You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3521 lines
98KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using @code{--disable-filters}.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}".
  85. @var{sample_format} specifies the sample format, and can be a string or the
  86. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  87. suffix for a planar sample format.
  88. @var{channel_layout} specifies the channel layout, and can be a string
  89. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  90. The special parameter "auto", signifies that the filter will
  91. automatically select the output format depending on the output filter.
  92. Some examples follow.
  93. @itemize
  94. @item
  95. Convert input to float, planar, stereo:
  96. @example
  97. aconvert=fltp:stereo
  98. @end example
  99. @item
  100. Convert input to unsigned 8-bit, automatically select out channel layout:
  101. @example
  102. aconvert=u8:auto
  103. @end example
  104. @end itemize
  105. @section aformat
  106. Convert the input audio to one of the specified formats. The framework will
  107. negotiate the most appropriate format to minimize conversions.
  108. The filter accepts three lists of formats, separated by ":", in the form:
  109. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  110. Elements in each list are separated by "," which has to be escaped in the
  111. filtergraph specification.
  112. The special parameter "all", in place of a list of elements, signifies all
  113. supported formats.
  114. Some examples follow:
  115. @example
  116. aformat=u8\\,s16:mono:packed
  117. aformat=s16:mono\\,stereo:all
  118. @end example
  119. @section amerge
  120. Merge two audio streams into a single multi-channel stream.
  121. This filter does not need any argument.
  122. If the channel layouts of the inputs are disjoint, and therefore compatible,
  123. the channel layout of the output will be set accordingly and the channels
  124. will be reordered as necessary. If the channel layouts of the inputs are not
  125. disjoint, the output will have all the channels of the first input then all
  126. the channels of the second input, in that order, and the channel layout of
  127. the output will be the default value corresponding to the total number of
  128. channels.
  129. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  130. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  131. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  132. first input, b1 is the first channel of the second input).
  133. On the other hand, if both input are in stereo, the output channels will be
  134. in the default order: a1, a2, b1, b2, and the channel layout will be
  135. arbitrarily set to 4.0, which may or may not be the expected value.
  136. Both inputs must have the same sample rate, format and packing.
  137. If inputs do not have the same duration, the output will stop with the
  138. shortest.
  139. Example: merge two mono files into a stereo stream:
  140. @example
  141. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  142. @end example
  143. If you need to do multiple merges (for instance multiple mono audio streams in
  144. a single video media), you can do:
  145. @example
  146. ffmpeg -f lavfi -i "
  147. amovie=input.mkv:si=0 [a0];
  148. amovie=input.mkv:si=1 [a1];
  149. amovie=input.mkv:si=2 [a2];
  150. amovie=input.mkv:si=3 [a3];
  151. amovie=input.mkv:si=4 [a4];
  152. amovie=input.mkv:si=5 [a5];
  153. [a0][a1] amerge [x0];
  154. [x0][a2] amerge [x1];
  155. [x1][a3] amerge [x2];
  156. [x2][a4] amerge [x3];
  157. [x3][a5] amerge" -c:a pcm_s16le output.mkv
  158. @end example
  159. @section anull
  160. Pass the audio source unchanged to the output.
  161. @section aresample
  162. Resample the input audio to the specified sample rate.
  163. The filter accepts exactly one parameter, the output sample rate. If not
  164. specified then the filter will automatically convert between its input
  165. and output sample rates.
  166. For example, to resample the input audio to 44100Hz:
  167. @example
  168. aresample=44100
  169. @end example
  170. @section ashowinfo
  171. Show a line containing various information for each input audio frame.
  172. The input audio is not modified.
  173. The shown line contains a sequence of key/value pairs of the form
  174. @var{key}:@var{value}.
  175. A description of each shown parameter follows:
  176. @table @option
  177. @item n
  178. sequential number of the input frame, starting from 0
  179. @item pts
  180. presentation TimeStamp of the input frame, expressed as a number of
  181. time base units. The time base unit depends on the filter input pad, and
  182. is usually 1/@var{sample_rate}.
  183. @item pts_time
  184. presentation TimeStamp of the input frame, expressed as a number of
  185. seconds
  186. @item pos
  187. position of the frame in the input stream, -1 if this information in
  188. unavailable and/or meaningless (for example in case of synthetic audio)
  189. @item fmt
  190. sample format name
  191. @item chlayout
  192. channel layout description
  193. @item nb_samples
  194. number of samples (per each channel) contained in the filtered frame
  195. @item rate
  196. sample rate for the audio frame
  197. @item planar
  198. if the packing format is planar, 0 if packed
  199. @item checksum
  200. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  201. @item plane_checksum
  202. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  203. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  204. @var{c6} @var{c7}]"
  205. @end table
  206. @section asplit
  207. Pass on the input audio to two outputs. Both outputs are identical to
  208. the input audio.
  209. For example:
  210. @example
  211. [in] asplit[out0], showaudio[out1]
  212. @end example
  213. will create two separate outputs from the same input, one cropped and
  214. one padded.
  215. @section astreamsync
  216. Forward two audio streams and control the order the buffers are forwarded.
  217. The argument to the filter is an expression deciding which stream should be
  218. forwarded next: if the result is negative, the first stream is forwarded; if
  219. the result is positive or zero, the second stream is forwarded. It can use
  220. the following variables:
  221. @table @var
  222. @item b1 b2
  223. number of buffers forwarded so far on each stream
  224. @item s1 s2
  225. number of samples forwarded so far on each stream
  226. @item t1 t2
  227. current timestamp of each stream
  228. @end table
  229. The default value is @code{t1-t2}, which means to always forward the stream
  230. that has a smaller timestamp.
  231. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  232. input, while avoiding too much of a desynchronization:
  233. @example
  234. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  235. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  236. [a2] [b2] amerge
  237. @end example
  238. @section earwax
  239. Make audio easier to listen to on headphones.
  240. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  241. so that when listened to on headphones the stereo image is moved from
  242. inside your head (standard for headphones) to outside and in front of
  243. the listener (standard for speakers).
  244. Ported from SoX.
  245. @section pan
  246. Mix channels with specific gain levels. The filter accepts the output
  247. channel layout followed by a set of channels definitions.
  248. This filter is also designed to remap efficiently the channels of an audio
  249. stream.
  250. The filter accepts parameters of the form:
  251. "@var{l}:@var{outdef}:@var{outdef}:..."
  252. @table @option
  253. @item l
  254. output channel layout or number of channels
  255. @item outdef
  256. output channel specification, of the form:
  257. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  258. @item out_name
  259. output channel to define, either a channel name (FL, FR, etc.) or a channel
  260. number (c0, c1, etc.)
  261. @item gain
  262. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  263. @item in_name
  264. input channel to use, see out_name for details; it is not possible to mix
  265. named and numbered input channels
  266. @end table
  267. If the `=' in a channel specification is replaced by `<', then the gains for
  268. that specification will be renormalized so that the total is 1, thus
  269. avoiding clipping noise.
  270. @subsection Mixing examples
  271. For example, if you want to down-mix from stereo to mono, but with a bigger
  272. factor for the left channel:
  273. @example
  274. pan=1:c0=0.9*c0+0.1*c1
  275. @end example
  276. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  277. 7-channels surround:
  278. @example
  279. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  280. @end example
  281. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  282. that should be preferred (see "-ac" option) unless you have very specific
  283. needs.
  284. @subsection Remapping examples
  285. The channel remapping will be effective if, and only if:
  286. @itemize
  287. @item gain coefficients are zeroes or ones,
  288. @item only one input per channel output,
  289. @end itemize
  290. If all these conditions are satisfied, the filter will notify the user ("Pure
  291. channel mapping detected"), and use an optimized and lossless method to do the
  292. remapping.
  293. For example, if you have a 5.1 source and want a stereo audio stream by
  294. dropping the extra channels:
  295. @example
  296. pan="stereo: c0=FL : c1=FR"
  297. @end example
  298. Given the same source, you can also switch front left and front right channels
  299. and keep the input channel layout:
  300. @example
  301. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  302. @end example
  303. If the input is a stereo audio stream, you can mute the front left channel (and
  304. still keep the stereo channel layout) with:
  305. @example
  306. pan="stereo:c1=c1"
  307. @end example
  308. Still with a stereo audio stream input, you can copy the right channel in both
  309. front left and right:
  310. @example
  311. pan="stereo: c0=FR : c1=FR"
  312. @end example
  313. @section silencedetect
  314. Detect silence in an audio stream.
  315. This filter logs a message when it detects that the input audio volume is less
  316. or equal to a noise tolerance value for a duration greater or equal to the
  317. minimum detected noise duration.
  318. The printed times and duration are expressed in seconds.
  319. @table @option
  320. @item duration, d
  321. Set silence duration until notification (default is 2 seconds).
  322. @item noise, n
  323. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  324. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  325. @end table
  326. Detect 5 seconds of silence with -50dB noise tolerance:
  327. @example
  328. silencedetect=n=-50dB:d=5
  329. @end example
  330. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  331. tolerance in @file{silence.mp3}:
  332. @example
  333. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  334. @end example
  335. @section volume
  336. Adjust the input audio volume.
  337. The filter accepts exactly one parameter @var{vol}, which expresses
  338. how the audio volume will be increased or decreased.
  339. Output values are clipped to the maximum value.
  340. If @var{vol} is expressed as a decimal number, the output audio
  341. volume is given by the relation:
  342. @example
  343. @var{output_volume} = @var{vol} * @var{input_volume}
  344. @end example
  345. If @var{vol} is expressed as a decimal number followed by the string
  346. "dB", the value represents the requested change in decibels of the
  347. input audio power, and the output audio volume is given by the
  348. relation:
  349. @example
  350. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  351. @end example
  352. Otherwise @var{vol} is considered an expression and its evaluated
  353. value is used for computing the output audio volume according to the
  354. first relation.
  355. Default value for @var{vol} is 1.0.
  356. @subsection Examples
  357. @itemize
  358. @item
  359. Half the input audio volume:
  360. @example
  361. volume=0.5
  362. @end example
  363. The above example is equivalent to:
  364. @example
  365. volume=1/2
  366. @end example
  367. @item
  368. Decrease input audio power by 12 decibels:
  369. @example
  370. volume=-12dB
  371. @end example
  372. @end itemize
  373. @c man end AUDIO FILTERS
  374. @chapter Audio Sources
  375. @c man begin AUDIO SOURCES
  376. Below is a description of the currently available audio sources.
  377. @section abuffer
  378. Buffer audio frames, and make them available to the filter chain.
  379. This source is mainly intended for a programmatic use, in particular
  380. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  381. It accepts the following mandatory parameters:
  382. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  383. @table @option
  384. @item sample_rate
  385. The sample rate of the incoming audio buffers.
  386. @item sample_fmt
  387. The sample format of the incoming audio buffers.
  388. Either a sample format name or its corresponging integer representation from
  389. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  390. @item channel_layout
  391. The channel layout of the incoming audio buffers.
  392. Either a channel layout name from channel_layout_map in
  393. @file{libavutil/audioconvert.c} or its corresponding integer representation
  394. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  395. @item packing
  396. Either "packed" or "planar", or their integer representation: 0 or 1
  397. respectively.
  398. @end table
  399. For example:
  400. @example
  401. abuffer=44100:s16:stereo:planar
  402. @end example
  403. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  404. Since the sample format with name "s16" corresponds to the number
  405. 1 and the "stereo" channel layout corresponds to the value 0x3, this is
  406. equivalent to:
  407. @example
  408. abuffer=44100:1:0x3:1
  409. @end example
  410. @section aevalsrc
  411. Generate an audio signal specified by an expression.
  412. This source accepts in input one or more expressions (one for each
  413. channel), which are evaluated and used to generate a corresponding
  414. audio signal.
