225. //@}
  226. /** Sequence header data for all Profiles
  227. * TODO: choose between ints, uint8_ts and monobit flags
  228. */
  229. //@{
  230. int profile; ///< 2bits, Profile
  231. int frmrtq_postproc; ///< 3bits,
  232. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  233. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  234. int extended_mv; ///< Ext MV in P/B (not in Simple)
  235. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  236. int vstransform; ///< variable-size [48]x[48] transform type + info
  237. int overlap; ///< overlapped transforms in use
  238. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  239. int finterpflag; ///< INTERPFRM present
  240. //@}
  241. /** Frame decoding info for all profiles */
  242. //@{
  243. uint8_t mv_mode; ///< MV coding monde
  244. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  245. int k_x; ///< Number of bits for MVs (depends on MV range)
  246. int k_y; ///< Number of bits for MVs (depends on MV range)
  247. int range_x, range_y; ///< MV range
  248. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  249. /** pquant parameters */
  250. //@{
  251. uint8_t dquantfrm;
  252. uint8_t dqprofile;
  253. uint8_t dqsbedge;
  254. uint8_t dqbilevel;
  255. //@}
  256. /** AC coding set indexes
  257. * @see 8.1.1.10, p(1)10
  258. */
  259. //@{
  260. int c_ac_table_index; ///< Chroma index from ACFRM element
  261. int y_ac_table_index; ///< Luma index from AC2FRM element
  262. //@}
  263. int ttfrm; ///< Transform type info present at frame level
  264. uint8_t ttmbf; ///< Transform type flag
  265. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  266. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  267. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  268. int pqindex; ///< raw pqindex used in coding set selection
  269. int a_avail, c_avail;
  270. uint8_t *mb_type_base, *mb_type[3];
  271. /** Luma compensation parameters */
  272. //@{
  273. uint8_t lumscale;
  274. uint8_t lumshift;
  275. //@}
  276. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  277. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  278. uint8_t respic; ///< Frame-level flag for resized images
  279. int buffer_fullness; ///< HRD info
  280. /** Ranges:
  281. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  282. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  283. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  284. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  285. */
  286. uint8_t mvrange;
  287. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  288. VLC *cbpcy_vlc; ///< CBPCY VLC table
  289. int tt_index; ///< Index for Transform Type tables
  290. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  291. // BitPlane direct_mb_plane; ///< bitplane for "direct" MBs
  292. int mv_type_is_raw; ///< mv type mb plane is not coded
  293. int skip_is_raw; ///< skip mb plane is not coded
  294. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  295. /** Frame decoding info for S/M profiles only */
  296. //@{
  297. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  298. uint8_t interpfrm;
  299. //@}
  300. /** Frame decoding info for Advanced profile */
  301. //@{
  302. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  303. uint8_t numpanscanwin;
  304. uint8_t tfcntr;
  305. uint8_t rptfrm, tff, rff;
  306. uint16_t topleftx;
  307. uint16_t toplefty;
  308. uint16_t bottomrightx;
  309. uint16_t bottomrighty;
  310. uint8_t uvsamp;
  311. uint8_t postproc;
  312. int hrd_num_leaky_buckets;
  313. uint8_t bit_rate_exponent;
  314. uint8_t buffer_size_exponent;
  315. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  316. // BitPlane over_flags_plane; ///< Overflags bitplane
  317. uint8_t condover;
  318. uint16_t *hrd_rate, *hrd_buffer;
  319. uint8_t *hrd_fullness;
  320. uint8_t range_mapy_flag;
  321. uint8_t range_mapuv_flag;
  322. uint8_t range_mapy;
  323. uint8_t range_mapuv;
  324. //@}
  325. } VC1Context;
  326. /**
  327. * Get unary code of limited length
  328. * @fixme FIXME Slow and ugly
  329. * @param gb GetBitContext
  330. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  331. * @param[in] len Maximum length
  332. * @return Unary length/index
  333. */
  334. static int get_prefix(GetBitContext *gb, int stop, int len)
  335. {
  336. #if 1
  337. int i;
  338. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  339. return i;
  340. /* int i = 0, tmp = !stop;
  341. while (i != len && tmp != stop)
  342. {
  343. tmp = get_bits(gb, 1);
  344. i++;
  345. }
  346. if (i == len && tmp != stop) return len+1;
  347. return i;*/
  348. #else
  349. unsigned int buf;
  350. int log;
  351. OPEN_READER(re, gb);
  352. UPDATE_CACHE(re, gb);
  353. buf=GET_CACHE(re, gb); //Still not sure
  354. if (stop) buf = ~buf;
  355. log= av_log2(-buf); //FIXME: -?
  356. if (log < limit){
  357. LAST_SKIP_BITS(re, gb, log+1);
  358. CLOSE_READER(re, gb);
  359. return log;
  360. }
  361. LAST_SKIP_BITS(re, gb, limit);
  362. CLOSE_READER(re, gb);
  363. return limit;
  364. #endif
  365. }
  366. static inline int decode210(GetBitContext *gb){
  367. int n;
  368. n = get_bits1(gb);
  369. if (n == 1)
  370. return 0;
  371. else
  372. return 2 - get_bits1(gb);
  373. }
  374. /**
  375. * Init VC-1 specific tables and VC1Context members
  376. * @param v The VC1Context to initialize
  377. * @return Status
  378. */
  379. static int vc1_init_common(VC1Context *v)
  380. {
  381. static int done = 0;
  382. int i = 0;
  383. v->hrd_rate = v->hrd_buffer = NULL;
  384. /* VLC tables */
  385. if(!done)
  386. {
  387. done = 1;
  388. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  389. vc1_bfraction_bits, 1, 1,
  390. vc1_bfraction_codes, 1, 1, 1);
  391. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  392. vc1_norm2_bits, 1, 1,
  393. vc1_norm2_codes, 1, 1, 1);
  394. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  395. vc1_norm6_bits, 1, 1,
  396. vc1_norm6_codes, 2, 2, 1);
  397. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  398. vc1_imode_bits, 1, 1,
  399. vc1_imode_codes, 1, 1, 1);
  400. for (i=0; i<3; i++)
  401. {
  402. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  403. vc1_ttmb_bits[i], 1, 1,
  404. vc1_ttmb_codes[i], 2, 2, 1);
  405. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  406. vc1_ttblk_bits[i], 1, 1,
  407. vc1_ttblk_codes[i], 1, 1, 1);
  408. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  409. vc1_subblkpat_bits[i], 1, 1,
  410. vc1_subblkpat_codes[i], 1, 1, 1);
  411. }
  412. for(i=0; i<4; i++)
  413. {
  414. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  415. vc1_4mv_block_pattern_bits[i], 1, 1,
  416. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  417. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  418. vc1_cbpcy_p_bits[i], 1, 1,
  419. vc1_cbpcy_p_codes[i], 2, 2, 1);
  420. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  421. vc1_mv_diff_bits[i], 1, 1,
  422. vc1_mv_diff_codes[i], 2, 2, 1);
  423. }
  424. for(i=0; i<8; i++)
  425. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  426. &vc1_ac_tables[i][0][1], 8, 4,
  427. &vc1_ac_tables[i][0][0], 8, 4, 1);
  428. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  429. &ff_msmp4_mb_i_table[0][1], 4, 2,
  430. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  431. }
  432. /* Other defaults */
  433. v->pq = -1;
  434. v->mvrange = 0; /* 7.1.1.18, p80 */
  435. return 0;
  436. }
  437. /***********************************************************************/
  438. /**
  439. * @defgroup bitplane VC9 Bitplane decoding
  440. * @see 8.7, p56
  441. * @{
  442. */
  443. /** @addtogroup bitplane
  444. * Imode types
  445. * @{
  446. */
  447. enum Imode {
  448. IMODE_RAW,
  449. IMODE_NORM2,
  450. IMODE_DIFF2,
  451. IMODE_NORM6,
  452. IMODE_DIFF6,
  453. IMODE_ROWSKIP,
  454. IMODE_COLSKIP
  455. };
  456. /** @} */ //imode defines
  457. /** Decode rows by checking if they are skipped
  458. * @param plane Buffer to store decoded bits
  459. * @param[in] width Width of this buffer
  460. * @param[in] height Height of this buffer
  461. * @param[in] stride of this buffer
  462. */
  463. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  464. int x, y;
  465. for (y=0; y<height; y++){
  466. if (!get_bits(gb, 1)) //rowskip
  467. memset(plane, 0, width);
  468. else
  469. for (x=0; x<width; x++)
  470. plane[x] = get_bits(gb, 1);
  471. plane += stride;
  472. }
  473. }
  474. /** Decode columns by checking if they are skipped
  475. * @param plane Buffer to store decoded bits
  476. * @param[in] width Width of this buffer
  477. * @param[in] height Height of this buffer
  478. * @param[in] stride of this buffer
  479. * @fixme FIXME: Optimize
  480. */
  481. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  482. int x, y;
  483. for (x=0; x<width; x++){
  484. if (!get_bits(gb, 1)) //colskip
  485. for (y=0; y<height; y++)
  486. plane[y*stride] = 0;
  487. else
  488. for (y=0; y<height; y++)
  489. plane[y*stride] = get_bits(gb, 1);
  490. plane ++;
  491. }
  492. }
  493. /** Decode a bitplane's bits
  494. * @param bp Bitplane where to store the decode bits
  495. * @param v VC-1 context for bit reading and logging
  496. * @return Status
  497. * @fixme FIXME: Optimize
  498. * @todo TODO: Decide if a struct is needed
  499. */
  500. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  501. {
  502. GetBitContext *gb = &v->s.gb;
  503. int imode, x, y, code, offset;
  504. uint8_t invert, *planep = data;
  505. int width, height, stride;
  506. width = v->s.mb_width;
  507. height = v->s.mb_height;
  508. stride = v->s.mb_stride;
  509. invert = get_bits(gb, 1);
  510. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  511. *raw_flag = 0;
  512. switch (imode)
  513. {
  514. case IMODE_RAW:
  515. //Data is actually read in the MB layer (same for all tests == "raw")
  516. *raw_flag = 1; //invert ignored
  517. return invert;
  518. case IMODE_DIFF2:
  519. case IMODE_NORM2:
  520. if ((height * width) & 1)
  521. {
  522. *planep++ = get_bits(gb, 1);
  523. offset = 1;
  524. }
  525. else offset = 0;
  526. // decode bitplane as one long line
  527. for (y = offset; y < height * width; y += 2) {
