You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

747 lines
25KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <math.h>
  21. #include "common.h"
  22. #include "avcodec.h"
  23. #include "dsputil.h"
  24. #include "mpegvideo.h"
  25. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  26. #include <assert.h>
  27. static int init_pass2(MpegEncContext *s);
  28. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  29. void ff_write_pass1_stats(MpegEncContext *s){
  30. sprintf(s->avctx->stats_out, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n",
  31. s->picture_number, s->input_picture_number - s->max_b_frames, s->pict_type,
  32. s->qscale, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  33. s->f_code, s->b_code, s->mc_mb_var_sum, s->mb_var_sum, s->i_count);
  34. }
  35. int ff_rate_control_init(MpegEncContext *s)
  36. {
  37. RateControlContext *rcc= &s->rc_context;
  38. int i;
  39. emms_c();
  40. for(i=0; i<5; i++){
  41. rcc->pred[i].coeff= 7.0;
  42. rcc->pred[i].count= 1.0;
  43. rcc->pred[i].decay= 0.4;
  44. rcc->i_cplx_sum [i]=
  45. rcc->p_cplx_sum [i]=
  46. rcc->mv_bits_sum[i]=
  47. rcc->qscale_sum [i]=
  48. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  49. rcc->last_qscale_for[i]=5;
  50. }
  51. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  52. rcc->next_non_b_qscale=10;
  53. rcc->next_p_qscale=10;
  54. if(s->flags&CODEC_FLAG_PASS2){
  55. int i;
  56. char *p;
  57. /* find number of pics */
  58. p= s->avctx->stats_in;
  59. for(i=-1; p; i++){
  60. p= strchr(p+1, ';');
  61. }
  62. i+= s->max_b_frames;
  63. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  64. rcc->num_entries= i;
  65. /* init all to skiped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  66. for(i=0; i<rcc->num_entries; i++){
  67. RateControlEntry *rce= &rcc->entry[i];
  68. rce->pict_type= rce->new_pict_type=P_TYPE;
  69. rce->qscale= rce->new_qscale=2;
  70. rce->misc_bits= s->mb_num + 10;
  71. rce->mb_var_sum= s->mb_num*100;
  72. }
  73. /* read stats */
  74. p= s->avctx->stats_in;
  75. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  76. RateControlEntry *rce;
  77. int picture_number;
  78. int e;
  79. char *next;
  80. next= strchr(p, ';');
  81. if(next){
  82. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  83. next++;
  84. }
  85. e= sscanf(p, " in:%d ", &picture_number);
  86. assert(picture_number >= 0);
  87. assert(picture_number < rcc->num_entries);
  88. rce= &rcc->entry[picture_number];
  89. e+=sscanf(p, " in:%*d out:%*d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d",
  90. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  91. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count);
  92. if(e!=12){
  93. fprintf(stderr, "statistics are damaged at line %d, parser out=%d\n", i, e);
  94. return -1;
  95. }
  96. p= next;
  97. }
  98. if(init_pass2(s) < 0) return -1;
  99. }
  100. if(!(s->flags&CODEC_FLAG_PASS2)){
  101. rcc->short_term_qsum=0.001;
  102. rcc->short_term_qcount=0.001;
  103. rcc->pass1_bits =0.001;
  104. rcc->pass1_wanted_bits=0.001;
  105. /* init stuff with the user specified complexity */
  106. if(s->avctx->rc_initial_cplx){
  107. for(i=0; i<60*30; i++){
  108. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  109. RateControlEntry rce;
  110. double q;
  111. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  112. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  113. else rce.pict_type= P_TYPE;
  114. rce.new_pict_type= rce.pict_type;
  115. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  116. rce.mb_var_sum = s->mb_num;
  117. rce.qscale = 2;
  118. rce.f_code = 2;
  119. rce.b_code = 1;
  120. rce.misc_bits= 1;
  121. if(s->pict_type== I_TYPE){
  122. rce.i_count = s->mb_num;
  123. rce.i_tex_bits= bits;
  124. rce.p_tex_bits= 0;
  125. rce.mv_bits= 0;
  126. }else{
  127. rce.i_count = 0; //FIXME we do know this approx
  128. rce.i_tex_bits= 0;
  129. rce.p_tex_bits= bits*0.9;
  130. rce.mv_bits= bits*0.1;
  131. }