  415. It accepts the syntax: @var{exprs}[::@var{options}].
  416. @var{exprs} is a list of expressions separated by ":", one for each
  417. separate channel. The output channel layout depends on the number of
  418. provided expressions, up to 8 channels are supported.
  419. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  420. separated by ":".
  421. The description of the accepted options follows.
  422. @table @option
  423. @item duration, d
  424. Set the minimum duration of the sourced audio. See the function
  425. @code{av_parse_time()} for the accepted format.
  426. Note that the resulting duration may be greater than the specified
  427. duration, as the generated audio is always cut at the end of a
  428. complete frame.
  429. If not specified, or the expressed duration is negative, the audio is
  430. supposed to be generated forever.
  431. @item nb_samples, n
  432. Set the number of samples per channel per each output frame,
  433. default to 1024.
  434. @item sample_rate, s
  435. Specify the sample rate, default to 44100.
  436. @end table
  437. Each expression in @var{exprs} can contain the following constants:
  438. @table @option
  439. @item n
  440. number of the evaluated sample, starting from 0
  441. @item t
  442. time of the evaluated sample expressed in seconds, starting from 0
  443. @item s
  444. sample rate
  445. @end table
  446. @subsection Examples
  447. @itemize
  448. @item
  449. Generate silence:
  450. @example
  451. aevalsrc=0
  452. @end example
  453. @item
  454. Generate a sin signal with frequency of 440 Hz, set sample rate to
  455. 8000 Hz:
  456. @example
  457. aevalsrc="sin(440*2*PI*t)::s=8000"
  458. @end example
  459. @item
  460. Generate white noise:
  461. @example
  462. aevalsrc="-2+random(0)"
  463. @end example
  464. @item
  465. Generate an amplitude modulated signal:
  466. @example
  467. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  468. @end example
  469. @item
  470. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  471. @example
  472. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  473. @end example
  474. @end itemize
  475. @section amovie
  476. Read an audio stream from a movie container.
  477. It accepts the syntax: @var{movie_name}[:@var{options}] where
  478. @var{movie_name} is the name of the resource to read (not necessarily
  479. a file but also a device or a stream accessed through some protocol),
  480. and @var{options} is an optional sequence of @var{key}=@var{value}
  481. pairs, separated by ":".
  482. The description of the accepted options follows.
  483. @table @option
  484. @item format_name, f
  485. Specify the format assumed for the movie to read, and can be either
  486. the name of a container or an input device. If not specified the
  487. format is guessed from @var{movie_name} or by probing.
  488. @item seek_point, sp
  489. Specify the seek point in seconds, the frames will be output
  490. starting from this seek point, the parameter is evaluated with
  491. @code{av_strtod} so the numerical value may be suffixed by an IS
  492. postfix. Default value is "0".
  493. @item stream_index, si
  494. Specify the index of the audio stream to read. If the value is -1,
  495. the best suited audio stream will be automatically selected. Default
  496. value is "-1".
  497. @end table
  498. @section anullsrc
  499. Null audio source, return unprocessed audio frames. It is mainly useful
  500. as a template and to be employed in analysis / debugging tools, or as
  501. the source for filters which ignore the input data (for example the sox
  502. synth filter).
  503. It accepts an optional sequence of @var{key}=@var{value} pairs,
  504. separated by ":".
  505. The description of the accepted options follows.
  506. @table @option
  507. @item sample_rate, s
  508. Specify the sample rate, and defaults to 44100.
  509. @item channel_layout, cl
  510. Specify the channel layout, and can be either an integer or a string
  511. representing a channel layout. The default value of @var{channel_layout}
  512. is "stereo".
  513. Check the channel_layout_map definition in
  514. @file{libavcodec/audioconvert.c} for the mapping between strings and
  515. channel layout values.
  516. @item nb_samples, n
  517. Set the number of samples per requested frames.
  518. @end table
  519. Follow some examples:
  520. @example
  521. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  522. anullsrc=r=48000:cl=4
  523. # same as
  524. anullsrc=r=48000:cl=mono
  525. @end example
  526. @c man end AUDIO SOURCES
  527. @chapter Audio Sinks
  528. @c man begin AUDIO SINKS
  529. Below is a description of the currently available audio sinks.
  530. @section abuffersink
  531. Buffer audio frames, and make them available to the end of filter chain.
  532. This sink is mainly intended for programmatic use, in particular
  533. through the interface defined in @file{libavfilter/buffersink.h}.
  534. It requires a pointer to an AVABufferSinkContext structure, which
  535. defines the incoming buffers' formats, to be passed as the opaque
  536. parameter to @code{avfilter_init_filter} for initialization.
  537. @section anullsink
  538. Null audio sink, do absolutely nothing with the input audio. It is
  539. mainly useful as a template and to be employed in analysis / debugging
  540. tools.
  541. @c man end AUDIO SINKS
  542. @chapter Video Filters
  543. @c man begin VIDEO FILTERS
  544. When you configure your FFmpeg build, you can disable any of the
  545. existing filters using @code{--disable-filters}.
  546. The configure output will show the video filters included in your
  547. build.
  548. Below is a description of the currently available video filters.
  549. @section ass
  550. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  551. using the libass library.
  552. To enable compilation of this filter you need to configure FFmpeg with
  553. @code{--enable-libass}.
  554. This filter accepts the syntax: @var{ass_filename}[:@var{options}],
  555. where @var{ass_filename} is the filename of the ASS file to read, and
  556. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  557. separated by ":".
  558. A description of the accepted options follows.
  559. @table @option
  560. @item original_size
  561. Specifies the size of the original video, the video for which the ASS file
  562. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  563. necessary to correctly scale the fonts if the aspect ratio has been changed.
  564. @end table
  565. For example, to render the file @file{sub.ass} on top of the input
  566. video, use the command:
  567. @example
  568. ass=sub.ass
  569. @end example
  570. @section bbox
  571. Compute the bounding box for the non-black pixels in the input frame
  572. luminance plane.
  573. This filter computes the bounding box containing all the pixels with a
  574. luminance value greater than the minimum allowed value.
  575. The parameters describing the bounding box are printed on the filter
  576. log.
  577. @section blackdetect
  578. Detect video intervals that are (almost) completely black. Can be
  579. useful to detect chapter transitions, commercials, or invalid
  580. recordings. Output lines contains the time for the start, end and
  581. duration of the detected black interval expressed in seconds.
  582. In order to display the output lines, you need to set the loglevel at
  583. least to the AV_LOG_INFO value.
  584. This filter accepts a list of options in the form of
  585. @var{key}=@var{value} pairs separated by ":". A description of the
  586. accepted options follows.
  587. @table @option
  588. @item black_min_duration, d
  589. Set the minimum detected black duration expressed in seconds. It must
  590. be a non-negative floating point number.
  591. Default value is 2.0.
  592. @item picture_black_ratio_th, pic_th
  593. Set the threshold for considering a picture "black".
  594. Express the minimum value for the ratio:
  595. @example
  596. @var{nb_black_pixels} / @var{nb_pixels}
  597. @end example
  598. for which a picture is considered black.
  599. Default value is 0.98.
  600. @item pixel_black_th, pix_th
  601. Set the threshold for considering a pixel "black".
  602. The threshold expresses the maximum pixel luminance value for which a
  603. pixel is considered "black". The provided value is scaled according to
  604. the following equation:
  605. @example
  606. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  607. @end example
  608. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  609. the input video format, the range is [0-255] for YUV full-range
  610. formats and [16-235] for YUV non full-range formats.
  611. Default value is 0.10.
  612. @end table
  613. The following example sets the maximum pixel threshold to the minimum
  614. value, and detects only black intervals of 2 or more seconds:
  615. @example
  616. blackdetect=d=2:pix_th=0.00
  617. @end example
  618. @section blackframe
  619. Detect frames that are (almost) completely black. Can be useful to
  620. detect chapter transitions or commercials. Output lines consist of
  621. the frame number of the detected frame, the percentage of blackness,
  622. the position in the file if known or -1 and the timestamp in seconds.
  623. In order to display the output lines, you need to set the loglevel at
  624. least to the AV_LOG_INFO value.
  625. The filter accepts the syntax:
  626. @example
  627. blackframe[=@var{amount}:[@var{threshold}]]
  628. @end example
  629. @var{amount} is the percentage of the pixels that have to be below the
  630. threshold, and defaults to 98.
  631. @var{threshold} is the threshold below which a pixel value is
  632. considered black, and defaults to 32.
  633. @section boxblur
  634. Apply boxblur algorithm to the input video.
  635. This filter accepts the parameters:
  636. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  637. Chroma and alpha parameters are optional, if not specified they default
  638. to the corresponding values set for @var{luma_radius} and
  639. @var{luma_power}.
  640. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  641. the radius in pixels of the box used for blurring the corresponding
  642. input plane. They are expressions, and can contain the following
  643. constants:
  644. @table @option
  645. @item w, h
  646. the input width and height in pixels
  647. @item cw, ch
  648. the input chroma image width and height in pixels
  649. @item hsub, vsub
  650. horizontal and vertical chroma subsample values. For example for the
  651. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  652. @end table
  653. The radius must be a non-negative number, and must not be greater than
  654. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  655. and of @code{min(cw,ch)/2} for the chroma planes.
  656. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  657. how many times the boxblur filter is applied to the corresponding
  658. plane.
  659. Some examples follow:
  660. @itemize
  661. @item
  662. Apply a boxblur filter with luma, chroma, and alpha radius
  663. set to 2:
  664. @example
  665. boxblur=2:1
  666. @end example
  667. @item
  668. Set luma radius to 2, alpha and chroma radius to 0
  669. @example
  670. boxblur=2:1:0:0:0:0
  671. @end example
  672. @item
  673. Set luma and chroma radius to a fraction of the video dimension
  674. @example
  675. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  676. @end example
  677. @end itemize
  678. @section colormatrix
  679. The colormatrix filter allows conversion between any of the following color
  680. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  681. and FCC (@var{fcc}).
  682. The syntax of the parameters is @var{source}:@var{destination}:
  683. @example
  684. colormatrix=bt601:smpte240m
  685. @end example
  686. @section copy
  687. Copy the input source unchanged to the output. Mainly useful for
  688. testing purposes.
  689. @section crop
  690. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  691. The @var{keep_aspect} parameter is optional, if specified and set to a
  692. non-zero value will force the output display aspect ratio to be the
  693. same of the input, by changing the output sample aspect ratio.
  694. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  695. expressions containing the following constants:
  696. @table @option
  697. @item x, y
  698. the computed values for @var{x} and @var{y}. They are evaluated for
  699. each new frame.
  700. @item in_w, in_h
  701. the input width and height
  702. @item iw, ih
  703. same as @var{in_w} and @var{in_h}
  704. @item out_w, out_h
  705. the output (cropped) width and height
  706. @item ow, oh
  707. same as @var{out_w} and @var{out_h}
  708. @item a
  709. same as @var{iw} / @var{ih}
  710. @item sar
  711. input sample aspect ratio
  712. @item dar
  713. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  714. @item hsub, vsub
  715. horizontal and vertical chroma subsample values. For example for the
  716. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  717. @item n
  718. the number of input frame, starting from 0
  719. @item pos
  720. the position in the file of the input frame, NAN if unknown
  721. @item t
  722. timestamp expressed in seconds, NAN if the input timestamp is unknown
  723. @end table
  724. The @var{out_w} and @var{out_h} parameters specify the expressions for
  725. the width and height of the output (cropped) video. They are
  726. evaluated just at the configuration of the filter.
  727. The default value of @var{out_w} is "in_w", and the default value of
  728. @var{out_h} is "in_h".
  729. The expression for @var{out_w} may depend on the value of @var{out_h},
  730. and the expression for @var{out_h} may depend on @var{out_w}, but they
  731. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  732. evaluated after @var{out_w} and @var{out_h}.