  528. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  529. *planep++ = code & 1;
  530. offset++;
  531. if(offset == width) {
  532. offset = 0;
  533. planep += stride - width;
  534. }
  535. *planep++ = code >> 1;
  536. offset++;
  537. if(offset == width) {
  538. offset = 0;
  539. planep += stride - width;
  540. }
  541. }
  542. break;
  543. case IMODE_DIFF6:
  544. case IMODE_NORM6:
  545. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  546. for(y = 0; y < height; y+= 3) {
  547. for(x = width & 1; x < width; x += 2) {
  548. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  549. if(code < 0){
  550. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  551. return -1;
  552. }
  553. planep[x + 0] = (code >> 0) & 1;
  554. planep[x + 1] = (code >> 1) & 1;
  555. planep[x + 0 + stride] = (code >> 2) & 1;
  556. planep[x + 1 + stride] = (code >> 3) & 1;
  557. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  558. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  559. }
  560. planep += stride * 3;
  561. }
  562. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  563. } else { // 3x2
  564. planep += (height & 1) * stride;
  565. for(y = height & 1; y < height; y += 2) {
  566. for(x = width % 3; x < width; x += 3) {
  567. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  568. if(code < 0){
  569. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  570. return -1;
  571. }
  572. planep[x + 0] = (code >> 0) & 1;
  573. planep[x + 1] = (code >> 1) & 1;
  574. planep[x + 2] = (code >> 2) & 1;
  575. planep[x + 0 + stride] = (code >> 3) & 1;
  576. planep[x + 1 + stride] = (code >> 4) & 1;
  577. planep[x + 2 + stride] = (code >> 5) & 1;
  578. }
  579. planep += stride * 2;
  580. }
  581. x = width % 3;
  582. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  583. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  584. }
  585. break;
  586. case IMODE_ROWSKIP:
  587. decode_rowskip(data, width, height, stride, &v->s.gb);
  588. break;
  589. case IMODE_COLSKIP:
  590. decode_colskip(data, width, height, stride, &v->s.gb);
  591. break;
  592. default: break;
  593. }
  594. /* Applying diff operator */
  595. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  596. {
  597. planep = data;
  598. planep[0] ^= invert;
  599. for (x=1; x<width; x++)
  600. planep[x] ^= planep[x-1];
  601. for (y=1; y<height; y++)
  602. {
  603. planep += stride;
  604. planep[0] ^= planep[-stride];
  605. for (x=1; x<width; x++)
  606. {
  607. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  608. else planep[x] ^= planep[x-1];
  609. }
  610. }
  611. }
  612. else if (invert)
  613. {
  614. planep = data;
  615. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  616. }
  617. return (imode<<1) + invert;
  618. }
  619. /** @} */ //Bitplane group
  620. /***********************************************************************/
  621. /** VOP Dquant decoding
  622. * @param v VC-1 Context
  623. */
  624. static int vop_dquant_decoding(VC1Context *v)
  625. {
  626. GetBitContext *gb = &v->s.gb;
  627. int pqdiff;
  628. //variable size
  629. if (v->dquant == 2)
  630. {
  631. pqdiff = get_bits(gb, 3);
  632. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  633. else v->altpq = v->pq + pqdiff + 1;
  634. }
  635. else
  636. {
  637. v->dquantfrm = get_bits(gb, 1);
  638. if ( v->dquantfrm )
  639. {
  640. v->dqprofile = get_bits(gb, 2);
  641. switch (v->dqprofile)
  642. {
  643. case DQPROFILE_SINGLE_EDGE:
  644. case DQPROFILE_DOUBLE_EDGES:
  645. v->dqsbedge = get_bits(gb, 2);
  646. break;
  647. case DQPROFILE_ALL_MBS:
  648. v->dqbilevel = get_bits(gb, 1);
  649. default: break; //Forbidden ?
  650. }
  651. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  652. {
  653. pqdiff = get_bits(gb, 3);
  654. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  655. else v->altpq = v->pq + pqdiff + 1;
  656. }
  657. }
  658. }
  659. return 0;
  660. }
  661. /** Do inverse transform
  662. */
  663. static void vc1_inv_trans(DCTELEM block[64], int M, int N)
  664. {
  665. int i;
  666. register int t1,t2,t3,t4,t5,t6,t7,t8;
  667. DCTELEM *src, *dst;
  668. src = block;
  669. dst = block;
  670. if(M==4){
  671. for(i = 0; i < N; i++){
  672. t1 = 17 * (src[0] + src[2]);
  673. t2 = 17 * (src[0] - src[2]);
  674. t3 = 22 * src[1];
  675. t4 = 22 * src[3];
  676. t5 = 10 * src[1];
  677. t6 = 10 * src[3];
  678. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  679. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  680. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  681. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  682. src += 8;
  683. dst += 8;
  684. }
  685. }else{
  686. for(i = 0; i < N; i++){
  687. t1 = 12 * (src[0] + src[4]);
  688. t2 = 12 * (src[0] - src[4]);
  689. t3 = 16 * src[2] + 6 * src[6];
  690. t4 = 6 * src[2] - 16 * src[6];
  691. t5 = t1 + t3;
  692. t6 = t2 + t4;
  693. t7 = t2 - t4;
  694. t8 = t1 - t3;
  695. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  696. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  697. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  698. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  699. dst[0] = (t5 + t1 + 4) >> 3;
  700. dst[1] = (t6 + t2 + 4) >> 3;
  701. dst[2] = (t7 + t3 + 4) >> 3;
  702. dst[3] = (t8 + t4 + 4) >> 3;
  703. dst[4] = (t8 - t4 + 4) >> 3;
  704. dst[5] = (t7 - t3 + 4) >> 3;
  705. dst[6] = (t6 - t2 + 4) >> 3;
  706. dst[7] = (t5 - t1 + 4) >> 3;
  707. src += 8;
  708. dst += 8;
  709. }
  710. }
  711. src = block;
  712. dst = block;
  713. if(N==4){
  714. for(i = 0; i < M; i++){
  715. t1 = 17 * (src[ 0] + src[16]);
  716. t2 = 17 * (src[ 0] - src[16]);
  717. t3 = 22 * src[ 8];
  718. t4 = 22 * src[24];
  719. t5 = 10 * src[ 8];
  720. t6 = 10 * src[24];
  721. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  722. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  723. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  724. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  725. src ++;
  726. dst ++;
  727. }
  728. }else{
  729. for(i = 0; i < M; i++){
  730. t1 = 12 * (src[ 0] + src[32]);
  731. t2 = 12 * (src[ 0] - src[32]);
  732. t3 = 16 * src[16] + 6 * src[48];
  733. t4 = 6 * src[16] - 16 * src[48];
  734. t5 = t1 + t3;
  735. t6 = t2 + t4;
  736. t7 = t2 - t4;
  737. t8 = t1 - t3;
  738. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  739. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  740. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  741. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  742. dst[ 0] = (t5 + t1 + 64) >> 7;
  743. dst[ 8] = (t6 + t2 + 64) >> 7;
  744. dst[16] = (t7 + t3 + 64) >> 7;
  745. dst[24] = (t8 + t4 + 64) >> 7;
  746. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  747. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  748. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  749. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  750. src++;
  751. dst++;
  752. }
  753. }
  754. }
  755. /** Apply overlap transform to vertical edge
  756. * @todo optimize
  757. * @todo move to DSPContext
  758. */
  759. static void vc1_v_overlap(uint8_t* src, int stride)
  760. {
  761. int i;
  762. int a, b, c, d;
  763. for(i = 0; i < 8; i++) {
  764. a = src[-2*stride];
  765. b = src[-stride];
  766. c = src[0];
  767. d = src[stride];
  768. src[-2*stride] = clip_uint8((7*a + d + 3) >> 3);
  769. src[-stride] = clip_uint8((-a + 7*b + c + d + 3) >> 3);
  770. src[0] = clip_uint8((a + b + 7*c - d + 3) >> 3);
  771. src[stride] = clip_uint8((a + 7*d + 3) >> 3);
  772. src++;
  773. }
  774. }
  775. /** Apply overlap transform to horizontal edge
  776. * @todo optimize
  777. * @todo move to DSPContext
  778. */
  779. static void vc1_h_overlap(uint8_t* src, int stride)
  780. {
  781. int i;
  782. int a, b, c, d;
  783. for(i = 0; i < 8; i++) {
  784. a = src[-2];
  785. b = src[-1];
  786. c = src[0];
  787. d = src[1];
  788. src[-2] = clip_uint8((7*a + d + 3) >> 3);
  789. src[-1] = clip_uint8((-a + 7*b + c + d + 3) >> 3);
  790. src[0] = clip_uint8((a + b + 7*c - d + 3) >> 3);
  791. src[1] = clip_uint8((a + 7*d + 3) >> 3);
  792. src += stride;
  793. }
  794. }
  795. /** Put block onto picture
  796. * @todo move to DSPContext
  797. */
  798. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  799. {
  800. uint8_t *Y;
  801. int ys, us, vs;
  802. DSPContext *dsp = &v->s.dsp;
  803. ys = v->s.current_picture.linesize[0];
  804. us = v->s.current_picture.linesize[1];
  805. vs = v->s.current_picture.linesize[2];
  806. Y = v->s.dest[0];
  807. dsp->put_pixels_clamped(block[0], Y, ys);
  808. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  809. Y += ys * 8;
  810. dsp->put_pixels_clamped(block[2], Y, ys);
  811. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  812. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  813. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  814. }
  815. /* clip motion vector as specified in 8.3.6.5 */
  816. #define CLIP_RANGE(mv, src, lim, bs) \
  817. if(mv < -bs) mv = -bs - src * bs; \
  818. if(mv > lim) mv = lim - src * bs;
  819. /** Do motion compensation over 1 macroblock
  820. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  821. */
  822. static void vc1_mc_1mv(VC1Context *v)
  823. {
  824. MpegEncContext *s = &v->s;
  825. DSPContext *dsp = &v->s.dsp;
  826. uint8_t *srcY, *srcU, *srcV;
  827. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  828. if(!v->s.last_picture.data[0])return;
  829. mx = s->mv[0][0][0];
  830. my = s->mv[0][0][1];
  831. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  832. uvmy = (my + ((my & 3) == 3)) >> 1;
  833. srcY = s->last_picture.data[0];
  834. srcU = s->last_picture.data[1];
  835. srcV = s->last_picture.data[2];
  836. src_x = s->mb_x * 16 + (mx >> 2);
  837. src_y = s->mb_y * 16 + (my >> 2);
  838. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  839. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  840. CLIP_RANGE( src_x, s->mb_x, s->mb_width * 16, 16);
  841. CLIP_RANGE( src_y, s->mb_y, s->mb_height * 16, 16);
  842. CLIP_RANGE(uvsrc_x, s->mb_x, s->mb_width * 8, 8);
  843. CLIP_RANGE(uvsrc_y, s->mb_y, s->mb_height * 8, 8);
  844. srcY += src_y * s->linesize + src_x;