  132. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  133. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  134. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  135. rcc->frame_count[rce.pict_type] ++;
  136. bits= rce.i_tex_bits + rce.p_tex_bits;
  137. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_bits, i);
  138. rcc->pass1_wanted_bits+= s->bit_rate/(s->frame_rate / (double)FRAME_RATE_BASE);
  139. }
  140. }
  141. }
  142. return 0;
  143. }
  144. void ff_rate_control_uninit(MpegEncContext *s)
  145. {
  146. RateControlContext *rcc= &s->rc_context;
  147. emms_c();
  148. av_freep(&rcc->entry);
  149. }
  150. static inline double qp2bits(RateControlEntry *rce, double qp){
  151. if(qp<=0.0){
  152. fprintf(stderr, "qp<=0.0\n");
  153. }
  154. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  155. }
  156. static inline double bits2qp(RateControlEntry *rce, double bits){
  157. if(bits<0.9){
  158. fprintf(stderr, "bits<0.9\n");
  159. }
  160. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  161. }
  162. static void update_rc_buffer(MpegEncContext *s, int frame_size){
  163. RateControlContext *rcc= &s->rc_context;
  164. const double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  165. const double buffer_size= s->avctx->rc_buffer_size;
  166. const double min_rate= s->avctx->rc_min_rate/fps;
  167. const double max_rate= s->avctx->rc_max_rate/fps;
  168. if(buffer_size){
  169. rcc->buffer_index-= frame_size;
  170. if(rcc->buffer_index < buffer_size/2 /*FIXME /2 */ || min_rate==0){
  171. rcc->buffer_index+= max_rate;
  172. if(rcc->buffer_index >= buffer_size)
  173. rcc->buffer_index= buffer_size-1;
  174. }else{
  175. rcc->buffer_index+= min_rate;
  176. }
  177. if(rcc->buffer_index < 0)
  178. fprintf(stderr, "rc buffer underflow\n");
  179. if(rcc->buffer_index >= s->avctx->rc_buffer_size)
  180. fprintf(stderr, "rc buffer overflow\n");
  181. }
  182. }
  183. /**
  184. * modifies the bitrate curve from pass1 for one frame
  185. */
  186. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  187. RateControlContext *rcc= &s->rc_context;
  188. double q, bits;
  189. const int pict_type= rce->new_pict_type;
  190. const double mb_num= s->mb_num;
  191. int i;
  192. const double last_q= rcc->last_qscale_for[pict_type];
  193. double const_values[]={
  194. M_PI,
  195. M_E,
  196. rce->i_tex_bits*rce->qscale,
  197. rce->p_tex_bits*rce->qscale,
  198. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  199. rce->mv_bits/mb_num,
  200. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  201. rce->i_count/mb_num,
  202. rce->mc_mb_var_sum/mb_num,
  203. rce->mb_var_sum/mb_num,
  204. rce->pict_type == I_TYPE,
  205. rce->pict_type == P_TYPE,
  206. rce->pict_type == B_TYPE,
  207. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  208. s->qcompress,
  209. /* rcc->last_qscale_for[I_TYPE],
  210. rcc->last_qscale_for[P_TYPE],
  211. rcc->last_qscale_for[B_TYPE],
  212. rcc->next_non_b_qscale,*/
  213. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  214. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  215. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  216. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  217. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  218. 0
  219. };
  220. char *const_names[]={
  221. "PI",
  222. "E",
  223. "iTex",
  224. "pTex",
  225. "tex",
  226. "mv",
  227. "fCode",
  228. "iCount",
  229. "mcVar",
  230. "var",
  231. "isI",
  232. "isP",
  233. "isB",
  234. "avgQP",
  235. "qComp",
  236. /* "lastIQP",
  237. "lastPQP",
  238. "lastBQP",
  239. "nextNonBQP",*/
  240. "avgIITex",
  241. "avgPITex",
  242. "avgPPTex",
  243. "avgBPTex",
  244. "avgTex",
  245. NULL
  246. };
  247. static double (*func1[])(void *, double)={
  248. bits2qp,
  249. qp2bits,
  250. NULL
  251. };
  252. char *func1_names[]={
  253. "bits2qp",
  254. "qp2bits",
  255. NULL
  256. };
  257. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  258. rcc->pass1_bits+= bits;