  733. The @var{x} and @var{y} parameters specify the expressions for the
  734. position of the top-left corner of the output (non-cropped) area. They
  735. are evaluated for each frame. If the evaluated value is not valid, it
  736. is approximated to the nearest valid value.
  737. The default value of @var{x} is "(in_w-out_w)/2", and the default
  738. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  739. the center of the input image.
  740. The expression for @var{x} may depend on @var{y}, and the expression
  741. for @var{y} may depend on @var{x}.
  742. Follow some examples:
  743. @example
  744. # crop the central input area with size 100x100
  745. crop=100:100
  746. # crop the central input area with size 2/3 of the input video
  747. "crop=2/3*in_w:2/3*in_h"
  748. # crop the input video central square
  749. crop=in_h
  750. # delimit the rectangle with the top-left corner placed at position
  751. # 100:100 and the right-bottom corner corresponding to the right-bottom
  752. # corner of the input image.
  753. crop=in_w-100:in_h-100:100:100
  754. # crop 10 pixels from the left and right borders, and 20 pixels from
  755. # the top and bottom borders
  756. "crop=in_w-2*10:in_h-2*20"
  757. # keep only the bottom right quarter of the input image
  758. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  759. # crop height for getting Greek harmony
  760. "crop=in_w:1/PHI*in_w"
  761. # trembling effect
  762. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  763. # erratic camera effect depending on timestamp
  764. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  765. # set x depending on the value of y
  766. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  767. @end example
  768. @section cropdetect
  769. Auto-detect crop size.
  770. Calculate necessary cropping parameters and prints the recommended
  771. parameters through the logging system. The detected dimensions
  772. correspond to the non-black area of the input video.
  773. It accepts the syntax:
  774. @example
  775. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  776. @end example
  777. @table @option
  778. @item limit
  779. Threshold, which can be optionally specified from nothing (0) to
  780. everything (255), defaults to 24.
  781. @item round
  782. Value which the width/height should be divisible by, defaults to
  783. 16. The offset is automatically adjusted to center the video. Use 2 to
  784. get only even dimensions (needed for 4:2:2 video). 16 is best when
  785. encoding to most video codecs.
  786. @item reset
  787. Counter that determines after how many frames cropdetect will reset
  788. the previously detected largest video area and start over to detect
  789. the current optimal crop area. Defaults to 0.
  790. This can be useful when channel logos distort the video area. 0
  791. indicates never reset and return the largest area encountered during
  792. playback.
  793. @end table
  794. @section delogo
  795. Suppress a TV station logo by a simple interpolation of the surrounding
  796. pixels. Just set a rectangle covering the logo and watch it disappear
  797. (and sometimes something even uglier appear - your mileage may vary).
  798. The filter accepts parameters as a string of the form
  799. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  800. @var{key}=@var{value} pairs, separated by ":".
  801. The description of the accepted parameters follows.
  802. @table @option
  803. @item x, y
  804. Specify the top left corner coordinates of the logo. They must be
  805. specified.
  806. @item w, h
  807. Specify the width and height of the logo to clear. They must be
  808. specified.
  809. @item band, t
  810. Specify the thickness of the fuzzy edge of the rectangle (added to
  811. @var{w} and @var{h}). The default value is 4.
  812. @item show
  813. When set to 1, a green rectangle is drawn on the screen to simplify
  814. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  815. @var{band} is set to 4. The default value is 0.
  816. @end table
  817. Some examples follow.
  818. @itemize
  819. @item
  820. Set a rectangle covering the area with top left corner coordinates 0,0
  821. and size 100x77, setting a band of size 10:
  822. @example
  823. delogo=0:0:100:77:10
  824. @end example
  825. @item
  826. As the previous example, but use named options:
  827. @example
  828. delogo=x=0:y=0:w=100:h=77:band=10
  829. @end example
  830. @end itemize
  831. @section deshake
  832. Attempt to fix small changes in horizontal and/or vertical shift. This
  833. filter helps remove camera shake from hand-holding a camera, bumping a
  834. tripod, moving on a vehicle, etc.
  835. The filter accepts parameters as a string of the form
  836. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  837. A description of the accepted parameters follows.
  838. @table @option
  839. @item x, y, w, h
  840. Specify a rectangular area where to limit the search for motion
  841. vectors.
  842. If desired the search for motion vectors can be limited to a
  843. rectangular area of the frame defined by its top left corner, width
  844. and height. These parameters have the same meaning as the drawbox
  845. filter which can be used to visualise the position of the bounding
  846. box.
  847. This is useful when simultaneous movement of subjects within the frame
  848. might be confused for camera motion by the motion vector search.
  849. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  850. then the full frame is used. This allows later options to be set
  851. without specifying the bounding box for the motion vector search.
  852. Default - search the whole frame.
  853. @item rx, ry
  854. Specify the maximum extent of movement in x and y directions in the
  855. range 0-64 pixels. Default 16.
  856. @item edge
  857. Specify how to generate pixels to fill blanks at the edge of the
  858. frame. An integer from 0 to 3 as follows:
  859. @table @option
  860. @item 0
  861. Fill zeroes at blank locations
  862. @item 1
  863. Original image at blank locations
  864. @item 2
  865. Extruded edge value at blank locations
  866. @item 3
  867. Mirrored edge at blank locations
  868. @end table
  869. The default setting is mirror edge at blank locations.
  870. @item blocksize
  871. Specify the blocksize to use for motion search. Range 4-128 pixels,
  872. default 8.
  873. @item contrast
  874. Specify the contrast threshold for blocks. Only blocks with more than
  875. the specified contrast (difference between darkest and lightest
  876. pixels) will be considered. Range 1-255, default 125.
  877. @item search
  878. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  879. search. Default - exhaustive search.
  880. @item filename
  881. If set then a detailed log of the motion search is written to the
  882. specified file.
  883. @end table
  884. @section drawbox
  885. Draw a colored box on the input image.
  886. It accepts the syntax:
  887. @example
  888. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  889. @end example
  890. @table @option
  891. @item x, y
  892. Specify the top left corner coordinates of the box. Default to 0.
  893. @item width, height
  894. Specify the width and height of the box, if 0 they are interpreted as
  895. the input width and height. Default to 0.
  896. @item color
  897. Specify the color of the box to write, it can be the name of a color
  898. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  899. @end table
  900. Follow some examples:
  901. @example
  902. # draw a black box around the edge of the input image
  903. drawbox
  904. # draw a box with color red and an opacity of 50%
  905. drawbox=10:20:200:60:red@@0.5"
  906. @end example
  907. @section drawtext
  908. Draw text string or text from specified file on top of video using the
  909. libfreetype library.
  910. To enable compilation of this filter you need to configure FFmpeg with
  911. @code{--enable-libfreetype}.
  912. The filter also recognizes strftime() sequences in the provided text
  913. and expands them accordingly. Check the documentation of strftime().
  914. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  915. separated by ":".
  916. The description of the accepted parameters follows.
  917. @table @option
  918. @item fontfile
  919. The font file to be used for drawing text. Path must be included.
  920. This parameter is mandatory.
  921. @item text
  922. The text string to be drawn. The text must be a sequence of UTF-8
  923. encoded characters.
  924. This parameter is mandatory if no file is specified with the parameter
  925. @var{textfile}.
  926. @item textfile
  927. A text file containing text to be drawn. The text must be a sequence
  928. of UTF-8 encoded characters.
  929. This parameter is mandatory if no text string is specified with the
  930. parameter @var{text}.
  931. If both text and textfile are specified, an error is thrown.
  932. @item x, y
  933. The expressions which specify the offsets where text will be drawn
  934. within the video frame. They are relative to the top/left border of the
  935. output image.
  936. The default value of @var{x} and @var{y} is "0".
  937. See below for the list of accepted constants.
  938. @item fontsize
  939. The font size to be used for drawing text.
  940. The default value of @var{fontsize} is 16.
  941. @item fontcolor
  942. The color to be used for drawing fonts.
  943. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  944. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  945. The default value of @var{fontcolor} is "black".
  946. @item boxcolor
  947. The color to be used for drawing box around text.
  948. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  949. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  950. The default value of @var{boxcolor} is "white".
  951. @item box
  952. Used to draw a box around text using background color.
  953. Value should be either 1 (enable) or 0 (disable).
  954. The default value of @var{box} is 0.
  955. @item shadowx, shadowy
  956. The x and y offsets for the text shadow position with respect to the
  957. position of the text. They can be either positive or negative
  958. values. Default value for both is "0".
  959. @item shadowcolor
  960. The color to be used for drawing a shadow behind the drawn text. It
  961. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  962. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  963. The default value of @var{shadowcolor} is "black".
  964. @item ft_load_flags
  965. Flags to be used for loading the fonts.
  966. The flags map the corresponding flags supported by libfreetype, and are
  967. a combination of the following values:
  968. @table @var
  969. @item default
  970. @item no_scale
  971. @item no_hinting
  972. @item render
  973. @item no_bitmap
  974. @item vertical_layout
  975. @item force_autohint
  976. @item crop_bitmap
  977. @item pedantic
  978. @item ignore_global_advance_width
  979. @item no_recurse
  980. @item ignore_transform
  981. @item monochrome
  982. @item linear_design
  983. @item no_autohint
  984. @item end table
  985. @end table
  986. Default value is "render".
  987. For more information consult the documentation for the FT_LOAD_*
  988. libfreetype flags.
  989. @item tabsize
  990. The size in number of spaces to use for rendering the tab.
  991. Default value is 4.
  992. @item fix_bounds
  993. If true, check and fix text coords to avoid clipping.
  994. @end table
  995. The parameters for @var{x} and @var{y} are expressions containing the
  996. following constants:
  997. @table @option
  998. @item W, H
  999. the input width and height
  1000. @item tw, text_w
  1001. the width of the rendered text
  1002. @item th, text_h
  1003. the height of the rendered text
  1004. @item lh, line_h
  1005. the height of each text line
  1006. @item sar
  1007. input sample aspect ratio
  1008. @item dar
  1009. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1010. @item hsub, vsub
  1011. horizontal and vertical chroma subsample values. For example for the
  1012. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1013. @item max_glyph_w
  1014. maximum glyph width, that is the maximum width for all the glyphs
  1015. contained in the rendered text
  1016. @item max_glyph_h
  1017. maximum glyph height, that is the maximum height for all the glyphs
  1018. contained in the rendered text, it is equivalent to @var{ascent} -
  1019. @var{descent}.
  1020. @item max_glyph_a, ascent
  1021. the maximum distance from the baseline to the highest/upper grid
  1022. coordinate used to place a glyph outline point, for all the rendered
  1023. glyphs.
  1024. It is a positive value, due to the grid's orientation with the Y axis
  1025. upwards.
  1026. @item max_glyph_d, descent
  1027. the maximum distance from the baseline to the lowest grid coordinate
  1028. used to place a glyph outline point, for all the rendered glyphs.
  1029. This is a negative value, due to the grid's orientation, with the Y axis
  1030. upwards.
  1031. @item n
  1032. the number of input frame, starting from 0
  1033. @item t
  1034. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1035. @item timecode
  1036. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  1037. with or without text parameter. @var{rate} option must be specified.
  1038. @item r, rate
  1039. frame rate (timecode only)
  1040. @end table
  1041. Some examples follow.
  1042. @itemize
  1043. @item
  1044. Draw "Test Text" with font FreeSerif, using the default values for the
  1045. optional parameters.
  1046. @example
  1047. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1048. @end example
  1049. @item
  1050. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1051. and y=50 (counting from the top-left corner of the screen), text is
  1052. yellow with a red box around it. Both the text and the box have an
  1053. opacity of 20%.