  845. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  846. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  847. if((v->mv_mode == MV_PMODE_INTENSITY_COMP)
  848. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  849. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  850. uint8_t *uvbuf= s->edge_emu_buffer + 18 * s->linesize;
  851. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  852. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  853. srcY = s->edge_emu_buffer;
  854. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  855. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  856. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  857. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  858. srcU = uvbuf;
  859. srcV = uvbuf + 16;
  860. /* if we deal with intensity compensation we need to scale source blocks */
  861. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  862. int i, j;
  863. uint8_t *src, *src2;
  864. src = srcY;
  865. for(j = 0; j < 17; j++) {
  866. for(i = 0; i < 17; i++) src[i] = v->luty[src[i]];
  867. src += s->linesize;
  868. }
  869. src = srcU; src2 = srcV;
  870. for(j = 0; j < 9; j++) {
  871. for(i = 0; i < 9; i++) {
  872. src[i] = v->lutuv[src[i]];
  873. src2[i] = v->lutuv[src2[i]];
  874. }
  875. src += s->uvlinesize;
  876. src2 += s->uvlinesize;
  877. }
  878. }
  879. }
  880. if(v->fastuvmc) {
  881. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  882. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  883. }
  884. if(!s->quarter_sample) { // hpel mc
  885. mx >>= 1;
  886. my >>= 1;
  887. dxy = ((my & 1) << 1) | (mx & 1);
  888. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  889. } else {
  890. dxy = ((my & 3) << 2) | (mx & 3);
  891. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  892. }
  893. uvmx >>= 1;
  894. uvmy >>= 1;
  895. uvdxy = ((uvmy & 1) << 1) | (uvmx & 1);
  896. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize, 8);
  897. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize, 8);
  898. // dsp->put_mspel_pixels_tab[uvdxy](s->dest[1], srcU, s->uvlinesize);
  899. // dsp->put_mspel_pixels_tab[uvdxy](s->dest[2], srcV, s->uvlinesize);
  900. }
  901. /** Do motion compensation for 4-MV macroblock - luminance block
  902. */
  903. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  904. {
  905. MpegEncContext *s = &v->s;
  906. DSPContext *dsp = &v->s.dsp;
  907. uint8_t *srcY;
  908. int dxy, mx, my, src_x, src_y;
  909. int off;
  910. if(!v->s.last_picture.data[0])return;
  911. mx = s->mv[0][n][0];
  912. my = s->mv[0][n][1];
  913. srcY = s->last_picture.data[0];
  914. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  915. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  916. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  917. CLIP_RANGE(src_x, s->mb_x, s->mb_width * 16, 16);
  918. CLIP_RANGE(src_y, s->mb_y, s->mb_height * 16, 16);
  919. srcY += src_y * s->linesize + src_x;
  920. if((unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  921. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  922. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  923. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  924. srcY = s->edge_emu_buffer;
  925. }
  926. if(!s->quarter_sample) { // hpel mc
  927. mx >>= 1;
  928. my >>= 1;
  929. dxy = ((my & 1) << 1) | (mx & 1);
  930. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  931. } else {
  932. dxy = ((my & 3) << 2) | (mx & 3);
  933. dsp->put_no_rnd_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  934. }
  935. }
  936. static inline int median4(int a, int b, int c, int d)
  937. {
  938. if(a < b) {
  939. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  940. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  941. } else {
  942. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  943. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  944. }
  945. }
  946. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  947. */
  948. static void vc1_mc_4mv_chroma(VC1Context *v)
  949. {
  950. MpegEncContext *s = &v->s;
  951. DSPContext *dsp = &v->s.dsp;
  952. uint8_t *srcU, *srcV;
  953. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  954. int i, idx, tx = 0, ty = 0;
  955. int mvx[4], mvy[4], intra[4];
  956. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  957. if(!v->s.last_picture.data[0])return;
  958. for(i = 0; i < 4; i++) {
  959. mvx[i] = s->mv[0][i][0];
  960. mvy[i] = s->mv[0][i][1];
  961. intra[i] = v->mb_type[0][s->block_index[i]];
  962. }
  963. /* calculate chroma MV vector from four luma MVs */
  964. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  965. if(!idx) { // all blocks are inter
  966. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  967. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  968. } else if(count[idx] == 1) { // 3 inter blocks
  969. switch(idx) {
  970. case 0x1:
  971. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  972. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  973. break;
  974. case 0x2:
  975. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  976. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  977. break;
  978. case 0x4:
  979. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  980. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  981. break;
  982. case 0x8:
  983. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  984. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  985. break;
  986. }
  987. } else if(count[idx] == 2) {
  988. int t1 = 0, t2 = 0;
  989. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  990. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  991. tx = (mvx[t1] + mvx[t2]) / 2;
  992. ty = (mvy[t1] + mvy[t2]) / 2;
  993. } else
  994. return; //no need to do MC for inter blocks
  995. uvmx = (tx + ((tx&3) == 3)) >> 1;
  996. uvmy = (ty + ((ty&3) == 3)) >> 1;
  997. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  998. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  999. CLIP_RANGE(uvsrc_x, s->mb_x, s->mb_width * 8, 8);
  1000. CLIP_RANGE(uvsrc_y, s->mb_y, s->mb_height * 8, 8);
  1001. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1002. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1003. if((unsigned)uvsrc_x > (s->h_edge_pos >> 1) - ((uvmx >> 1)&1) - 8
  1004. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - ((uvmy >> 1)&1) - 8){
  1005. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  1006. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1007. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1008. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1009. srcU = s->edge_emu_buffer;
  1010. srcV = s->edge_emu_buffer + 16;
  1011. }
  1012. if(v->fastuvmc) {
  1013. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1014. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1015. }
  1016. uvmx >>= 1;
  1017. uvmy >>= 1;
  1018. uvdxy = ((uvmy & 1) << 1) | (uvmx & 1);
  1019. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize, 8);
  1020. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize, 8);
  1021. }
  1022. /**
  1023. * Decode Simple/Main Profiles sequence header
  1024. * @see Figure 7-8, p16-17
  1025. * @param avctx Codec context
  1026. * @param gb GetBit context initialized from Codec context extra_data
  1027. * @return Status
  1028. */
  1029. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1030. {
  1031. VC1Context *v = avctx->priv_data;
  1032. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  1033. v->profile = get_bits(gb, 2);
  1034. if (v->profile == 2)
  1035. {
  1036. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1037. return -1;
  1038. }
  1039. if (v->profile == PROFILE_ADVANCED)
  1040. {
  1041. v->level = get_bits(gb, 3);
  1042. if(v->level >= 5)
  1043. {
  1044. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1045. }
  1046. v->chromaformat = get_bits(gb, 2);
  1047. if (v->chromaformat != 1)
  1048. {
  1049. av_log(avctx, AV_LOG_ERROR,
  1050. "Only 4:2:0 chroma format supported\n");
  1051. return -1;
  1052. }
  1053. }
  1054. else
  1055. {
  1056. v->res_sm = get_bits(gb, 2); //reserved
  1057. if (v->res_sm)
  1058. {
  1059. av_log(avctx, AV_LOG_ERROR,
  1060. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1061. return -1;
  1062. }
  1063. }
  1064. // (fps-2)/4 (->30)
  1065. v->frmrtq_postproc = get_bits(gb, 3); //common
  1066. // (bitrate-32kbps)/64kbps
  1067. v->bitrtq_postproc = get_bits(gb, 5); //common
  1068. v->s.loop_filter = get_bits(gb, 1); //common
  1069. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1070. {
  1071. av_log(avctx, AV_LOG_ERROR,
  1072. "LOOPFILTER shell not be enabled in simple profile\n");
  1073. }
  1074. if (v->profile < PROFILE_ADVANCED)
  1075. {
  1076. v->res_x8 = get_bits(gb, 1); //reserved
  1077. if (v->res_x8)
  1078. {
  1079. av_log(avctx, AV_LOG_ERROR,
  1080. "1 for reserved RES_X8 is forbidden\n");
  1081. //return -1;
  1082. }
  1083. v->multires = get_bits(gb, 1);
  1084. v->res_fasttx = get_bits(gb, 1);
  1085. if (!v->res_fasttx)
  1086. {
  1087. av_log(avctx, AV_LOG_ERROR,
  1088. "0 for reserved RES_FASTTX is forbidden\n");
  1089. //return -1;
  1090. }
  1091. }
  1092. v->fastuvmc = get_bits(gb, 1); //common
  1093. if (!v->profile && !v->fastuvmc)
  1094. {
  1095. av_log(avctx, AV_LOG_ERROR,
  1096. "FASTUVMC unavailable in Simple Profile\n");
  1097. return -1;
  1098. }
  1099. v->extended_mv = get_bits(gb, 1); //common
  1100. if (!v->profile && v->extended_mv)
  1101. {
  1102. av_log(avctx, AV_LOG_ERROR,
  1103. "Extended MVs unavailable in Simple Profile\n");
  1104. return -1;
  1105. }
  1106. v->dquant = get_bits(gb, 2); //common
  1107. v->vstransform = get_bits(gb, 1); //common
  1108. if (v->profile < PROFILE_ADVANCED)
  1109. {
  1110. v->res_transtab = get_bits(gb, 1);
  1111. if (v->res_transtab)
  1112. {
  1113. av_log(avctx, AV_LOG_ERROR,
  1114. "1 for reserved RES_TRANSTAB is forbidden\n");
  1115. return -1;
  1116. }
  1117. }
  1118. v->overlap = get_bits(gb, 1); //common
  1119. if (v->profile < PROFILE_ADVANCED)
  1120. {
  1121. v->s.resync_marker = get_bits(gb, 1);
  1122. v->rangered = get_bits(gb, 1);
  1123. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1124. {
  1125. av_log(avctx, AV_LOG_INFO,
  1126. "RANGERED should be set to 0 in simple profile\n");