  259. bits*=rate_factor;
  260. if(bits<0.0) bits=0.0;
  261. bits+= 1.0; //avoid 1/0 issues
  262. /* user override */
  263. for(i=0; i<s->avctx->rc_override_count; i++){
  264. RcOverride *rco= s->avctx->rc_override;
  265. if(rco[i].start_frame > frame_num) continue;
  266. if(rco[i].end_frame < frame_num) continue;
  267. if(rco[i].qscale)
  268. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  269. else
  270. bits*= rco[i].quality_factor;
  271. }
  272. q= bits2qp(rce, bits);
  273. /* I/B difference */
  274. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  275. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  276. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  277. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  278. /* last qscale / qdiff stuff */
  279. if (q > last_q + s->max_qdiff) q= last_q + s->max_qdiff;
  280. else if(q < last_q - s->max_qdiff) q= last_q - s->max_qdiff;
  281. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  282. return q;
  283. }
  284. /**
  285. * gets the qmin & qmax for pict_type
  286. */
  287. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  288. int qmin= s->qmin;
  289. int qmax= s->qmax;
  290. if(pict_type==B_TYPE){
  291. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  292. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  293. }else if(pict_type==I_TYPE){
  294. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  295. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  296. }
  297. if(qmin<1) qmin=1;
  298. if(qmin==1 && s->qmin>1) qmin=2; //avoid qmin=1 unless the user wants qmin=1
  299. if(qmin<3 && s->max_qcoeff<=128 && pict_type==I_TYPE) qmin=3; //reduce cliping problems
  300. if(qmax>31) qmax=31;
  301. if(qmax<=qmin) qmax= qmin= (qmax+qmin+1)>>1;
  302. *qmin_ret= qmin;
  303. *qmax_ret= qmax;
  304. }
  305. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  306. RateControlContext *rcc= &s->rc_context;
  307. int qmin, qmax;
  308. double bits;
  309. const int pict_type= rce->new_pict_type;
  310. const double buffer_size= s->avctx->rc_buffer_size;
  311. const double min_rate= s->avctx->rc_min_rate;
  312. const double max_rate= s->avctx->rc_max_rate;
  313. get_qminmax(&qmin, &qmax, s, pict_type);
  314. /* modulation */
  315. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  316. q*= s->avctx->rc_qmod_amp;
  317. bits= qp2bits(rce, q);
  318. /* buffer overflow/underflow protection */
  319. if(buffer_size){
  320. double expected_size= rcc->buffer_index - bits;
  321. if(min_rate){
  322. double d= 2*(buffer_size - (expected_size + min_rate))/buffer_size;
  323. if(d>1.0) d=1.0;
  324. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  325. }
  326. if(max_rate){
  327. double d= 2*expected_size/buffer_size;
  328. if(d>1.0) d=1.0;
  329. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  330. }
  331. }
  332. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  333. if (q<qmin) q=qmin;
  334. else if(q>qmax) q=qmax;
  335. }else{
  336. double min2= log(qmin);
  337. double max2= log(qmax);
  338. q= log(q);
  339. q= (q - min2)/(max2-min2) - 0.5;
  340. q*= -4.0;
  341. q= 1.0/(1.0 + exp(q));
  342. q= q*(max2-min2) + min2;
  343. q= exp(q);
  344. }
  345. return q;
  346. }
  347. //----------------------------------
  348. // 1 Pass Code
  349. static double predict_size(Predictor *p, double q, double var)
  350. {
  351. return p->coeff*var / (q*p->count);
  352. }
  353. static double predict_qp(Predictor *p, double size, double var)
  354. {
  355. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  356. return p->coeff*var / (size*p->count);
  357. }
  358. static void update_predictor(Predictor *p, double q, double var, double size)
  359. {
  360. double new_coeff= size*q / (var + 1);
  361. if(var<10) return;
  362. p->count*= p->decay;
  363. p->coeff*= p->decay;
  364. p->count++;
  365. p->coeff+= new_coeff;
  366. }
  367. int ff_rate_estimate_qscale(MpegEncContext *s)
  368. {
  369. float q;
  370. int qscale, qmin, qmax;