  1054. @example
  1055. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1056. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1057. @end example
  1058. Note that the double quotes are not necessary if spaces are not used
  1059. within the parameter list.
  1060. @item
  1061. Show the text at the center of the video frame:
  1062. @example
  1063. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1064. @end example
  1065. @item
  1066. Show a text line sliding from right to left in the last row of the video
  1067. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1068. with no newlines.
  1069. @example
  1070. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  1071. @end example
  1072. @item
  1073. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1074. @example
  1075. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1076. @end example
  1077. @item
  1078. Draw a single green letter "g", at the center of the input video.
  1079. The glyph baseline is placed at half screen height.
  1080. @example
  1081. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  1082. @end example
  1083. @end itemize
  1084. For more information about libfreetype, check:
  1085. @url{http://www.freetype.org/}.
  1086. @section fade
  1087. Apply fade-in/out effect to input video.
  1088. It accepts the parameters:
  1089. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1090. @var{type} specifies if the effect type, can be either "in" for
  1091. fade-in, or "out" for a fade-out effect.
  1092. @var{start_frame} specifies the number of the start frame for starting
  1093. to apply the fade effect.
  1094. @var{nb_frames} specifies the number of frames for which the fade
  1095. effect has to last. At the end of the fade-in effect the output video
  1096. will have the same intensity as the input video, at the end of the
  1097. fade-out transition the output video will be completely black.
  1098. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1099. separated by ":". The description of the accepted options follows.
  1100. @table @option
  1101. @item type, t
  1102. See @var{type}.
  1103. @item start_frame, s
  1104. See @var{start_frame}.
  1105. @item nb_frames, n
  1106. See @var{nb_frames}.
  1107. @item alpha
  1108. If set to 1, fade only alpha channel, if one exists on the input.
  1109. Default value is 0.
  1110. @end table
  1111. A few usage examples follow, usable too as test scenarios.
  1112. @example
  1113. # fade in first 30 frames of video
  1114. fade=in:0:30
  1115. # fade out last 45 frames of a 200-frame video
  1116. fade=out:155:45
  1117. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1118. fade=in:0:25, fade=out:975:25
  1119. # make first 5 frames black, then fade in from frame 5-24
  1120. fade=in:5:20
  1121. # fade in alpha over first 25 frames of video
  1122. fade=in:0:25:alpha=1
  1123. @end example
  1124. @section fieldorder
  1125. Transform the field order of the input video.
  1126. It accepts one parameter which specifies the required field order that
  1127. the input interlaced video will be transformed to. The parameter can
  1128. assume one of the following values:
  1129. @table @option
  1130. @item 0 or bff
  1131. output bottom field first
  1132. @item 1 or tff
  1133. output top field first
  1134. @end table
  1135. Default value is "tff".
  1136. Transformation is achieved by shifting the picture content up or down
  1137. by one line, and filling the remaining line with appropriate picture content.
  1138. This method is consistent with most broadcast field order converters.
  1139. If the input video is not flagged as being interlaced, or it is already
  1140. flagged as being of the required output field order then this filter does
  1141. not alter the incoming video.
  1142. This filter is very useful when converting to or from PAL DV material,
  1143. which is bottom field first.
  1144. For example:
  1145. @example
  1146. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1147. @end example
  1148. @section fifo
  1149. Buffer input images and send them when they are requested.
  1150. This filter is mainly useful when auto-inserted by the libavfilter
  1151. framework.
  1152. The filter does not take parameters.
  1153. @section format
  1154. Convert the input video to one of the specified pixel formats.
  1155. Libavfilter will try to pick one that is supported for the input to
  1156. the next filter.
  1157. The filter accepts a list of pixel format names, separated by ":",
  1158. for example "yuv420p:monow:rgb24".
  1159. Some examples follow:
  1160. @example
  1161. # convert the input video to the format "yuv420p"
  1162. format=yuv420p
  1163. # convert the input video to any of the formats in the list
  1164. format=yuv420p:yuv444p:yuv410p
  1165. @end example
  1166. @anchor{frei0r}
  1167. @section frei0r
  1168. Apply a frei0r effect to the input video.
  1169. To enable compilation of this filter you need to install the frei0r
  1170. header and configure FFmpeg with @code{--enable-frei0r}.
  1171. The filter supports the syntax:
  1172. @example
  1173. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1174. @end example
  1175. @var{filter_name} is the name to the frei0r effect to load. If the
  1176. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1177. is searched in each one of the directories specified by the colon
  1178. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1179. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1180. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1181. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1182. for the frei0r effect.
  1183. A frei0r effect parameter can be a boolean (whose values are specified
  1184. with "y" and "n"), a double, a color (specified by the syntax
  1185. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1186. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1187. description), a position (specified by the syntax @var{X}/@var{Y},
  1188. @var{X} and @var{Y} being float numbers) and a string.
  1189. The number and kind of parameters depend on the loaded effect. If an
  1190. effect parameter is not specified the default value is set.
  1191. Some examples follow:
  1192. @example
  1193. # apply the distort0r effect, set the first two double parameters
  1194. frei0r=distort0r:0.5:0.01
  1195. # apply the colordistance effect, takes a color as first parameter
  1196. frei0r=colordistance:0.2/0.3/0.4
  1197. frei0r=colordistance:violet
  1198. frei0r=colordistance:0x112233
  1199. # apply the perspective effect, specify the top left and top right
  1200. # image positions
  1201. frei0r=perspective:0.2/0.2:0.8/0.2
  1202. @end example
  1203. For more information see:
  1204. @url{http://piksel.org/frei0r}
  1205. @section gradfun
  1206. Fix the banding artifacts that are sometimes introduced into nearly flat
  1207. regions by truncation to 8bit color depth.
  1208. Interpolate the gradients that should go where the bands are, and
  1209. dither them.
  1210. This filter is designed for playback only. Do not use it prior to
  1211. lossy compression, because compression tends to lose the dither and
  1212. bring back the bands.
  1213. The filter takes two optional parameters, separated by ':':
  1214. @var{strength}:@var{radius}
  1215. @var{strength} is the maximum amount by which the filter will change
  1216. any one pixel. Also the threshold for detecting nearly flat
  1217. regions. Acceptable values range from .51 to 255, default value is
  1218. 1.2, out-of-range values will be clipped to the valid range.
  1219. @var{radius} is the neighborhood to fit the gradient to. A larger
  1220. radius makes for smoother gradients, but also prevents the filter from
  1221. modifying the pixels near detailed regions. Acceptable values are
  1222. 8-32, default value is 16, out-of-range values will be clipped to the
  1223. valid range.
  1224. @example
  1225. # default parameters
  1226. gradfun=1.2:16
  1227. # omitting radius
  1228. gradfun=1.2
  1229. @end example
  1230. @section hflip
  1231. Flip the input video horizontally.
  1232. For example to horizontally flip the input video with @command{ffmpeg}:
  1233. @example
  1234. ffmpeg -i in.avi -vf "hflip" out.avi
  1235. @end example
  1236. @section hqdn3d
  1237. High precision/quality 3d denoise filter. This filter aims to reduce
  1238. image noise producing smooth images and making still images really
  1239. still. It should enhance compressibility.
  1240. It accepts the following optional parameters:
  1241. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1242. @table @option
  1243. @item luma_spatial
  1244. a non-negative float number which specifies spatial luma strength,
  1245. defaults to 4.0
  1246. @item chroma_spatial
  1247. a non-negative float number which specifies spatial chroma strength,
  1248. defaults to 3.0*@var{luma_spatial}/4.0
  1249. @item luma_tmp
  1250. a float number which specifies luma temporal strength, defaults to
  1251. 6.0*@var{luma_spatial}/4.0
  1252. @item chroma_tmp
  1253. a float number which specifies chroma temporal strength, defaults to
  1254. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1255. @end table
  1256. @section idet
  1257. Interlaceing detect filter. This filter tries to detect if the input is
  1258. interlaced or progressive. Top or bottom field first.
  1259. @section lut, lutrgb, lutyuv
  1260. Compute a look-up table for binding each pixel component input value
  1261. to an output value, and apply it to input video.
  1262. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1263. to an RGB input video.
  1264. These filters accept in input a ":"-separated list of options, which
  1265. specify the expressions used for computing the lookup table for the
  1266. corresponding pixel component values.
  1267. The @var{lut} filter requires either YUV or RGB pixel formats in
  1268. input, and accepts the options:
  1269. @table @option
  1270. @item c0
  1271. first pixel component
  1272. @item c1
  1273. second pixel component
  1274. @item c2
  1275. third pixel component
  1276. @item c3
  1277. fourth pixel component, corresponds to the alpha component
  1278. @end table
  1279. The exact component associated to each option depends on the format in
  1280. input.
  1281. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1282. accepts the options:
  1283. @table @option
  1284. @item r
  1285. red component
  1286. @item g
  1287. green component
  1288. @item b
  1289. blue component
  1290. @item a
  1291. alpha component
  1292. @end table
  1293. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1294. accepts the options:
  1295. @table @option
  1296. @item y
  1297. Y/luminance component
  1298. @item u
  1299. U/Cb component
  1300. @item v
  1301. V/Cr component
  1302. @item a
  1303. alpha component
  1304. @end table
  1305. The expressions can contain the following constants and functions:
  1306. @table @option
  1307. @item w, h
  1308. the input width and height
  1309. @item val
  1310. input value for the pixel component
  1311. @item clipval
  1312. the input value clipped in the @var{minval}-@var{maxval} range
  1313. @item maxval
  1314. maximum value for the pixel component
  1315. @item minval
  1316. minimum value for the pixel component
  1317. @item negval
  1318. the negated value for the pixel component value clipped in the
  1319. @var{minval}-@var{maxval} range , it corresponds to the expression
  1320. "maxval-clipval+minval"
  1321. @item clip(val)
  1322. the computed value in @var{val} clipped in the
  1323. @var{minval}-@var{maxval} range
  1324. @item gammaval(gamma)
  1325. the computed gamma correction value of the pixel component value
  1326. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1327. expression
  1328. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1329. @end table
  1330. All expressions default to "val".
  1331. Some examples follow:
  1332. @example
  1333. # negate input video
  1334. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1335. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1336. # the above is the same as
  1337. lutrgb="r=negval:g=negval:b=negval"
  1338. lutyuv="y=negval:u=negval:v=negval"
  1339. # negate luminance
  1340. lutyuv=y=negval
  1341. # remove chroma components, turns the video into a graytone image
  1342. lutyuv="u=128:v=128"
  1343. # apply a luma burning effect
  1344. lutyuv="y=2*val"
  1345. # remove green and blue components
  1346. lutrgb="g=0:b=0"
  1347. # set a constant alpha channel value on input
  1348. format=rgba,lutrgb=a="maxval-minval/2"
  1349. # correct luminance gamma by a 0.5 factor
  1350. lutyuv=y=gammaval(0.5)
  1351. @end example
  1352. @section mp
  1353. Apply an MPlayer filter to the input video.
  1354. This filter provides a wrapper around most of the filters of
  1355. MPlayer/MEncoder.
  1356. This wrapper is considered experimental. Some of the wrapped filters
  1357. may not work properly and we may drop support for them, as they will
  1358. be implemented natively into FFmpeg. Thus you should avoid
  1359. depending on them when writing portable scripts.
  1360. The filters accepts the parameters:
  1361. @var{filter_name}[:=]@var{filter_params}
  1362. @var{filter_name} is the name of a supported MPlayer filter,
  1363. @var{filter_params} is a string containing the parameters accepted by
  1364. the named filter.