  1127. }
  1128. }
  1129. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1130. v->quantizer_mode = get_bits(gb, 2); //common
  1131. if (v->profile < PROFILE_ADVANCED)
  1132. {
  1133. v->finterpflag = get_bits(gb, 1); //common
  1134. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1135. if (!v->res_rtm_flag)
  1136. {
  1137. av_log(avctx, AV_LOG_ERROR,
  1138. "0 for reserved RES_RTM_FLAG is forbidden\n");
  1139. //return -1;
  1140. }
  1141. av_log(avctx, AV_LOG_DEBUG,
  1142. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1143. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1144. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1145. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1146. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1147. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1148. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1149. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1150. );
  1151. return 0;
  1152. }
  1153. return -1;
  1154. }
  1155. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1156. {
  1157. int pqindex, lowquant, status;
  1158. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1159. skip_bits(gb, 2); //framecnt unused
  1160. v->rangeredfrm = 0;
  1161. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1162. v->s.pict_type = get_bits(gb, 1);
  1163. if (v->s.avctx->max_b_frames) {
  1164. if (!v->s.pict_type) {
  1165. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1166. else v->s.pict_type = B_TYPE;
  1167. } else v->s.pict_type = P_TYPE;
  1168. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1169. if(v->s.pict_type == I_TYPE)
  1170. get_bits(gb, 7); // skip buffer fullness
  1171. /* Quantizer stuff */
  1172. pqindex = get_bits(gb, 5);
  1173. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1174. v->pq = pquant_table[0][pqindex];
  1175. else
  1176. v->pq = pquant_table[v->quantizer_mode-1][pqindex];
  1177. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1178. v->pquantizer = pqindex < 9;
  1179. if (v->quantizer_mode == QUANT_UNIFORM || v->quantizer_mode == QUANT_NON_UNIFORM)
  1180. v->pquantizer = v->quantizer_mode == QUANT_UNIFORM;
  1181. v->pqindex = pqindex;
  1182. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1183. else v->halfpq = 0;
  1184. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1185. v->pquantizer = get_bits(gb, 1);
  1186. v->dquantfrm = 0;
  1187. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1188. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1189. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1190. v->range_x = 1 << (v->k_x - 1);
  1191. v->range_y = 1 << (v->k_y - 1);
  1192. if (v->profile == PROFILE_ADVANCED)
  1193. {
  1194. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1195. }
  1196. else
  1197. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1198. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1199. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1200. //TODO: complete parsing for P/B/BI frames
  1201. switch(v->s.pict_type) {
  1202. case P_TYPE:
  1203. if (v->pq < 5) v->tt_index = 0;
  1204. else if(v->pq < 13) v->tt_index = 1;
  1205. else v->tt_index = 2;
  1206. lowquant = (v->pq > 12) ? 0 : 1;
  1207. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1208. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1209. {
  1210. int scale, shift, i;
  1211. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1212. v->lumscale = get_bits(gb, 6);
  1213. v->lumshift = get_bits(gb, 6);
  1214. /* fill lookup tables for intensity compensation */
  1215. if(!v->lumscale) {
  1216. scale = -64;
  1217. shift = (255 - v->lumshift * 2) << 6;
  1218. if(v->lumshift > 31)
  1219. shift += 128 << 6;
  1220. } else {
  1221. scale = v->lumscale + 32;
  1222. if(v->lumshift > 31)
  1223. shift = (v->lumshift - 64) << 6;
  1224. else
  1225. shift = v->lumshift << 6;
  1226. }
  1227. for(i = 0; i < 256; i++) {
  1228. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1229. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1230. }
  1231. }
  1232. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1233. v->s.quarter_sample = 0;
  1234. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1235. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1236. v->s.quarter_sample = 0;
  1237. else
  1238. v->s.quarter_sample = 1;
  1239. } else
  1240. v->s.quarter_sample = 1;
  1241. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1242. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1243. || v->mv_mode == MV_PMODE_MIXED_MV)
  1244. {
  1245. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1246. if (status < 0) return -1;
  1247. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1248. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1249. } else {
  1250. v->mv_type_is_raw = 0;
  1251. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1252. }
  1253. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1254. if (status < 0) return -1;
  1255. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1256. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1257. /* Hopefully this is correct for P frames */
  1258. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1259. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1260. if (v->dquant)
  1261. {
  1262. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1263. vop_dquant_decoding(v);
  1264. }
  1265. v->ttfrm = 0; //FIXME Is that so ?
  1266. if (v->vstransform)
  1267. {
  1268. v->ttmbf = get_bits(gb, 1);
  1269. if (v->ttmbf)
  1270. {
  1271. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1272. }
  1273. }
  1274. break;
  1275. case B_TYPE:
  1276. break;
  1277. }
  1278. /* AC Syntax */
  1279. v->c_ac_table_index = decode012(gb);
  1280. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1281. {
  1282. v->y_ac_table_index = decode012(gb);
  1283. }
  1284. /* DC Syntax */
  1285. v->s.dc_table_index = get_bits(gb, 1);
  1286. return 0;
  1287. }
  1288. /***********************************************************************/
  1289. /**
  1290. * @defgroup block VC-1 Block-level functions
  1291. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1292. * @todo TODO: Integrate to MpegEncContext facilities
  1293. * @{
  1294. */
  1295. /**
  1296. * @def GET_MQUANT
  1297. * @brief Get macroblock-level quantizer scale
  1298. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1299. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1300. */
  1301. #define GET_MQUANT() \
  1302. if (v->dquantfrm) \
  1303. { \
  1304. int edges = 0; \
  1305. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1306. { \
  1307. if (v->dqbilevel) \
  1308. { \
  1309. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1310. } \
  1311. else \
  1312. { \
  1313. mqdiff = get_bits(gb, 3); \
  1314. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1315. else mquant = get_bits(gb, 5); \
  1316. } \
  1317. } \
  1318. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1319. edges = 1 << v->dqsbedge; \
  1320. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1321. edges = (3 << v->dqsbedge) % 15; \
  1322. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1323. edges = 15; \
  1324. if((edges&1) && !s->mb_x) \
  1325. mquant = v->altpq; \
  1326. if((edges&2) && s->first_slice_line) \
  1327. mquant = v->altpq; \
  1328. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1329. mquant = v->altpq; \
  1330. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1331. mquant = v->altpq; \
  1332. }
  1333. /**
  1334. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1335. * @brief Get MV differentials
  1336. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1337. * @param _dmv_x Horizontal differential for decoded MV
  1338. * @param _dmv_y Vertical differential for decoded MV
  1339. * @todo TODO: Use MpegEncContext arrays to store them
  1340. */
  1341. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1342. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1343. VC1_MV_DIFF_VLC_BITS, 2); \
  1344. if (index > 36) \
  1345. { \
  1346. mb_has_coeffs = 1; \
  1347. index -= 37; \
  1348. } \
  1349. else mb_has_coeffs = 0; \
  1350. s->mb_intra = 0; \
  1351. if (!index) { _dmv_x = _dmv_y = 0; } \
  1352. else if (index == 35) \
  1353. { \
  1354. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1355. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1356. } \
  1357. else if (index == 36) \
  1358. { \
  1359. _dmv_x = 0; \
  1360. _dmv_y = 0; \
  1361. s->mb_intra = 1; \
  1362. } \
  1363. else \
  1364. { \
  1365. index1 = index%6; \
  1366. if (!s->quarter_sample && index1 == 5) val = 1; \
  1367. else val = 0; \
  1368. if(size_table[index1] - val > 0) \
  1369. val = get_bits(gb, size_table[index1] - val); \
  1370. else val = 0; \
  1371. sign = 0 - (val&1); \
  1372. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1373. \
  1374. index1 = index/6; \
  1375. if (!s->quarter_sample && index1 == 5) val = 1; \
  1376. else val = 0; \
  1377. if(size_table[index1] - val > 0) \
  1378. val = get_bits(gb, size_table[index1] - val); \
  1379. else val = 0; \
  1380. sign = 0 - (val&1); \
  1381. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1382. }
  1383. /** Predict and set motion vector
  1384. */
  1385. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1386. {
  1387. int xy, wrap, off = 0;
  1388. int16_t *A, *B, *C;
  1389. int px, py;
  1390. int sum;
  1391. /* scale MV difference to be quad-pel */
  1392. dmv_x <<= 1 - s->quarter_sample;
  1393. dmv_y <<= 1 - s->quarter_sample;
  1394. wrap = s->b8_stride;
  1395. xy = s->block_index[n];
  1396. if(s->mb_intra){
  1397. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1398. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1399. if(mv1) { /* duplicate motion data for 1-MV block */
  1400. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1401. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1402. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1403. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1404. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1405. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1406. }
  1407. return;
  1408. }
  1409. C = s->current_picture.motion_val[0][xy - 1];