  371. float br_compensation;
  372. double diff;
  373. double short_term_q;
  374. double fps;
  375. int picture_number= s->picture_number;
  376. int64_t wanted_bits;
  377. RateControlContext *rcc= &s->rc_context;
  378. RateControlEntry local_rce, *rce;
  379. double bits;
  380. double rate_factor;
  381. int var;
  382. const int pict_type= s->pict_type;
  383. emms_c();
  384. get_qminmax(&qmin, &qmax, s, pict_type);
  385. fps= (double)s->frame_rate / FRAME_RATE_BASE;
  386. //printf("input_picture_number:%d picture_number:%d\n", s->input_picture_number, s->picture_number);
  387. /* update predictors */
  388. if(picture_number>2){
  389. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  390. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  391. }
  392. if(s->flags&CODEC_FLAG_PASS2){
  393. assert(picture_number>=0);
  394. assert(picture_number<rcc->num_entries);
  395. rce= &rcc->entry[picture_number];
  396. wanted_bits= rce->expected_bits;
  397. }else{
  398. rce= &local_rce;
  399. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  400. }
  401. diff= s->total_bits - wanted_bits;
  402. br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
  403. if(br_compensation<=0.0) br_compensation=0.001;
  404. var= pict_type == I_TYPE ? s->mb_var_sum : s->mc_mb_var_sum;
  405. if(s->flags&CODEC_FLAG_PASS2){
  406. if(pict_type!=I_TYPE)
  407. assert(pict_type == rce->new_pict_type);
  408. q= rce->new_qscale / br_compensation;
  409. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  410. }else{
  411. rce->pict_type=
  412. rce->new_pict_type= pict_type;
  413. rce->mc_mb_var_sum= s->mc_mb_var_sum;
  414. rce->mb_var_sum = s-> mb_var_sum;
  415. rce->qscale = 2;
  416. rce->f_code = s->f_code;
  417. rce->b_code = s->b_code;
  418. rce->misc_bits= 1;
  419. if(picture_number>0)
  420. update_rc_buffer(s, s->frame_bits);
  421. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  422. if(pict_type== I_TYPE){
  423. rce->i_count = s->mb_num;
  424. rce->i_tex_bits= bits;
  425. rce->p_tex_bits= 0;
  426. rce->mv_bits= 0;
  427. }else{
  428. rce->i_count = 0; //FIXME we do know this approx
  429. rce->i_tex_bits= 0;
  430. rce->p_tex_bits= bits*0.9;
  431. rce->mv_bits= bits*0.1;
  432. }
  433. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  434. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  435. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  436. rcc->frame_count[pict_type] ++;
  437. bits= rce->i_tex_bits + rce->p_tex_bits;
  438. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_bits * br_compensation;
  439. q= get_qscale(s, rce, rate_factor, picture_number);
  440. assert(q>0.0);
  441. //printf("%f ", q);
  442. if (pict_type==I_TYPE && s->avctx->i_quant_factor>0.0)
  443. q= rcc->next_p_qscale*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  444. else if(pict_type==B_TYPE && s->avctx->b_quant_factor>0.0)
  445. q= rcc->next_non_b_qscale*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  446. //printf("%f ", q);
  447. assert(q>0.0);
  448. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  449. rcc->short_term_qsum*=s->qblur;
  450. rcc->short_term_qcount*=s->qblur;
  451. rcc->short_term_qsum+= q;
  452. rcc->short_term_qcount++;
  453. //printf("%f ", q);
  454. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  455. //printf("%f ", q);
  456. }
  457. q= modify_qscale(s, rce, q, picture_number);
  458. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  459. assert(q>0.0);
  460. if(pict_type != B_TYPE) rcc->next_non_b_qscale= q;
  461. if(pict_type == P_TYPE) rcc->next_p_qscale= q;
  462. }
  463. //printf("qmin:%d, qmax:%d, q:%f\n", qmin, qmax, q);
  464. if (q<qmin) q=qmin;
  465. else if(q>qmax) q=qmax;
  466. // printf("%f %d %d %d\n", q, picture_number, (int)wanted_bits, (int)s->total_bits);
  467. //printf("%f %f %f\n", q, br_compensation, short_term_q);
  468. qscale= (int)(q + 0.5);
  469. //printf("%d ", qscale);
  470. //printf("q:%d diff:%d comp:%f rate_q:%d st_q:%f fvar:%d last_size:%d\n", qscale, (int)diff, br_compensation,