  1365. The list of the currently supported filters follows:
  1366. @table @var
  1367. @item 2xsai
  1368. @item decimate
  1369. @item denoise3d
  1370. @item detc
  1371. @item dint
  1372. @item divtc
  1373. @item down3dright
  1374. @item dsize
  1375. @item eq2
  1376. @item eq
  1377. @item field
  1378. @item fil
  1379. @item fixpts
  1380. @item framestep
  1381. @item fspp
  1382. @item geq
  1383. @item harddup
  1384. @item hqdn3d
  1385. @item hue
  1386. @item il
  1387. @item ilpack
  1388. @item ivtc
  1389. @item kerndeint
  1390. @item mcdeint
  1391. @item mirror
  1392. @item noise
  1393. @item ow
  1394. @item palette
  1395. @item perspective
  1396. @item phase
  1397. @item pp7
  1398. @item pullup
  1399. @item qp
  1400. @item rectangle
  1401. @item rotate
  1402. @item sab
  1403. @item screenshot
  1404. @item smartblur
  1405. @item softpulldown
  1406. @item softskip
  1407. @item spp
  1408. @item telecine
  1409. @item tile
  1410. @item tinterlace
  1411. @item unsharp
  1412. @item uspp
  1413. @item yuvcsp
  1414. @item yvu9
  1415. @end table
  1416. The parameter syntax and behavior for the listed filters are the same
  1417. of the corresponding MPlayer filters. For detailed instructions check
  1418. the "VIDEO FILTERS" section in the MPlayer manual.
  1419. Some examples follow:
  1420. @example
  1421. # remove a logo by interpolating the surrounding pixels
  1422. mp=delogo=200:200:80:20:1
  1423. # adjust gamma, brightness, contrast
  1424. mp=eq2=1.0:2:0.5
  1425. # tweak hue and saturation
  1426. mp=hue=100:-10
  1427. @end example
  1428. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1429. @section negate
  1430. Negate input video.
  1431. This filter accepts an integer in input, if non-zero it negates the
  1432. alpha component (if available). The default value in input is 0.
  1433. @section noformat
  1434. Force libavfilter not to use any of the specified pixel formats for the
  1435. input to the next filter.
  1436. The filter accepts a list of pixel format names, separated by ":",
  1437. for example "yuv420p:monow:rgb24".
  1438. Some examples follow:
  1439. @example
  1440. # force libavfilter to use a format different from "yuv420p" for the
  1441. # input to the vflip filter
  1442. noformat=yuv420p,vflip
  1443. # convert the input video to any of the formats not contained in the list
  1444. noformat=yuv420p:yuv444p:yuv410p
  1445. @end example
  1446. @section null
  1447. Pass the video source unchanged to the output.
  1448. @section ocv
  1449. Apply video transform using libopencv.
  1450. To enable this filter install libopencv library and headers and
  1451. configure FFmpeg with @code{--enable-libopencv}.
  1452. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1453. @var{filter_name} is the name of the libopencv filter to apply.
  1454. @var{filter_params} specifies the parameters to pass to the libopencv
  1455. filter. If not specified the default values are assumed.
  1456. Refer to the official libopencv documentation for more precise
  1457. information:
  1458. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1459. Follows the list of supported libopencv filters.
  1460. @anchor{dilate}
  1461. @subsection dilate
  1462. Dilate an image by using a specific structuring element.
  1463. This filter corresponds to the libopencv function @code{cvDilate}.
  1464. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1465. @var{struct_el} represents a structuring element, and has the syntax:
  1466. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1467. @var{cols} and @var{rows} represent the number of columns and rows of
  1468. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1469. point, and @var{shape} the shape for the structuring element, and
  1470. can be one of the values "rect", "cross", "ellipse", "custom".
  1471. If the value for @var{shape} is "custom", it must be followed by a
  1472. string of the form "=@var{filename}". The file with name
  1473. @var{filename} is assumed to represent a binary image, with each
  1474. printable character corresponding to a bright pixel. When a custom
  1475. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1476. or columns and rows of the read file are assumed instead.
  1477. The default value for @var{struct_el} is "3x3+0x0/rect".
  1478. @var{nb_iterations} specifies the number of times the transform is
  1479. applied to the image, and defaults to 1.
  1480. Follow some example:
  1481. @example
  1482. # use the default values
  1483. ocv=dilate
  1484. # dilate using a structuring element with a 5x5 cross, iterate two times
  1485. ocv=dilate=5x5+2x2/cross:2
  1486. # read the shape from the file diamond.shape, iterate two times
  1487. # the file diamond.shape may contain a pattern of characters like this:
  1488. # *
  1489. # ***
  1490. # *****
  1491. # ***
  1492. # *
  1493. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1494. ocv=0x0+2x2/custom=diamond.shape:2
  1495. @end example
  1496. @subsection erode
  1497. Erode an image by using a specific structuring element.
  1498. This filter corresponds to the libopencv function @code{cvErode}.
  1499. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1500. with the same syntax and semantics as the @ref{dilate} filter.
  1501. @subsection smooth
  1502. Smooth the input video.
  1503. The filter takes the following parameters:
  1504. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1505. @var{type} is the type of smooth filter to apply, and can be one of
  1506. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1507. "bilateral". The default value is "gaussian".
  1508. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1509. parameters whose meanings depend on smooth type. @var{param1} and
  1510. @var{param2} accept integer positive values or 0, @var{param3} and
  1511. @var{param4} accept float values.
  1512. The default value for @var{param1} is 3, the default value for the
  1513. other parameters is 0.
  1514. These parameters correspond to the parameters assigned to the
  1515. libopencv function @code{cvSmooth}.
  1516. @anchor{overlay}
  1517. @section overlay
  1518. Overlay one video on top of another.
  1519. It takes two inputs and one output, the first input is the "main"
  1520. video on which the second input is overlayed.
  1521. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1522. @var{x} is the x coordinate of the overlayed video on the main video,
  1523. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1524. the following parameters:
  1525. @table @option
  1526. @item main_w, main_h
  1527. main input width and height
  1528. @item W, H
  1529. same as @var{main_w} and @var{main_h}
  1530. @item overlay_w, overlay_h
  1531. overlay input width and height
  1532. @item w, h
  1533. same as @var{overlay_w} and @var{overlay_h}
  1534. @end table
  1535. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1536. separated by ":".
  1537. The description of the accepted options follows.
  1538. @table @option
  1539. @item rgb
  1540. If set to 1, force the filter to accept inputs in the RGB
  1541. color space. Default value is 0.
  1542. @end table
  1543. Be aware that frames are taken from each input video in timestamp
  1544. order, hence, if their initial timestamps differ, it is a a good idea
  1545. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1546. have them begin in the same zero timestamp, as it does the example for
  1547. the @var{movie} filter.
  1548. Follow some examples:
  1549. @example
  1550. # draw the overlay at 10 pixels from the bottom right
  1551. # corner of the main video.
  1552. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1553. # insert a transparent PNG logo in the bottom left corner of the input
  1554. movie=logo.png [logo];
  1555. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1556. # insert 2 different transparent PNG logos (second logo on bottom
  1557. # right corner):
  1558. movie=logo1.png [logo1];
  1559. movie=logo2.png [logo2];
  1560. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1561. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1562. # add a transparent color layer on top of the main video,
  1563. # WxH specifies the size of the main input to the overlay filter
  1564. color=red@.3:WxH [over]; [in][over] overlay [out]
  1565. @end example
  1566. You can chain together more overlays but the efficiency of such
  1567. approach is yet to be tested.
  1568. @section pad
  1569. Add paddings to the input image, and places the original input at the
  1570. given coordinates @var{x}, @var{y}.
  1571. It accepts the following parameters:
  1572. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1573. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1574. expressions containing the following constants:
  1575. @table @option
  1576. @item in_w, in_h
  1577. the input video width and height
  1578. @item iw, ih
  1579. same as @var{in_w} and @var{in_h}
  1580. @item out_w, out_h
  1581. the output width and height, that is the size of the padded area as
  1582. specified by the @var{width} and @var{height} expressions
  1583. @item ow, oh
  1584. same as @var{out_w} and @var{out_h}
  1585. @item x, y
  1586. x and y offsets as specified by the @var{x} and @var{y}
  1587. expressions, or NAN if not yet specified
  1588. @item a
  1589. same as @var{iw} / @var{ih}
  1590. @item sar
  1591. input sample aspect ratio
  1592. @item dar
  1593. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1594. @item hsub, vsub
  1595. horizontal and vertical chroma subsample values. For example for the
  1596. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1597. @end table
  1598. Follows the description of the accepted parameters.
  1599. @table @option
  1600. @item width, height
  1601. Specify the size of the output image with the paddings added. If the
  1602. value for @var{width} or @var{height} is 0, the corresponding input size
  1603. is used for the output.
  1604. The @var{width} expression can reference the value set by the
  1605. @var{height} expression, and vice versa.
  1606. The default value of @var{width} and @var{height} is 0.
  1607. @item x, y
  1608. Specify the offsets where to place the input image in the padded area
  1609. with respect to the top/left border of the output image.
  1610. The @var{x} expression can reference the value set by the @var{y}
  1611. expression, and vice versa.
  1612. The default value of @var{x} and @var{y} is 0.
  1613. @item color
  1614. Specify the color of the padded area, it can be the name of a color
  1615. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1616. The default value of @var{color} is "black".
  1617. @end table
  1618. Some examples follow:
  1619. @example
  1620. # Add paddings with color "violet" to the input video. Output video
  1621. # size is 640x480, the top-left corner of the input video is placed at
  1622. # column 0, row 40.
  1623. pad=640:480:0:40:violet
  1624. # pad the input to get an output with dimensions increased bt 3/2,
  1625. # and put the input video at the center of the padded area
  1626. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1627. # pad the input to get a squared output with size equal to the maximum
  1628. # value between the input width and height, and put the input video at
  1629. # the center of the padded area
  1630. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1631. # pad the input to get a final w/h ratio of 16:9
  1632. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1633. # for anamorphic video, in order to set the output display aspect ratio,
  1634. # it is necessary to use sar in the expression, according to the relation:
  1635. # (ih * X / ih) * sar = output_dar
  1636. # X = output_dar / sar
  1637. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1638. # double output size and put the input video in the bottom-right
  1639. # corner of the output padded area
  1640. pad="2*iw:2*ih:ow-iw:oh-ih"
  1641. @end example
  1642. @section pixdesctest
  1643. Pixel format descriptor test filter, mainly useful for internal
  1644. testing. The output video should be equal to the input video.
  1645. For example:
  1646. @example
  1647. format=monow, pixdesctest
  1648. @end example
  1649. can be used to test the monowhite pixel format descriptor definition.
  1650. @section removelogo
  1651. Suppress a TV station logo, using an image file to determine which
  1652. pixels comprise the logo. It works by filling in the pixels that
  1653. comprise the logo with neighboring pixels.
  1654. This filter requires one argument which specifies the filter bitmap
  1655. file, which can be any image format supported by libavformat. The
  1656. width and height of the image file must match those of the video
  1657. stream being processed.
  1658. Pixels in the provided bitmap image with a value of zero are not
  1659. considered part of the logo, non-zero pixels are considered part of
  1660. the logo. If you use white (255) for the logo and black (0) for the
  1661. rest, you will be safe. For making the filter bitmap, it is
  1662. recommended to take a screen capture of a black frame with the logo
  1663. visible, and then using a threshold filter followed by the erode
  1664. filter once or twice.
  1665. If needed, little splotches can be fixed manually. Remember that if
  1666. logo pixels are not covered, the filter quality will be much
  1667. reduced. Marking too many pixels as part of the logo does not hurt as
  1668. much, but it will increase the amount of blurring needed to cover over
  1669. the image and will destroy more information than necessary, and extra
  1670. pixels will slow things down on a large logo.
  1671. @section scale
  1672. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1673. The scale filter forces the output display aspect ratio to be the same
  1674. of the input, by changing the output sample aspect ratio.