  1410. A = s->current_picture.motion_val[0][xy - wrap];
  1411. if(mv1)
  1412. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1413. else {
  1414. //in 4-MV mode different blocks have different B predictor position
  1415. switch(n){
  1416. case 0:
  1417. off = (s->mb_x > 0) ? -1 : 1;
  1418. break;
  1419. case 1:
  1420. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1421. break;
  1422. case 2:
  1423. off = 1;
  1424. break;
  1425. case 3:
  1426. off = -1;
  1427. }
  1428. }
  1429. B = s->current_picture.motion_val[0][xy - wrap + off];
  1430. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1431. if(s->mb_width == 1) {
  1432. px = A[0];
  1433. py = A[1];
  1434. } else {
  1435. px = mid_pred(A[0], B[0], C[0]);
  1436. py = mid_pred(A[1], B[1], C[1]);
  1437. }
  1438. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1439. px = C[0];
  1440. py = C[1];
  1441. } else {
  1442. px = py = 0;
  1443. }
  1444. /* Pullback MV as specified in 8.3.5.3.4 */
  1445. {
  1446. int qx, qy, X, Y;
  1447. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1448. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1449. X = (s->mb_width << 6) - 4;
  1450. Y = (s->mb_height << 6) - 4;
  1451. if(mv1) {
  1452. if(qx + px < -60) px = -60 - qx;
  1453. if(qy + py < -60) py = -60 - qy;
  1454. } else {
  1455. if(qx + px < -28) px = -28 - qx;
  1456. if(qy + py < -28) py = -28 - qy;
  1457. }
  1458. if(qx + px > X) px = X - qx;
  1459. if(qy + py > Y) py = Y - qy;
  1460. }
  1461. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1462. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1463. if(is_intra[xy - wrap])
  1464. sum = ABS(px) + ABS(py);
  1465. else
  1466. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1467. if(sum > 32) {
  1468. if(get_bits1(&s->gb)) {
  1469. px = A[0];
  1470. py = A[1];
  1471. } else {
  1472. px = C[0];
  1473. py = C[1];
  1474. }
  1475. } else {
  1476. if(is_intra[xy - 1])
  1477. sum = ABS(px) + ABS(py);
  1478. else
  1479. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1480. if(sum > 32) {
  1481. if(get_bits1(&s->gb)) {
  1482. px = A[0];
  1483. py = A[1];
  1484. } else {
  1485. px = C[0];
  1486. py = C[1];
  1487. }
  1488. }
  1489. }
  1490. }
  1491. /* store MV using signed modulus of MV range defined in 4.11 */
  1492. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1493. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1494. if(mv1) { /* duplicate motion data for 1-MV block */
  1495. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1496. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1497. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1498. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1499. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1500. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1501. }
  1502. }
  1503. /** Get predicted DC value for I-frames only
  1504. * prediction dir: left=0, top=1
  1505. * @param s MpegEncContext
  1506. * @param[in] n block index in the current MB
  1507. * @param dc_val_ptr Pointer to DC predictor
  1508. * @param dir_ptr Prediction direction for use in AC prediction
  1509. */
  1510. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1511. int16_t **dc_val_ptr, int *dir_ptr)
  1512. {
  1513. int a, b, c, wrap, pred, scale;
  1514. int16_t *dc_val;
  1515. static const uint16_t dcpred[32] = {
  1516. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1517. 114, 102, 93, 85, 79, 73, 68, 64,
  1518. 60, 57, 54, 51, 49, 47, 45, 43,
  1519. 41, 39, 38, 37, 35, 34, 33
  1520. };
  1521. /* find prediction - wmv3_dc_scale always used here in fact */
  1522. if (n < 4) scale = s->y_dc_scale;
  1523. else scale = s->c_dc_scale;
  1524. wrap = s->block_wrap[n];
  1525. dc_val= s->dc_val[0] + s->block_index[n];
  1526. /* B A
  1527. * C X
  1528. */
  1529. c = dc_val[ - 1];
  1530. b = dc_val[ - 1 - wrap];
  1531. a = dc_val[ - wrap];
  1532. if (pq < 9 || !overlap)
  1533. {
  1534. /* Set outer values */
  1535. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1536. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1537. }
  1538. else
  1539. {
  1540. /* Set outer values */
  1541. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1542. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1543. }
  1544. if (abs(a - b) <= abs(b - c)) {
  1545. pred = c;
  1546. *dir_ptr = 1;//left
  1547. } else {
  1548. pred = a;
  1549. *dir_ptr = 0;//top
  1550. }
  1551. /* update predictor */
  1552. *dc_val_ptr = &dc_val[0];
  1553. return pred;
  1554. }
  1555. /** Get predicted DC value
  1556. * prediction dir: left=0, top=1
  1557. * @param s MpegEncContext
  1558. * @param[in] n block index in the current MB
  1559. * @param dc_val_ptr Pointer to DC predictor
  1560. * @param dir_ptr Prediction direction for use in AC prediction
  1561. */
  1562. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1563. int a_avail, int c_avail,
  1564. int16_t **dc_val_ptr, int *dir_ptr)
  1565. {
  1566. int a, b, c, wrap, pred, scale;
  1567. int16_t *dc_val;
  1568. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1569. int q1, q2 = 0;
  1570. /* find prediction - wmv3_dc_scale always used here in fact */
  1571. if (n < 4) scale = s->y_dc_scale;
  1572. else scale = s->c_dc_scale;
  1573. wrap = s->block_wrap[n];
  1574. dc_val= s->dc_val[0] + s->block_index[n];
  1575. /* B A
  1576. * C X
  1577. */
  1578. c = dc_val[ - 1];
  1579. b = dc_val[ - 1 - wrap];
  1580. a = dc_val[ - wrap];
  1581. if(a_avail && c_avail) {
  1582. if(abs(a - b) <= abs(b - c)) {
  1583. pred = c;
  1584. *dir_ptr = 1;//left
  1585. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1586. } else {
  1587. pred = a;
  1588. *dir_ptr = 0;//top
  1589. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1590. }
  1591. } else if(a_avail) {
  1592. pred = a;
  1593. *dir_ptr = 0;//top
  1594. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1595. } else if(c_avail) {
  1596. pred = c;
  1597. *dir_ptr = 1;//left
  1598. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1599. } else {
  1600. pred = 0;
  1601. *dir_ptr = 1;//left
  1602. }
  1603. /* scale coeffs if needed */
  1604. q1 = s->current_picture.qscale_table[mb_pos];
  1605. if(n && n<4) q2=q1;
  1606. if(q2 && q1!=q2) {
  1607. pred = (pred * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1608. }
  1609. /* update predictor */
  1610. *dc_val_ptr = &dc_val[0];
  1611. return pred;
  1612. }
  1613. /**
  1614. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1615. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1616. * @todo TODO: Integrate to MpegEncContext facilities
  1617. * @{
  1618. */
  1619. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1620. {
  1621. int xy, wrap, pred, a, b, c;
  1622. xy = s->block_index[n];
  1623. wrap = s->b8_stride;
  1624. /* B C
  1625. * A X
  1626. */
  1627. a = s->coded_block[xy - 1 ];
  1628. b = s->coded_block[xy - 1 - wrap];
  1629. c = s->coded_block[xy - wrap];
  1630. if (b == c) {
  1631. pred = a;
  1632. } else {
  1633. pred = c;
  1634. }
  1635. /* store value */
  1636. *coded_block_ptr = &s->coded_block[xy];
  1637. return pred;
  1638. }
  1639. /**
  1640. * Decode one AC coefficient
  1641. * @param v The VC1 context
  1642. * @param last Last coefficient
  1643. * @param skip How much zero coefficients to skip
  1644. * @param value Decoded AC coefficient value
  1645. * @see 8.1.3.4
  1646. */
  1647. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1648. {
  1649. GetBitContext *gb = &v->s.gb;
  1650. int index, escape, run = 0, level = 0, lst = 0;
  1651. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1652. if (index != vc1_ac_sizes[codingset] - 1) {
  1653. run = vc1_index_decode_table[codingset][index][0];
  1654. level = vc1_index_decode_table[codingset][index][1];
  1655. lst = index >= vc1_last_decode_table[codingset];
  1656. if(get_bits(gb, 1))
  1657. level = -level;
  1658. } else {
  1659. escape = decode210(gb);
  1660. if (escape != 2) {
  1661. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1662. run = vc1_index_decode_table[codingset][index][0];
  1663. level = vc1_index_decode_table[codingset][index][1];
  1664. lst = index >= vc1_last_decode_table[codingset];
  1665. if(escape == 0) {
  1666. if(lst)
  1667. level += vc1_last_delta_level_table[codingset][run];
  1668. else
  1669. level += vc1_delta_level_table[codingset][run];
  1670. } else {
  1671. if(lst)
  1672. run += vc1_last_delta_run_table[codingset][level] + 1;
  1673. else
  1674. run += vc1_delta_run_table[codingset][level] + 1;
  1675. }
  1676. if(get_bits(gb, 1))
  1677. level = -level;
  1678. } else {
  1679. int sign;
  1680. lst = get_bits(gb, 1);
  1681. if(v->s.esc3_level_length == 0) {
  1682. if(v->pq < 8 || v->dquantfrm) { // table 59
  1683. v->s.esc3_level_length = get_bits(gb, 3);
  1684. if(!v->s.esc3_level_length)
  1685. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1686. } else { //table 60
  1687. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1688. }
  1689. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1690. }
  1691. run = get_bits(gb, v->s.esc3_run_length);
  1692. sign = get_bits(gb, 1);
  1693. level = get_bits(gb, v->s.esc3_level_length);
  1694. if(sign)
  1695. level = -level;
  1696. }
  1697. }
  1698. *last = lst;
  1699. *skip = run;
  1700. *value = level;
  1701. }
  1702. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1703. * @param v VC1Context
  1704. * @param block block to decode
  1705. * @param coded are AC coeffs present or not
  1706. * @param codingset set of VLC to decode data
  1707. */
  1708. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1709. {
  1710. GetBitContext *gb = &v->s.gb;
  1711. MpegEncContext *s = &v->s;
  1712. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1713. int run_diff, i;
  1714. int16_t *dc_val;
  1715. int16_t *ac_val, *ac_val2;
  1716. int dcdiff;
  1717. /* Get DC differential */
  1718. if (n < 4) {
  1719. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1720. } else {
  1721. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1722. }
  1723. if (dcdiff < 0){
  1724. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1725. return -1;
  1726. }
  1727. if (dcdiff)
  1728. {
  1729. if (dcdiff == 119 /* ESC index value */)
  1730. {
  1731. /* TODO: Optimize */
  1732. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1733. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1734. else dcdiff = get_bits(gb, 8);
  1735. }
  1736. else
  1737. {
  1738. if (v->pq == 1)
  1739. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1740. else if (v->pq == 2)
  1741. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1742. }
  1743. if (get_bits(gb, 1))
  1744. dcdiff = -dcdiff;
  1745. }
  1746. /* Prediction */
  1747. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1748. *dc_val = dcdiff;
  1749. /* Store the quantized DC coeff, used for prediction */
  1750. if (n < 4) {
  1751. block[0] = dcdiff * s->y_dc_scale;
  1752. } else {
  1753. block[0] = dcdiff * s->c_dc_scale;
  1754. }
  1755. /* Skip ? */
  1756. run_diff = 0;
  1757. i = 0;
  1758. if (!coded) {
  1759. goto not_coded;
  1760. }
  1761. //AC Decoding
  1762. i = 1;
  1763. {
  1764. int last = 0, skip, value;
  1765. const int8_t *zz_table;
  1766. int scale;
  1767. int k;
  1768. scale = v->pq * 2 + v->halfpq;
  1769. if(v->s.ac_pred) {
  1770. if(!dc_pred_dir)
  1771. zz_table = vc1_horizontal_zz;
  1772. else
  1773. zz_table = vc1_vertical_zz;
  1774. } else
  1775. zz_table = vc1_normal_zz;
  1776. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1777. ac_val2 = ac_val;
  1778. if(dc_pred_dir) //left
  1779. ac_val -= 16;
  1780. else //top
  1781. ac_val -= 16 * s->block_wrap[n];
  1782. while (!last) {
  1783. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1784. i += skip;
  1785. if(i > 63)
  1786. break;
  1787. block[zz_table[i++]] = value;
  1788. }
  1789. /* apply AC prediction if needed */
  1790. if(s->ac_pred) {
  1791. if(dc_pred_dir) { //left
  1792. for(k = 1; k < 8; k++)
  1793. block[k << 3] += ac_val[k];
  1794. } else { //top
  1795. for(k = 1; k < 8; k++)
  1796. block[k] += ac_val[k + 8];
  1797. }
  1798. }
  1799. /* save AC coeffs for further prediction */
  1800. for(k = 1; k < 8; k++) {
  1801. ac_val2[k] = block[k << 3];
  1802. ac_val2[k + 8] = block[k];
  1803. }
  1804. /* scale AC coeffs */
  1805. for(k = 1; k < 64; k++)
  1806. if(block[k]) {
  1807. block[k] *= scale;
  1808. if(!v->pquantizer)
  1809. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1810. }
  1811. if(s->ac_pred) i = 63;
  1812. }
  1813. not_coded:
  1814. if(!coded) {
  1815. int k, scale;
  1816. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1817. ac_val2 = ac_val;
  1818. scale = v->pq * 2 + v->halfpq;
  1819. memset(ac_val2, 0, 16 * 2);
  1820. if(dc_pred_dir) {//left
  1821. ac_val -= 16;
  1822. if(s->ac_pred)
  1823. memcpy(ac_val2, ac_val, 8 * 2);
  1824. } else {//top
  1825. ac_val -= 16 * s->block_wrap[n];
  1826. if(s->ac_pred)
  1827. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1828. }
  1829. /* apply AC prediction if needed */
  1830. if(s->ac_pred) {
  1831. if(dc_pred_dir) { //left
  1832. for(k = 1; k < 8; k++) {
  1833. block[k << 3] = ac_val[k] * scale;
  1834. if(!v->pquantizer)
  1835. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1836. }
  1837. } else { //top
  1838. for(k = 1; k < 8; k++) {
  1839. block[k] = ac_val[k + 8] * scale;
  1840. if(!v->pquantizer)
  1841. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1842. }
  1843. }
  1844. i = 63;
  1845. }
  1846. }
  1847. s->block_last_index[n] = i;
  1848. return 0;
  1849. }
  1850. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1851. * @param v VC1Context
  1852. * @param block block to decode
  1853. * @param coded are AC coeffs present or not
  1854. * @param mquant block quantizer
  1855. * @param codingset set of VLC to decode data
  1856. */
  1857. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1858. {
  1859. GetBitContext *gb = &v->s.gb;
  1860. MpegEncContext *s = &v->s;
  1861. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1862. int run_diff, i;
  1863. int16_t *dc_val;
  1864. int16_t *ac_val, *ac_val2;
  1865. int dcdiff;
  1866. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1867. int a_avail = v->a_avail, c_avail = v->c_avail;
  1868. int use_pred = s->ac_pred;
  1869. int scale;
  1870. int q1, q2 = 0;
  1871. /* XXX: Guard against dumb values of mquant */
  1872. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1873. /* Set DC scale - y and c use the same */
  1874. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1875. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1876. /* Get DC differential */
  1877. if (n < 4) {
  1878. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1879. } else {
  1880. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1881. }
  1882. if (dcdiff < 0){
  1883. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1884. return -1;
  1885. }
  1886. if (dcdiff)
  1887. {
  1888. if (dcdiff == 119 /* ESC index value */)
  1889. {
  1890. /* TODO: Optimize */
  1891. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1892. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1893. else dcdiff = get_bits(gb, 8);
  1894. }
  1895. else
  1896. {
  1897. if (mquant == 1)
  1898. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1899. else if (mquant == 2)
  1900. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1901. }
  1902. if (get_bits(gb, 1))
  1903. dcdiff = -dcdiff;
  1904. }
  1905. /* Prediction */
  1906. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1907. *dc_val = dcdiff;
  1908. /* Store the quantized DC coeff, used for prediction */
  1909. if (n < 4) {
  1910. block[0] = dcdiff * s->y_dc_scale;
  1911. } else {
  1912. block[0] = dcdiff * s->c_dc_scale;
  1913. }
  1914. /* Skip ? */
  1915. run_diff = 0;
  1916. i = 0;
  1917. //AC Decoding
  1918. i = 1;
  1919. /* check if AC is needed at all and adjust direction if needed */
  1920. if(!a_avail) dc_pred_dir = 1;
  1921. if(!c_avail) dc_pred_dir = 0;
  1922. if(!a_avail && !c_avail) use_pred = 0;
  1923. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1924. ac_val2 = ac_val;
  1925. scale = mquant * 2;
  1926. if(dc_pred_dir) //left
  1927. ac_val -= 16;
  1928. else //top
  1929. ac_val -= 16 * s->block_wrap[n];
  1930. q1 = s->current_picture.qscale_table[mb_pos];
  1931. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1932. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1933. if(n && n<4) q2 = q1;
  1934. if(coded) {
  1935. int last = 0, skip, value;
  1936. const int8_t *zz_table;
  1937. int k;
  1938. zz_table = vc1_simple_progressive_8x8_zz;
  1939. while (!last) {
  1940. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1941. i += skip;
  1942. if(i > 63)
  1943. break;
  1944. block[zz_table[i++]] = value;
  1945. }
  1946. /* apply AC prediction if needed */
  1947. if(use_pred) {
  1948. /* scale predictors if needed*/
  1949. if(q2 && q1!=q2) {
  1950. q1 = q1 * 2 - 1;
  1951. q2 = q2 * 2 - 1;
  1952. if(dc_pred_dir) { //left
  1953. for(k = 1; k < 8; k++)
  1954. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1955. } else { //top
  1956. for(k = 1; k < 8; k++)
  1957. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1958. }
  1959. } else {
  1960. if(dc_pred_dir) { //left
  1961. for(k = 1; k < 8; k++)
  1962. block[k << 3] += ac_val[k];
  1963. } else { //top
  1964. for(k = 1; k < 8; k++)
  1965. block[k] += ac_val[k + 8];
  1966. }
  1967. }
  1968. }
  1969. /* save AC coeffs for further prediction */
  1970. for(k = 1; k < 8; k++) {
  1971. ac_val2[k] = block[k << 3];
  1972. ac_val2[k + 8] = block[k];
  1973. }
  1974. /* scale AC coeffs */
  1975. for(k = 1; k < 64; k++)
  1976. if(block[k]) {
  1977. block[k] *= scale;
  1978. if(!v->pquantizer)
  1979. block[k] += (block[k] < 0) ? -mquant : mquant;
  1980. }
  1981. if(use_pred) i = 63;
  1982. } else { // no AC coeffs
  1983. int k;
  1984. memset(ac_val2, 0, 16 * 2);
  1985. if(dc_pred_dir) {//left
  1986. if(use_pred) {
  1987. memcpy(ac_val2, ac_val, 8 * 2);
  1988. if(q2 && q1!=q2) {
  1989. q1 = q1 * 2 - 1;
  1990. q2 = q2 * 2 - 1;
  1991. for(k = 1; k < 8; k++)
  1992. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1993. }
  1994. }
  1995. } else {//top
  1996. if(use_pred) {
  1997. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1998. if(q2 && q1!=q2) {
  1999. q1 = q1 * 2 - 1;
  2000. q2 = q2 * 2 - 1;
  2001. for(k = 1; k < 8; k++)
  2002. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2003. }
  2004. }
  2005. }
  2006. /* apply AC prediction if needed */
  2007. if(use_pred) {
  2008. if(dc_pred_dir) { //left
  2009. for(k = 1; k < 8; k++) {
  2010. block[k << 3] = ac_val2[k] * scale;
  2011. if(!v->pquantizer)
  2012. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2013. }
  2014. } else { //top
  2015. for(k = 1; k < 8; k++) {
  2016. block[k] = ac_val2[k + 8] * scale;
  2017. if(!v->pquantizer)
  2018. block[k] += (block[k] < 0) ? -mquant : mquant;
  2019. }
  2020. }
  2021. i = 63;
  2022. }
  2023. }
  2024. s->block_last_index[n] = i;
  2025. return 0;
  2026. }
  2027. /** Decode P block
  2028. */
  2029. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2030. {
  2031. MpegEncContext *s = &v->s;
  2032. GetBitContext *gb = &s->gb;
  2033. int i, j;
  2034. int subblkpat = 0;
  2035. int scale, off, idx, last, skip, value;
  2036. int ttblk = ttmb & 7;
  2037. if(ttmb == -1) {
  2038. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2039. }
  2040. if(ttblk == TT_4X4) {
  2041. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2042. }
  2043. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2044. subblkpat = decode012(gb);
  2045. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2046. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2047. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2048. }
  2049. scale = 2 * mquant;
  2050. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2051. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2052. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2053. ttblk = TT_8X4;
  2054. }
  2055. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2056. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2057. ttblk = TT_4X8;
  2058. }
  2059. switch(ttblk) {
  2060. case TT_8X8:
  2061. i = 0;
  2062. last = 0;
  2063. while (!last) {
  2064. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2065. i += skip;