  1675. The parameters @var{width} and @var{height} are expressions containing
  1676. the following constants:
  1677. @table @option
  1678. @item in_w, in_h
  1679. the input width and height
  1680. @item iw, ih
  1681. same as @var{in_w} and @var{in_h}
  1682. @item out_w, out_h
  1683. the output (cropped) width and height
  1684. @item ow, oh
  1685. same as @var{out_w} and @var{out_h}
  1686. @item a
  1687. same as @var{iw} / @var{ih}
  1688. @item sar
  1689. input sample aspect ratio
  1690. @item dar
  1691. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1692. @item hsub, vsub
  1693. horizontal and vertical chroma subsample values. For example for the
  1694. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1695. @end table
  1696. If the input image format is different from the format requested by
  1697. the next filter, the scale filter will convert the input to the
  1698. requested format.
  1699. If the value for @var{width} or @var{height} is 0, the respective input
  1700. size is used for the output.
  1701. If the value for @var{width} or @var{height} is -1, the scale filter will
  1702. use, for the respective output size, a value that maintains the aspect
  1703. ratio of the input image.
  1704. The default value of @var{width} and @var{height} is 0.
  1705. Valid values for the optional parameter @var{interl} are:
  1706. @table @option
  1707. @item 1
  1708. force interlaced aware scaling
  1709. @item -1
  1710. select interlaced aware scaling depending on whether the source frames
  1711. are flagged as interlaced or not
  1712. @end table
  1713. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  1714. Some examples follow:
  1715. @example
  1716. # scale the input video to a size of 200x100.
  1717. scale=200:100
  1718. # scale the input to 2x
  1719. scale=2*iw:2*ih
  1720. # the above is the same as
  1721. scale=2*in_w:2*in_h
  1722. # scale the input to 2x with forced interlaced scaling
  1723. scale=2*iw:2*ih:interl=1
  1724. # scale the input to half size
  1725. scale=iw/2:ih/2
  1726. # increase the width, and set the height to the same size
  1727. scale=3/2*iw:ow
  1728. # seek for Greek harmony
  1729. scale=iw:1/PHI*iw
  1730. scale=ih*PHI:ih
  1731. # increase the height, and set the width to 3/2 of the height
  1732. scale=3/2*oh:3/5*ih
  1733. # increase the size, but make the size a multiple of the chroma
  1734. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1735. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1736. scale='min(500\, iw*3/2):-1'
  1737. @end example
  1738. @section select
  1739. Select frames to pass in output.
  1740. It accepts in input an expression, which is evaluated for each input
  1741. frame. If the expression is evaluated to a non-zero value, the frame
  1742. is selected and passed to the output, otherwise it is discarded.
  1743. The expression can contain the following constants:
  1744. @table @option
  1745. @item n
  1746. the sequential number of the filtered frame, starting from 0
  1747. @item selected_n
  1748. the sequential number of the selected frame, starting from 0
  1749. @item prev_selected_n
  1750. the sequential number of the last selected frame, NAN if undefined
  1751. @item TB
  1752. timebase of the input timestamps
  1753. @item pts
  1754. the PTS (Presentation TimeStamp) of the filtered video frame,
  1755. expressed in @var{TB} units, NAN if undefined
  1756. @item t
  1757. the PTS (Presentation TimeStamp) of the filtered video frame,
  1758. expressed in seconds, NAN if undefined
  1759. @item prev_pts
  1760. the PTS of the previously filtered video frame, NAN if undefined
  1761. @item prev_selected_pts
  1762. the PTS of the last previously filtered video frame, NAN if undefined
  1763. @item prev_selected_t
  1764. the PTS of the last previously selected video frame, NAN if undefined
  1765. @item start_pts
  1766. the PTS of the first video frame in the video, NAN if undefined
  1767. @item start_t
  1768. the time of the first video frame in the video, NAN if undefined
  1769. @item pict_type
  1770. the type of the filtered frame, can assume one of the following
  1771. values:
  1772. @table @option
  1773. @item I
  1774. @item P
  1775. @item B
  1776. @item S
  1777. @item SI
  1778. @item SP
  1779. @item BI
  1780. @end table
  1781. @item interlace_type
  1782. the frame interlace type, can assume one of the following values:
  1783. @table @option
  1784. @item PROGRESSIVE
  1785. the frame is progressive (not interlaced)
  1786. @item TOPFIRST
  1787. the frame is top-field-first
  1788. @item BOTTOMFIRST
  1789. the frame is bottom-field-first
  1790. @end table
  1791. @item key
  1792. 1 if the filtered frame is a key-frame, 0 otherwise
  1793. @item pos
  1794. the position in the file of the filtered frame, -1 if the information
  1795. is not available (e.g. for synthetic video)
  1796. @end table
  1797. The default value of the select expression is "1".
  1798. Some examples follow:
  1799. @example
  1800. # select all frames in input
  1801. select
  1802. # the above is the same as:
  1803. select=1
  1804. # skip all frames:
  1805. select=0
  1806. # select only I-frames
  1807. select='eq(pict_type\,I)'
  1808. # select one frame every 100
  1809. select='not(mod(n\,100))'
  1810. # select only frames contained in the 10-20 time interval
  1811. select='gte(t\,10)*lte(t\,20)'
  1812. # select only I frames contained in the 10-20 time interval
  1813. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1814. # select frames with a minimum distance of 10 seconds
  1815. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1816. @end example
  1817. @section setdar, setsar
  1818. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  1819. output video.
  1820. This is done by changing the specified Sample (aka Pixel) Aspect
  1821. Ratio, according to the following equation:
  1822. @example
  1823. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  1824. @end example
  1825. Keep in mind that the @code{setdar} filter does not modify the pixel
  1826. dimensions of the video frame. Also the display aspect ratio set by
  1827. this filter may be changed by later filters in the filterchain,
  1828. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  1829. applied.
  1830. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  1831. the filter output video.
  1832. Note that as a consequence of the application of this filter, the
  1833. output display aspect ratio will change according to the equation
  1834. above.
  1835. Keep in mind that the sample aspect ratio set by the @code{setsar}
  1836. filter may be changed by later filters in the filterchain, e.g. if
  1837. another "setsar" or a "setdar" filter is applied.
  1838. The @code{setdar} and @code{setsar} filters accept a parameter string
  1839. which represents the wanted aspect ratio. The parameter can
  1840. be a floating point number string, an expression, or a string of the form
  1841. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  1842. and denominator of the aspect ratio. If the parameter is not
  1843. specified, it is assumed the value "0:1".
  1844. For example to change the display aspect ratio to 16:9, specify:
  1845. @example
  1846. setdar=16:9
  1847. @end example
  1848. The example above is equivalent to:
  1849. @example
  1850. setdar=1.77777
  1851. @end example
  1852. To change the sample aspect ratio to 10:11, specify:
  1853. @example
  1854. setsar=10:11
  1855. @end example
  1856. @section setfield
  1857. Force field for the output video frame.
  1858. The @code{setfield} filter marks the interlace type field for the
  1859. output frames. It does not change the input frame, but only sets the
  1860. corresponding property, which affects how the frame is treated by
  1861. followig filters (e.g. @code{fieldorder} or @code{yadif}).
  1862. It accepts a parameter representing an integer or a string, which can
  1863. assume the following values:
  1864. @table @samp
  1865. @item -1, auto
  1866. Keep the same field property.
  1867. @item 0, bff
  1868. Mark the frame as bottom-field-first.
  1869. @item 1, tff
  1870. Mark the frame as top-field-first.
  1871. @end table
  1872. @section setpts
  1873. Change the PTS (presentation timestamp) of the input video frames.
  1874. Accept in input an expression evaluated through the eval API, which
  1875. can contain the following constants:
  1876. @table @option
  1877. @item PTS
  1878. the presentation timestamp in input
  1879. @item N
  1880. the count of the input frame, starting from 0.
  1881. @item STARTPTS
  1882. the PTS of the first video frame
  1883. @item INTERLACED
  1884. tell if the current frame is interlaced
  1885. @item POS
  1886. original position in the file of the frame, or undefined if undefined
  1887. for the current frame
  1888. @item PREV_INPTS
  1889. previous input PTS
  1890. @item PREV_OUTPTS
  1891. previous output PTS
  1892. @end table
  1893. Some examples follow:
  1894. @example
  1895. # start counting PTS from zero
  1896. setpts=PTS-STARTPTS
  1897. # fast motion
  1898. setpts=0.5*PTS
  1899. # slow motion
  1900. setpts=2.0*PTS
  1901. # fixed rate 25 fps
  1902. setpts=N/(25*TB)
  1903. # fixed rate 25 fps with some jitter
  1904. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1905. @end example
  1906. @section settb
  1907. Set the timebase to use for the output frames timestamps.
  1908. It is mainly useful for testing timebase configuration.
  1909. It accepts in input an arithmetic expression representing a rational.
  1910. The expression can contain the constants "AVTB" (the
  1911. default timebase), and "intb" (the input timebase).
  1912. The default value for the input is "intb".
  1913. Follow some examples.
  1914. @example
  1915. # set the timebase to 1/25
  1916. settb=1/25
  1917. # set the timebase to 1/10
  1918. settb=0.1
  1919. #set the timebase to 1001/1000
  1920. settb=1+0.001
  1921. #set the timebase to 2*intb
  1922. settb=2*intb
  1923. #set the default timebase value
  1924. settb=AVTB
  1925. @end example
  1926. @section showinfo
  1927. Show a line containing various information for each input video frame.
  1928. The input video is not modified.
  1929. The shown line contains a sequence of key/value pairs of the form
  1930. @var{key}:@var{value}.
  1931. A description of each shown parameter follows:
  1932. @table @option
  1933. @item n
  1934. sequential number of the input frame, starting from 0
  1935. @item pts
  1936. Presentation TimeStamp of the input frame, expressed as a number of
  1937. time base units. The time base unit depends on the filter input pad.
  1938. @item pts_time
  1939. Presentation TimeStamp of the input frame, expressed as a number of
  1940. seconds
  1941. @item pos
  1942. position of the frame in the input stream, -1 if this information in
  1943. unavailable and/or meaningless (for example in case of synthetic video)
  1944. @item fmt
  1945. pixel format name
  1946. @item sar
  1947. sample aspect ratio of the input frame, expressed in the form
  1948. @var{num}/@var{den}
  1949. @item s
  1950. size of the input frame, expressed in the form
  1951. @var{width}x@var{height}
  1952. @item i
  1953. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1954. for bottom field first)
  1955. @item iskey
  1956. 1 if the frame is a key frame, 0 otherwise
  1957. @item type
  1958. picture type of the input frame ("I" for an I-frame, "P" for a
  1959. P-frame, "B" for a B-frame, "?" for unknown type).
  1960. Check also the documentation of the @code{AVPictureType} enum and of
  1961. the @code{av_get_picture_type_char} function defined in
  1962. @file{libavutil/avutil.h}.
  1963. @item checksum
  1964. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1965. @item plane_checksum
  1966. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1967. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1968. @end table
  1969. @section slicify
  1970. Pass the images of input video on to next video filter as multiple
  1971. slices.
  1972. @example
  1973. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1974. @end example
  1975. The filter accepts the slice height as parameter. If the parameter is
  1976. not specified it will use the default value of 16.
  1977. Adding this in the beginning of filter chains should make filtering
  1978. faster due to better use of the memory cache.
  1979. @section split
  1980. Pass on the input video to two outputs. Both outputs are identical to
  1981. the input video.
  1982. For example:
  1983. @example
  1984. [in] split [splitout1][splitout2];
  1985. [splitout1] crop=100:100:0:0 [cropout];
  1986. [splitout2] pad=200:200:100:100 [padout];
  1987. @end example
  1988. will create two separate outputs from the same input, one cropped and
  1989. one padded.