  2066. if(i > 63)
  2067. break;
  2068. idx = vc1_simple_progressive_8x8_zz[i++];
  2069. block[idx] = value * scale;
  2070. }
  2071. vc1_inv_trans(block, 8, 8);
  2072. break;
  2073. case TT_4X4:
  2074. for(j = 0; j < 4; j++) {
  2075. last = subblkpat & (1 << (3 - j));
  2076. i = 0;
  2077. off = (j & 1) * 4 + (j & 2) * 16;
  2078. while (!last) {
  2079. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2080. i += skip;
  2081. if(i > 15)
  2082. break;
  2083. idx = vc1_simple_progressive_4x4_zz[i++];
  2084. block[idx + off] = value * scale;
  2085. }
  2086. if(!(subblkpat & (1 << (3 - j))))
  2087. vc1_inv_trans(block + off, 4, 4);
  2088. }
  2089. break;
  2090. case TT_8X4:
  2091. for(j = 0; j < 2; j++) {
  2092. last = subblkpat & (1 << (1 - j));
  2093. i = 0;
  2094. off = j * 32;
  2095. while (!last) {
  2096. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2097. i += skip;
  2098. if(i > 31)
  2099. break;
  2100. idx = vc1_simple_progressive_8x4_zz[i++];
  2101. block[idx + off] = value * scale;
  2102. }
  2103. if(!(subblkpat & (1 << (1 - j))))
  2104. vc1_inv_trans(block + off, 8, 4);
  2105. }
  2106. break;
  2107. case TT_4X8:
  2108. for(j = 0; j < 2; j++) {
  2109. last = subblkpat & (1 << (1 - j));
  2110. i = 0;
  2111. off = j * 4;
  2112. while (!last) {
  2113. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2114. i += skip;
  2115. if(i > 31)
  2116. break;
  2117. idx = vc1_simple_progressive_4x8_zz[i++];
  2118. block[idx + off] = value * scale;
  2119. }
  2120. if(!(subblkpat & (1 << (1 - j))))
  2121. vc1_inv_trans(block + off, 4, 8);
  2122. }
  2123. break;
  2124. }
  2125. return 0;
  2126. }
  2127. /** Decode one P-frame MB (in Simple/Main profile)
  2128. * @todo TODO: Extend to AP
  2129. * @fixme FIXME: DC value for inter blocks not set
  2130. */
  2131. static int vc1_decode_p_mb(VC1Context *v, DCTELEM block[6][64])
  2132. {
  2133. MpegEncContext *s = &v->s;
  2134. GetBitContext *gb = &s->gb;
  2135. int i, j;
  2136. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2137. int cbp; /* cbp decoding stuff */
  2138. int mqdiff, mquant; /* MB quantization */
  2139. int ttmb = v->ttfrm; /* MB Transform type */
  2140. int status;
  2141. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2142. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2143. int mb_has_coeffs = 1; /* last_flag */
  2144. int dmv_x, dmv_y; /* Differential MV components */
  2145. int index, index1; /* LUT indices */
  2146. int val, sign; /* temp values */
  2147. int first_block = 1;
  2148. int dst_idx, off;
  2149. int skipped, fourmv;
  2150. mquant = v->pq; /* Loosy initialization */
  2151. if (v->mv_type_is_raw)
  2152. fourmv = get_bits1(gb);
  2153. else
  2154. fourmv = v->mv_type_mb_plane[mb_pos];
  2155. if (v->skip_is_raw)
  2156. skipped = get_bits1(gb);
  2157. else
  2158. skipped = v->s.mbskip_table[mb_pos];
  2159. s->dsp.clear_blocks(s->block[0]);
  2160. if (!fourmv) /* 1MV mode */
  2161. {
  2162. if (!skipped)
  2163. {
  2164. GET_MVDATA(dmv_x, dmv_y);
  2165. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2166. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2167. /* FIXME Set DC val for inter block ? */
  2168. if (s->mb_intra && !mb_has_coeffs)
  2169. {
  2170. GET_MQUANT();
  2171. s->ac_pred = get_bits(gb, 1);
  2172. cbp = 0;
  2173. }
  2174. else if (mb_has_coeffs)
  2175. {
  2176. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2177. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2178. GET_MQUANT();
  2179. }
  2180. else
  2181. {
  2182. mquant = v->pq;
  2183. cbp = 0;
  2184. }
  2185. s->current_picture.qscale_table[mb_pos] = mquant;
  2186. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2187. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2188. VC1_TTMB_VLC_BITS, 2);
  2189. if(!s->mb_intra) vc1_mc_1mv(v);
  2190. dst_idx = 0;
  2191. for (i=0; i<6; i++)
  2192. {
  2193. s->dc_val[0][s->block_index[i]] = 0;
  2194. dst_idx += i >> 2;
  2195. val = ((cbp >> (5 - i)) & 1);
  2196. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2197. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2198. if(s->mb_intra) {
  2199. /* check if prediction blocks A and C are available */
  2200. v->a_avail = v->c_avail = 0;
  2201. if(i == 2 || i == 3 || !s->first_slice_line)
  2202. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2203. if(i == 1 || i == 3 || s->mb_x)
  2204. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2205. vc1_decode_intra_block(v, block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2206. vc1_inv_trans(block[i], 8, 8);
  2207. for(j = 0; j < 64; j++) block[i][j] += 128;
  2208. s->dsp.put_pixels_clamped(block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2209. /* TODO: proper loop filtering */
  2210. if(v->pq >= 9 && v->overlap) {
  2211. if(v->a_avail)
  2212. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2213. if(v->c_avail)
  2214. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2215. }
  2216. } else if(val) {
  2217. vc1_decode_p_block(v, block[i], i, mquant, ttmb, first_block);
  2218. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2219. first_block = 0;
  2220. s->dsp.add_pixels_clamped(block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2221. }
  2222. }
  2223. }
  2224. else //Skipped
  2225. {
  2226. s->mb_intra = 0;
  2227. for(i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  2228. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2229. s->current_picture.qscale_table[mb_pos] = 0;
  2230. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2231. vc1_mc_1mv(v);
  2232. return 0;
  2233. }
  2234. } //1MV mode
  2235. else //4MV mode
  2236. {
  2237. if (!skipped /* unskipped MB */)
  2238. {
  2239. int intra_count = 0, coded_inter = 0;
  2240. int is_intra[6], is_coded[6];
  2241. /* Get CBPCY */
  2242. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2243. for (i=0; i<6; i++)
  2244. {
  2245. val = ((cbp >> (5 - i)) & 1);
  2246. s->dc_val[0][s->block_index[i]] = 0;
  2247. s->mb_intra = 0;
  2248. if(i < 4) {
  2249. dmv_x = dmv_y = 0;
  2250. s->mb_intra = 0;
  2251. mb_has_coeffs = 0;
  2252. if(val) {
  2253. GET_MVDATA(dmv_x, dmv_y);
  2254. }
  2255. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2256. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2257. intra_count += s->mb_intra;
  2258. is_intra[i] = s->mb_intra;
  2259. is_coded[i] = mb_has_coeffs;
  2260. }
  2261. if(i&4){
  2262. is_intra[i] = (intra_count >= 3);
  2263. is_coded[i] = val;
  2264. }
  2265. if(i == 4) vc1_mc_4mv_chroma(v);
  2266. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2267. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2268. }
  2269. // if there are no coded blocks then don't do anything more
  2270. if(!intra_count && !coded_inter) return 0;
  2271. dst_idx = 0;
  2272. GET_MQUANT();
  2273. s->current_picture.qscale_table[mb_pos] = mquant;
  2274. /* test if block is intra and has pred */
  2275. {
  2276. int intrapred = 0;
  2277. for(i=0; i<6; i++)
  2278. if(is_intra[i]) {
  2279. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2280. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2281. intrapred = 1;
  2282. break;
  2283. }
  2284. }
  2285. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2286. else s->ac_pred = 0;
  2287. }
  2288. if (!v->ttmbf && coded_inter)
  2289. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 12);
  2290. for (i=0; i<6; i++)
  2291. {
  2292. dst_idx += i >> 2;
  2293. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2294. s->mb_intra = is_intra[i];
  2295. if (is_intra[i]) {
  2296. /* check if prediction blocks A and C are available */
  2297. v->a_avail = v->c_avail = 0;
  2298. if(i == 2 || i == 3 || !s->first_slice_line)
  2299. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2300. if(i == 1 || i == 3 || s->mb_x)
  2301. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2302. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2303. vc1_inv_trans(block[i], 8, 8);
  2304. for(j = 0; j < 64; j++) block[i][j] += 128;
  2305. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2306. /* TODO: proper loop filtering */
  2307. if(v->pq >= 9 && v->overlap) {
  2308. if(v->a_avail)
  2309. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2310. if(v->c_avail)
  2311. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2312. }
  2313. } else if(is_coded[i]) {
  2314. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2315. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2316. first_block = 0;
  2317. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2318. }
  2319. }
  2320. return status;
  2321. }
  2322. else //Skipped MB
  2323. {
  2324. s->mb_intra = 0;
  2325. for (i=0; i<6; i++) v->mb_type[0][s->block_index[i]] = 0;
  2326. for (i=0; i<4; i++)
  2327. {
  2328. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2329. vc1_mc_4mv_luma(v, i);
  2330. }
  2331. vc1_mc_4mv_chroma(v);
  2332. s->current_picture.qscale_table[mb_pos] = 0;
  2333. return 0;
  2334. }
  2335. }
  2336. /* Should never happen */
  2337. return -1;
  2338. }
  2339. /** Decode blocks of I-frame
  2340. */
  2341. static void vc1_decode_i_blocks(VC1Context *v)
  2342. {
  2343. int k, j;
  2344. MpegEncContext *s = &v->s;
  2345. int cbp, val;
  2346. uint8_t *coded_val;
  2347. int mb_pos;
  2348. /* select codingmode used for VLC tables selection */
  2349. switch(v->y_ac_table_index){
  2350. case 0:
  2351. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2352. break;
  2353. case 1:
  2354. v->codingset = CS_HIGH_MOT_INTRA;
  2355. break;
  2356. case 2:
  2357. v->codingset = CS_MID_RATE_INTRA;
  2358. break;
  2359. }
  2360. switch(v->c_ac_table_index){
  2361. case 0:
  2362. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2363. break;
  2364. case 1:
  2365. v->codingset2 = CS_HIGH_MOT_INTER;
  2366. break;
  2367. case 2:
  2368. v->codingset2 = CS_MID_RATE_INTER;
  2369. break;
  2370. }
  2371. /* Set DC scale - y and c use the same */
  2372. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2373. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2374. //do frame decode
  2375. s->mb_x = s->mb_y = 0;
  2376. s->mb_intra = 1;
  2377. s->first_slice_line = 1;