  1990. @section swapuv
  1991. Swap U & V plane.
  1992. @section thumbnail
  1993. Select the most representative frame in a given sequence of consecutive frames.
  1994. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  1995. in a set of @var{N} frames, the filter will pick one of them, and then handle
  1996. the next batch of @var{N} frames until the end.
  1997. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  1998. value will result in a higher memory usage, so a high value is not recommended.
  1999. The following example extract one picture each 50 frames:
  2000. @example
  2001. thumbnail=50
  2002. @end example
  2003. Complete example of a thumbnail creation with @command{ffmpeg}:
  2004. @example
  2005. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2006. @end example
  2007. @section tile
  2008. Tile several successive frames together.
  2009. It accepts as argument the tile size (i.e. the number of lines and columns)
  2010. in the form "@var{w}x@var{h}".
  2011. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2012. nokey}) in a movie:
  2013. @example
  2014. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2015. @end example
  2016. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2017. duplicating each output frame to accomodate the originally detected frame
  2018. rate.
  2019. @section tinterlace
  2020. Perform various types of temporal field interlacing.
  2021. Frames are counted starting from 1, so the first input frame is
  2022. considered odd.
  2023. This filter accepts a single parameter specifying the mode. Available
  2024. modes are:
  2025. @table @samp
  2026. @item 0
  2027. Move odd frames into the upper field, even into the lower field,
  2028. generating a double height frame at half framerate.
  2029. @item 1
  2030. Only output even frames, odd frames are dropped, generating a frame with
  2031. unchanged height at half framerate.
  2032. @item 2
  2033. Only output odd frames, even frames are dropped, generating a frame with
  2034. unchanged height at half framerate.
  2035. @item 3
  2036. Expand each frame to full height, but pad alternate lines with black,
  2037. generating a frame with double height at the same input framerate.
  2038. @item 4
  2039. Interleave the upper field from odd frames with the lower field from
  2040. even frames, generating a frame with unchanged height at half framerate.
  2041. @item 5
  2042. Interleave the lower field from odd frames with the upper field from
  2043. even frames, generating a frame with unchanged height at half framerate.
  2044. @end table
  2045. Default mode is 0.
  2046. @section transpose
  2047. Transpose rows with columns in the input video and optionally flip it.
  2048. It accepts a parameter representing an integer, which can assume the
  2049. values:
  2050. @table @samp
  2051. @item 0
  2052. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2053. @example
  2054. L.R L.l
  2055. . . -> . .
  2056. l.r R.r
  2057. @end example
  2058. @item 1
  2059. Rotate by 90 degrees clockwise, that is:
  2060. @example
  2061. L.R l.L
  2062. . . -> . .
  2063. l.r r.R
  2064. @end example
  2065. @item 2
  2066. Rotate by 90 degrees counterclockwise, that is:
  2067. @example
  2068. L.R R.r
  2069. . . -> . .
  2070. l.r L.l
  2071. @end example
  2072. @item 3
  2073. Rotate by 90 degrees clockwise and vertically flip, that is:
  2074. @example
  2075. L.R r.R
  2076. . . -> . .
  2077. l.r l.L
  2078. @end example
  2079. @end table
  2080. @section unsharp
  2081. Sharpen or blur the input video.
  2082. It accepts the following parameters:
  2083. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2084. Negative values for the amount will blur the input video, while positive
  2085. values will sharpen. All parameters are optional and default to the
  2086. equivalent of the string '5:5:1.0:5:5:0.0'.
  2087. @table @option
  2088. @item luma_msize_x
  2089. Set the luma matrix horizontal size. It can be an integer between 3
  2090. and 13, default value is 5.
  2091. @item luma_msize_y
  2092. Set the luma matrix vertical size. It can be an integer between 3
  2093. and 13, default value is 5.
  2094. @item luma_amount
  2095. Set the luma effect strength. It can be a float number between -2.0
  2096. and 5.0, default value is 1.0.
  2097. @item chroma_msize_x
  2098. Set the chroma matrix horizontal size. It can be an integer between 3
  2099. and 13, default value is 5.
  2100. @item chroma_msize_y
  2101. Set the chroma matrix vertical size. It can be an integer between 3
  2102. and 13, default value is 5.
  2103. @item chroma_amount
  2104. Set the chroma effect strength. It can be a float number between -2.0
  2105. and 5.0, default value is 0.0.
  2106. @end table
  2107. @example
  2108. # Strong luma sharpen effect parameters
  2109. unsharp=7:7:2.5
  2110. # Strong blur of both luma and chroma parameters
  2111. unsharp=7:7:-2:7:7:-2
  2112. # Use the default values with @command{ffmpeg}
  2113. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2114. @end example
  2115. @section vflip
  2116. Flip the input video vertically.
  2117. @example
  2118. ffmpeg -i in.avi -vf "vflip" out.avi
  2119. @end example
  2120. @section yadif
  2121. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2122. filter").
  2123. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2124. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2125. following values:
  2126. @table @option
  2127. @item 0
  2128. output 1 frame for each frame
  2129. @item 1
  2130. output 1 frame for each field
  2131. @item 2
  2132. like 0 but skips spatial interlacing check
  2133. @item 3
  2134. like 1 but skips spatial interlacing check
  2135. @end table
  2136. Default value is 0.
  2137. @var{parity} specifies the picture field parity assumed for the input
  2138. interlaced video, accepts one of the following values:
  2139. @table @option
  2140. @item 0
  2141. assume top field first
  2142. @item 1
  2143. assume bottom field first
  2144. @item -1
  2145. enable automatic detection
  2146. @end table
  2147. Default value is -1.
  2148. If interlacing is unknown or decoder does not export this information,
  2149. top field first will be assumed.
  2150. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2151. and only deinterlace frames marked as interlaced
  2152. @table @option
  2153. @item 0
  2154. deinterlace all frames
  2155. @item 1
  2156. only deinterlace frames marked as interlaced
  2157. @end table
  2158. Default value is 0.
  2159. @c man end VIDEO FILTERS
  2160. @chapter Video Sources
  2161. @c man begin VIDEO SOURCES
  2162. Below is a description of the currently available video sources.
  2163. @section buffer
  2164. Buffer video frames, and make them available to the filter chain.
  2165. This source is mainly intended for a programmatic use, in particular
  2166. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2167. It accepts the following parameters:
  2168. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  2169. All the parameters but @var{scale_params} need to be explicitly
  2170. defined.
  2171. Follows the list of the accepted parameters.
  2172. @table @option
  2173. @item width, height
  2174. Specify the width and height of the buffered video frames.
  2175. @item pix_fmt_string
  2176. A string representing the pixel format of the buffered video frames.
  2177. It may be a number corresponding to a pixel format, or a pixel format
  2178. name.
  2179. @item timebase_num, timebase_den
  2180. Specify numerator and denomitor of the timebase assumed by the
  2181. timestamps of the buffered frames.
  2182. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  2183. Specify numerator and denominator of the sample aspect ratio assumed
  2184. by the video frames.
  2185. @item scale_params
  2186. Specify the optional parameters to be used for the scale filter which
  2187. is automatically inserted when an input change is detected in the
  2188. input size or format.
  2189. @end table
  2190. For example:
  2191. @example
  2192. buffer=320:240:yuv410p:1:24:1:1
  2193. @end example
  2194. will instruct the source to accept video frames with size 320x240 and
  2195. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2196. square pixels (1:1 sample aspect ratio).
  2197. Since the pixel format with name "yuv410p" corresponds to the number 6
  2198. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2199. this example corresponds to:
  2200. @example
  2201. buffer=320:240:6:1:24:1:1
  2202. @end example
  2203. @section cellauto
  2204. Create a pattern generated by an elementary cellular automaton.
  2205. The initial state of the cellular automaton can be defined through the
  2206. @option{filename}, and @option{pattern} options. If such options are
  2207. not specified an initial state is created randomly.
  2208. At each new frame a new row in the video is filled with the result of
  2209. the cellular automaton next generation. The behavior when the whole
  2210. frame is filled is defined by the @option{scroll} option.
  2211. This source accepts a list of options in the form of
  2212. @var{key}=@var{value} pairs separated by ":". A description of the
  2213. accepted options follows.
  2214. @table @option
  2215. @item filename, f
  2216. Read the initial cellular automaton state, i.e. the starting row, from
  2217. the specified file.
  2218. In the file, each non-whitespace character is considered an alive
  2219. cell, a newline will terminate the row, and further characters in the
  2220. file will be ignored.
  2221. @item pattern, p
  2222. Read the initial cellular automaton state, i.e. the starting row, from
  2223. the specified string.
  2224. Each non-whitespace character in the string is considered an alive
  2225. cell, a newline will terminate the row, and further characters in the
  2226. string will be ignored.
  2227. @item rate, r
  2228. Set the video rate, that is the number of frames generated per second.
  2229. Default is 25.
  2230. @item random_fill_ratio, ratio
  2231. Set the random fill ratio for the initial cellular automaton row. It
  2232. is a floating point number value ranging from 0 to 1, defaults to
  2233. 1/PHI.
  2234. This option is ignored when a file or a pattern is specified.
  2235. @item random_seed, seed
  2236. Set the seed for filling randomly the initial row, must be an integer
  2237. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2238. set to -1, the filter will try to use a good random seed on a best
  2239. effort basis.
  2240. @item rule
  2241. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2242. Default value is 110.
  2243. @item size, s
  2244. Set the size of the output video.
  2245. If @option{filename} or @option{pattern} is specified, the size is set
  2246. by default to the width of the specified initial state row, and the
  2247. height is set to @var{width} * PHI.
  2248. If @option{size} is set, it must contain the width of the specified
  2249. pattern string, and the specified pattern will be centered in the
  2250. larger row.
  2251. If a filename or a pattern string is not specified, the size value
  2252. defaults to "320x518" (used for a randomly generated initial state).
  2253. @item scroll
  2254. If set to 1, scroll the output upward when all the rows in the output
  2255. have been already filled. If set to 0, the new generated row will be
  2256. written over the top row just after the bottom row is filled.
  2257. Defaults to 1.
  2258. @item start_full, full
  2259. If set to 1, completely fill the output with generated rows before
  2260. outputting the first frame.
  2261. This is the default behavior, for disabling set the value to 0.
  2262. @item stitch
  2263. If set to 1, stitch the left and right row edges together.
  2264. This is the default behavior, for disabling set the value to 0.
  2265. @end table
  2266. @subsection Examples
  2267. @itemize
  2268. @item
  2269. Read the initial state from @file{pattern}, and specify an output of
  2270. size 200x400.
  2271. @example
  2272. cellauto=f=pattern:s=200x400
  2273. @end example
  2274. @item
  2275. Generate a random initial row with a width of 200 cells, with a fill
  2276. ratio of 2/3:
  2277. @example
  2278. cellauto=ratio=2/3:s=200x200
  2279. @end example
  2280. @item
  2281. Create a pattern generated by rule 18 starting by a single alive cell
  2282. centered on an initial row with width 100:
  2283. @example
  2284. cellauto=p=@@:s=100x400:full=0:rule=18
  2285. @end example
  2286. @item
  2287. Specify a more elaborated initial pattern:
  2288. @example
  2289. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2290. @end example
  2291. @end itemize
  2292. @section color
  2293. Provide an uniformly colored input.
  2294. It accepts the following parameters:
  2295. @var{color}:@var{frame_size}:@var{frame_rate}
  2296. Follows the description of the accepted parameters.
  2297. @table @option
  2298. @item color
  2299. Specify the color of the source. It can be the name of a color (case
  2300. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2301. alpha specifier. The default value is "black".
  2302. @item frame_size
  2303. Specify the size of the sourced video, it may be a string of the form
  2304. @var{width}x@var{height}, or the name of a size abbreviation. The
  2305. default value is "320x240".