  2378. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2379. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2380. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2381. ff_init_block_index(s);
  2382. ff_update_block_index(s);
  2383. s->dsp.clear_blocks(s->block[0]);
  2384. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2385. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2386. s->current_picture.qscale_table[mb_pos] = v->pq;
  2387. // do actual MB decoding and displaying
  2388. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2389. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2390. for(k = 0; k < 6; k++) {
  2391. val = ((cbp >> (5 - k)) & 1);
  2392. if (k < 4) {
  2393. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2394. val = val ^ pred;
  2395. *coded_val = val;
  2396. }
  2397. cbp |= val << (5 - k);
  2398. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2399. vc1_inv_trans(s->block[k], 8, 8);
  2400. if(v->pq >= 9 && v->overlap) {
  2401. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2402. }
  2403. }
  2404. vc1_put_block(v, s->block);
  2405. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2406. if(!s->first_slice_line) {
  2407. vc1_v_overlap(s->dest[0], s->linesize);
  2408. vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2409. vc1_v_overlap(s->dest[1], s->uvlinesize);
  2410. vc1_v_overlap(s->dest[2], s->uvlinesize);
  2411. }
  2412. vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2413. vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2414. if(s->mb_x) {
  2415. vc1_h_overlap(s->dest[0], s->linesize);
  2416. vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2417. vc1_h_overlap(s->dest[1], s->uvlinesize);
  2418. vc1_h_overlap(s->dest[2], s->uvlinesize);
  2419. }
  2420. vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2421. vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2422. }
  2423. if(get_bits_count(&s->gb) > v->bits) {
  2424. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2425. return;
  2426. }
  2427. }
  2428. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2429. s->first_slice_line = 0;
  2430. }
  2431. }
  2432. static void vc1_decode_p_blocks(VC1Context *v)
  2433. {
  2434. MpegEncContext *s = &v->s;
  2435. /* select codingmode used for VLC tables selection */
  2436. switch(v->c_ac_table_index){
  2437. case 0:
  2438. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2439. break;
  2440. case 1:
  2441. v->codingset = CS_HIGH_MOT_INTRA;
  2442. break;
  2443. case 2:
  2444. v->codingset = CS_MID_RATE_INTRA;
  2445. break;
  2446. }
  2447. switch(v->c_ac_table_index){
  2448. case 0:
  2449. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2450. break;
  2451. case 1:
  2452. v->codingset2 = CS_HIGH_MOT_INTER;
  2453. break;
  2454. case 2:
  2455. v->codingset2 = CS_MID_RATE_INTER;
  2456. break;
  2457. }
  2458. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2459. s->first_slice_line = 1;
  2460. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2461. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2462. ff_init_block_index(s);
  2463. ff_update_block_index(s);
  2464. s->dsp.clear_blocks(s->block[0]);
  2465. vc1_decode_p_mb(v, s->block);
  2466. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2467. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2468. return;
  2469. }
  2470. }
  2471. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2472. s->first_slice_line = 0;
  2473. }
  2474. }
  2475. static void vc1_decode_blocks(VC1Context *v)
  2476. {
  2477. v->s.esc3_level_length = 0;
  2478. switch(v->s.pict_type) {
  2479. case I_TYPE:
  2480. vc1_decode_i_blocks(v);
  2481. break;
  2482. case P_TYPE:
  2483. vc1_decode_p_blocks(v);
  2484. break;
  2485. }
  2486. }
  2487. /** Initialize a VC1/WMV3 decoder
  2488. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2489. * @todo TODO: Decypher remaining bits in extra_data
  2490. */
  2491. static int vc1_decode_init(AVCodecContext *avctx)
  2492. {
  2493. VC1Context *v = avctx->priv_data;
  2494. MpegEncContext *s = &v->s;
  2495. GetBitContext gb;
  2496. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2497. avctx->pix_fmt = PIX_FMT_YUV420P;
  2498. v->s.avctx = avctx;
  2499. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2500. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2501. if(ff_h263_decode_init(avctx) < 0)
  2502. return -1;
  2503. if (vc1_init_common(v) < 0) return -1;
  2504. av_log(avctx, AV_LOG_INFO, "This decoder is not supposed to produce picture. Dont report this as a bug!\n");
  2505. av_log(avctx, AV_LOG_INFO, "If you see a picture, don't believe your eyes.\n");
  2506. avctx->coded_width = avctx->width;
  2507. avctx->coded_height = avctx->height;
  2508. if (avctx->codec_id == CODEC_ID_WMV3)
  2509. {
  2510. int count = 0;
  2511. // looks like WMV3 has a sequence header stored in the extradata
  2512. // advanced sequence header may be before the first frame
  2513. // the last byte of the extradata is a version number, 1 for the
  2514. // samples we can decode
  2515. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2516. if (decode_sequence_header(avctx, &gb) < 0)
  2517. return -1;
  2518. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2519. if (count>0)
  2520. {
  2521. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2522. count, get_bits(&gb, count));
  2523. }
  2524. else if (count < 0)
  2525. {
  2526. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2527. }
  2528. }
  2529. avctx->has_b_frames= !!(avctx->max_b_frames);
  2530. s->mb_width = (avctx->coded_width+15)>>4;
  2531. s->mb_height = (avctx->coded_height+15)>>4;
  2532. /* Allocate mb bitplanes */
  2533. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2534. /* allocate block type info in that way so it could be used with s->block_index[] */
  2535. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2536. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2537. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2538. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2539. /* Init coded blocks info */
  2540. if (v->profile == PROFILE_ADVANCED)
  2541. {
  2542. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2543. // return -1;
  2544. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2545. // return -1;
  2546. }
  2547. return 0;
  2548. }
  2549. /** Decode a VC1/WMV3 frame
  2550. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2551. * @warning Initial try at using MpegEncContext stuff
  2552. */
  2553. static int vc1_decode_frame(AVCodecContext *avctx,
  2554. void *data, int *data_size,
  2555. uint8_t *buf, int buf_size)
  2556. {
  2557. VC1Context *v = avctx->priv_data;
  2558. MpegEncContext *s = &v->s;
  2559. AVFrame *pict = data;
  2560. /* no supplementary picture */
  2561. if (buf_size == 0) {
  2562. /* special case for last picture */
  2563. if (s->low_delay==0 && s->next_picture_ptr) {
  2564. *pict= *(AVFrame*)s->next_picture_ptr;
  2565. s->next_picture_ptr= NULL;
  2566. *data_size = sizeof(AVFrame);
  2567. }
  2568. return 0;
  2569. }
  2570. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2571. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2572. int i= ff_find_unused_picture(s, 0);
  2573. s->current_picture_ptr= &s->picture[i];
  2574. }
  2575. avctx->has_b_frames= !s->low_delay;
  2576. init_get_bits(&s->gb, buf, buf_size*8);
  2577. // do parse frame header
  2578. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2579. return -1;
  2580. if(s->pict_type != I_TYPE && s->pict_type != P_TYPE)return -1;
  2581. // for hurry_up==5
  2582. s->current_picture.pict_type= s->pict_type;
  2583. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2584. /* skip B-frames if we don't have reference frames */
  2585. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2586. /* skip b frames if we are in a hurry */
  2587. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2588. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2589. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2590. || avctx->skip_frame >= AVDISCARD_ALL)
  2591. return buf_size;
  2592. /* skip everything if we are in a hurry>=5 */
  2593. if(avctx->hurry_up>=5) return -1;//buf_size;
  2594. if(s->next_p_frame_damaged){
  2595. if(s->pict_type==B_TYPE)
  2596. return buf_size;
  2597. else
  2598. s->next_p_frame_damaged=0;
  2599. }
  2600. if(MPV_frame_start(s, avctx) < 0)
  2601. return -1;
  2602. ff_er_frame_start(s);
  2603. v->bits = buf_size * 8;
  2604. vc1_decode_blocks(v);
  2605. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2606. // if(get_bits_count(&s->gb) > buf_size * 8)
  2607. // return -1;
  2608. ff_er_frame_end(s);
  2609. MPV_frame_end(s);
  2610. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2611. assert(s->current_picture.pict_type == s->pict_type);
  2612. if (s->pict_type == B_TYPE || s->low_delay) {
  2613. *pict= *(AVFrame*)s->current_picture_ptr;
  2614. } else if (s->last_picture_ptr != NULL) {
  2615. *pict= *(AVFrame*)s->last_picture_ptr;
  2616. }
  2617. if(s->last_picture_ptr || s->low_delay){
  2618. *data_size = sizeof(AVFrame);
  2619. ff_print_debug_info(s, pict);
  2620. }
  2621. /* Return the Picture timestamp as the frame number */
  2622. /* we substract 1 because it is added on utils.c */
  2623. avctx->frame_number = s->picture_number - 1;
  2624. return buf_size;
  2625. }
  2626. /** Close a VC1/WMV3 decoder
  2627. * @warning Initial try at using MpegEncContext stuff
  2628. */
  2629. static int vc1_decode_end(AVCodecContext *avctx)
  2630. {
  2631. VC1Context *v = avctx->priv_data;
  2632. av_freep(&v->hrd_rate);
  2633. av_freep(&v->hrd_buffer);
  2634. MPV_common_end(&v->s);
  2635. av_freep(&v->mv_type_mb_plane);
  2636. av_freep(&v->mb_type_base);
  2637. return 0;
  2638. }
  2639. AVCodec vc1_decoder = {
  2640. "vc1",
  2641. CODEC_TYPE_VIDEO,
  2642. CODEC_ID_VC1,
  2643. sizeof(VC1Context),
  2644. vc1_decode_init,
  2645. NULL,
  2646. vc1_decode_end,
  2647. vc1_decode_frame,
  2648. CODEC_CAP_DELAY,
  2649. NULL
  2650. };
  2651. AVCodec wmv3_decoder = {
  2652. "wmv3",
  2653. CODEC_TYPE_VIDEO,
  2654. CODEC_ID_WMV3,
  2655. sizeof(VC1Context),
  2656. vc1_decode_init,
  2657. NULL,
  2658. vc1_decode_end,
  2659. vc1_decode_frame,
  2660. CODEC_CAP_DELAY,
  2661. NULL
  2662. };