  2306. @item frame_rate
  2307. Specify the frame rate of the sourced video, as the number of frames
  2308. generated per second. It has to be a string in the format
  2309. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2310. number or a valid video frame rate abbreviation. The default value is
  2311. "25".
  2312. @end table
  2313. For example the following graph description will generate a red source
  2314. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2315. frames per second, which will be overlayed over the source connected
  2316. to the pad with identifier "in".
  2317. @example
  2318. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2319. @end example
  2320. @section movie
  2321. Read a video stream from a movie container.
  2322. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2323. @var{movie_name} is the name of the resource to read (not necessarily
  2324. a file but also a device or a stream accessed through some protocol),
  2325. and @var{options} is an optional sequence of @var{key}=@var{value}
  2326. pairs, separated by ":".
  2327. The description of the accepted options follows.
  2328. @table @option
  2329. @item format_name, f
  2330. Specifies the format assumed for the movie to read, and can be either
  2331. the name of a container or an input device. If not specified the
  2332. format is guessed from @var{movie_name} or by probing.
  2333. @item seek_point, sp
  2334. Specifies the seek point in seconds, the frames will be output
  2335. starting from this seek point, the parameter is evaluated with
  2336. @code{av_strtod} so the numerical value may be suffixed by an IS
  2337. postfix. Default value is "0".
  2338. @item stream_index, si
  2339. Specifies the index of the video stream to read. If the value is -1,
  2340. the best suited video stream will be automatically selected. Default
  2341. value is "-1".
  2342. @item loop
  2343. Specifies how many times to read the video stream in sequence.
  2344. If the value is less than 1, the stream will be read again and again.
  2345. Default value is "1".
  2346. Note that when the movie is looped the source timestamps are not
  2347. changed, so it will generate non monotonically increasing timestamps.
  2348. @end table
  2349. This filter allows to overlay a second video on top of main input of
  2350. a filtergraph as shown in this graph:
  2351. @example
  2352. input -----------> deltapts0 --> overlay --> output
  2353. ^
  2354. |
  2355. movie --> scale--> deltapts1 -------+
  2356. @end example
  2357. Some examples follow:
  2358. @example
  2359. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2360. # on top of the input labelled as "in".
  2361. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2362. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2363. # read from a video4linux2 device, and overlay it on top of the input
  2364. # labelled as "in"
  2365. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2366. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2367. @end example
  2368. @section mptestsrc
  2369. Generate various test patterns, as generated by the MPlayer test filter.
  2370. The size of the generated video is fixed, and is 256x256.
  2371. This source is useful in particular for testing encoding features.
  2372. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2373. separated by ":". The description of the accepted options follows.
  2374. @table @option
  2375. @item rate, r
  2376. Specify the frame rate of the sourced video, as the number of frames
  2377. generated per second. It has to be a string in the format
  2378. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2379. number or a valid video frame rate abbreviation. The default value is
  2380. "25".
  2381. @item duration, d
  2382. Set the video duration of the sourced video. The accepted syntax is:
  2383. @example
  2384. [-]HH[:MM[:SS[.m...]]]
  2385. [-]S+[.m...]
  2386. @end example
  2387. See also the function @code{av_parse_time()}.
  2388. If not specified, or the expressed duration is negative, the video is
  2389. supposed to be generated forever.
  2390. @item test, t
  2391. Set the number or the name of the test to perform. Supported tests are:
  2392. @table @option
  2393. @item dc_luma
  2394. @item dc_chroma
  2395. @item freq_luma
  2396. @item freq_chroma
  2397. @item amp_luma
  2398. @item amp_chroma
  2399. @item cbp
  2400. @item mv
  2401. @item ring1
  2402. @item ring2
  2403. @item all
  2404. @end table
  2405. Default value is "all", which will cycle through the list of all tests.
  2406. @end table
  2407. For example the following:
  2408. @example
  2409. testsrc=t=dc_luma
  2410. @end example
  2411. will generate a "dc_luma" test pattern.
  2412. @section frei0r_src
  2413. Provide a frei0r source.
  2414. To enable compilation of this filter you need to install the frei0r
  2415. header and configure FFmpeg with @code{--enable-frei0r}.
  2416. The source supports the syntax:
  2417. @example
  2418. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2419. @end example
  2420. @var{size} is the size of the video to generate, may be a string of the
  2421. form @var{width}x@var{height} or a frame size abbreviation.
  2422. @var{rate} is the rate of the video to generate, may be a string of
  2423. the form @var{num}/@var{den} or a frame rate abbreviation.
  2424. @var{src_name} is the name to the frei0r source to load. For more
  2425. information regarding frei0r and how to set the parameters read the
  2426. section @ref{frei0r} in the description of the video filters.
  2427. Some examples follow:
  2428. @example
  2429. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2430. # which is overlayed on the overlay filter main input
  2431. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2432. @end example
  2433. @section life
  2434. Generate a life pattern.
  2435. This source is based on a generalization of John Conway's life game.
  2436. The sourced input represents a life grid, each pixel represents a cell
  2437. which can be in one of two possible states, alive or dead. Every cell
  2438. interacts with its eight neighbours, which are the cells that are
  2439. horizontally, vertically, or diagonally adjacent.
  2440. At each interaction the grid evolves according to the adopted rule,
  2441. which specifies the number of neighbor alive cells which will make a
  2442. cell stay alive or born. The @option{rule} option allows to specify
  2443. the rule to adopt.
  2444. This source accepts a list of options in the form of
  2445. @var{key}=@var{value} pairs separated by ":". A description of the
  2446. accepted options follows.
  2447. @table @option
  2448. @item filename, f
  2449. Set the file from which to read the initial grid state. In the file,
  2450. each non-whitespace character is considered an alive cell, and newline
  2451. is used to delimit the end of each row.
  2452. If this option is not specified, the initial grid is generated
  2453. randomly.
  2454. @item rate, r
  2455. Set the video rate, that is the number of frames generated per second.
  2456. Default is 25.
  2457. @item random_fill_ratio, ratio
  2458. Set the random fill ratio for the initial random grid. It is a
  2459. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2460. It is ignored when a file is specified.
  2461. @item random_seed, seed
  2462. Set the seed for filling the initial random grid, must be an integer
  2463. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2464. set to -1, the filter will try to use a good random seed on a best
  2465. effort basis.
  2466. @item rule
  2467. Set the life rule.
  2468. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2469. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2470. @var{NS} specifies the number of alive neighbor cells which make a
  2471. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2472. which make a dead cell to become alive (i.e. to "born").
  2473. "s" and "b" can be used in place of "S" and "B", respectively.
  2474. Alternatively a rule can be specified by an 18-bits integer. The 9
  2475. high order bits are used to encode the next cell state if it is alive
  2476. for each number of neighbor alive cells, the low order bits specify
  2477. the rule for "borning" new cells. Higher order bits encode for an
  2478. higher number of neighbor cells.
  2479. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2480. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2481. Default value is "S23/B3", which is the original Conway's game of life
  2482. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2483. cells, and will born a new cell if there are three alive cells around
  2484. a dead cell.
  2485. @item size, s
  2486. Set the size of the output video.
  2487. If @option{filename} is specified, the size is set by default to the
  2488. same size of the input file. If @option{size} is set, it must contain
  2489. the size specified in the input file, and the initial grid defined in
  2490. that file is centered in the larger resulting area.
  2491. If a filename is not specified, the size value defaults to "320x240"
  2492. (used for a randomly generated initial grid).
  2493. @item stitch
  2494. If set to 1, stitch the left and right grid edges together, and the
  2495. top and bottom edges also. Defaults to 1.
  2496. @item mold
  2497. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2498. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2499. value from 0 to 255.
  2500. @item life_color
  2501. Set the color of living (or new born) cells.
  2502. @item death_color
  2503. Set the color of dead cells. If @option{mold} is set, this is the first color
  2504. used to represent a dead cell.
  2505. @item mold_color
  2506. Set mold color, for definitely dead and moldy cells.
  2507. @end table
  2508. @subsection Examples
  2509. @itemize
  2510. @item
  2511. Read a grid from @file{pattern}, and center it on a grid of size
  2512. 300x300 pixels:
  2513. @example
  2514. life=f=pattern:s=300x300
  2515. @end example
  2516. @item
  2517. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2518. @example
  2519. life=ratio=2/3:s=200x200
  2520. @end example
  2521. @item
  2522. Specify a custom rule for evolving a randomly generated grid:
  2523. @example
  2524. life=rule=S14/B34
  2525. @end example
  2526. @item
  2527. Full example with slow death effect (mold) using @command{ffplay}:
  2528. @example
  2529. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2530. @end example
  2531. @end itemize
  2532. @section nullsrc, rgbtestsrc, testsrc
  2533. The @code{nullsrc} source returns unprocessed video frames. It is
  2534. mainly useful to be employed in analysis / debugging tools, or as the
  2535. source for filters which ignore the input data.
  2536. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2537. detecting RGB vs BGR issues. You should see a red, green and blue
  2538. stripe from top to bottom.
  2539. The @code{testsrc} source generates a test video pattern, showing a
  2540. color pattern, a scrolling gradient and a timestamp. This is mainly
  2541. intended for testing purposes.
  2542. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2543. separated by ":". The description of the accepted options follows.
  2544. @table @option
  2545. @item size, s
  2546. Specify the size of the sourced video, it may be a string of the form
  2547. @var{width}x@var{height}, or the name of a size abbreviation. The
  2548. default value is "320x240".
  2549. @item rate, r
  2550. Specify the frame rate of the sourced video, as the number of frames
  2551. generated per second. It has to be a string in the format
  2552. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2553. number or a valid video frame rate abbreviation. The default value is
  2554. "25".
  2555. @item sar
  2556. Set the sample aspect ratio of the sourced video.
  2557. @item duration, d
  2558. Set the video duration of the sourced video. The accepted syntax is:
  2559. @example
  2560. [-]HH[:MM[:SS[.m...]]]
  2561. [-]S+[.m...]
  2562. @end example
  2563. See also the function @code{av_parse_time()}.
  2564. If not specified, or the expressed duration is negative, the video is
  2565. supposed to be generated forever.
  2566. @item decimals, n
  2567. Set the number of decimals to show in the timestamp, only used in the
  2568. @code{testsrc} source.
  2569. The displayed timestamp value will correspond to the original
  2570. timestamp value multiplied by the power of 10 of the specified
  2571. value. Default value is 0.
  2572. @end table
  2573. For example the following:
  2574. @example
  2575. testsrc=duration=5.3:size=qcif:rate=10
  2576. @end example
  2577. will generate a video with a duration of 5.3 seconds, with size
  2578. 176x144 and a frame rate of 10 frames per second.
  2579. If the input content is to be ignored, @code{nullsrc} can be used. The
  2580. following command generates noise in the luminance plane by employing
  2581. the @code{mp=geq} filter:
  2582. @example
  2583. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2584. @end example
  2585. @c man end VIDEO SOURCES
  2586. @chapter Video Sinks
  2587. @c man begin VIDEO SINKS
  2588. Below is a description of the currently available video sinks.
  2589. @section buffersink
  2590. Buffer video frames, and make them available to the end of the filter
  2591. graph.
  2592. This sink is mainly intended for a programmatic use, in particular
  2593. through the interface defined in @file{libavfilter/buffersink.h}.
  2594. It does not require a string parameter in input, but you need to
  2595. specify a pointer to a list of supported pixel formats terminated by
  2596. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2597. when initializing this sink.
  2598. @section nullsink
  2599. Null video sink, do absolutely nothing with the input video. It is
  2600. mainly useful as a template and to be employed in analysis / debugging
  2601. tools.
  2602. @c man end VIDEO SINKS