  471. // rate_q, short_term_q, s->mc_mb_var, s->frame_bits);
  472. //printf("%d %d\n", s->bit_rate, (int)fps);
  473. rcc->last_qscale= qscale;
  474. rcc->last_mc_mb_var_sum= s->mc_mb_var_sum;
  475. rcc->last_mb_var_sum= s->mb_var_sum;
  476. return qscale;
  477. }
  478. //----------------------------------------------
  479. // 2-Pass code
  480. static int init_pass2(MpegEncContext *s)
  481. {
  482. RateControlContext *rcc= &s->rc_context;
  483. int i;
  484. double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  485. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  486. double avg_quantizer[5];
  487. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  488. uint64_t available_bits[5];
  489. uint64_t all_const_bits;
  490. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  491. double rate_factor=0;
  492. double step;
  493. int last_i_frame=-10000000;
  494. const int filter_size= (int)(s->qblur*4) | 1;
  495. double expected_bits;
  496. double *qscale, *blured_qscale;
  497. /* find complexity & const_bits & decide the pict_types */
  498. for(i=0; i<rcc->num_entries; i++){
  499. RateControlEntry *rce= &rcc->entry[i];
  500. if(s->b_frame_strategy==0 || s->max_b_frames==0){
  501. rce->new_pict_type= rce->pict_type;
  502. }else{
  503. int j;
  504. int next_non_b_type=P_TYPE;
  505. switch(rce->pict_type){
  506. case I_TYPE:
  507. if(i-last_i_frame>s->gop_size/2){ //FIXME this is not optimal
  508. rce->new_pict_type= I_TYPE;
  509. last_i_frame= i;
  510. }else{
  511. rce->new_pict_type= P_TYPE; // will be caught by the scene detection anyway
  512. }
  513. break;
  514. case P_TYPE:
  515. rce->new_pict_type= P_TYPE;
  516. break;
  517. case B_TYPE:
  518. for(j=i+1; j<i+s->max_b_frames+2 && j<rcc->num_entries; j++){
  519. if(rcc->entry[j].pict_type != B_TYPE){
  520. next_non_b_type= rcc->entry[j].pict_type;
  521. break;
  522. }
  523. }
  524. if(next_non_b_type==I_TYPE)
  525. rce->new_pict_type= P_TYPE;
  526. else
  527. rce->new_pict_type= B_TYPE;
  528. break;
  529. }
  530. }
  531. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  532. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  533. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  534. rcc->frame_count[rce->pict_type] ++;
  535. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  536. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  537. }
  538. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  539. if(all_available_bits < all_const_bits){
  540. fprintf(stderr, "requested bitrate is to low\n");
  541. return -1;
  542. }
  543. /* find average quantizers */
  544. avg_quantizer[P_TYPE]=0;
  545. for(step=256*256; step>0.0000001; step*=0.5){
  546. double expected_bits=0;
  547. avg_quantizer[P_TYPE]+= step;
  548. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  549. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  550. expected_bits=
  551. + all_const_bits
  552. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  553. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  554. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  555. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  556. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  557. }
  558. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  559. for(i=0; i<5; i++){
  560. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  561. }
  562. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  563. qscale= malloc(sizeof(double)*rcc->num_entries);
  564. blured_qscale= malloc(sizeof(double)*rcc->num_entries);
  565. for(step=256*256; step>0.0000001; step*=0.5){
  566. expected_bits=0;
  567. rate_factor+= step;
  568. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  569. /* find qscale */
  570. for(i=0; i<rcc->num_entries; i++){
  571. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  572. }
  573. assert(filter_size%2==1);
  574. /* fixed I/B QP relative to P mode */
  575. rcc->next_non_b_qscale= 10;
  576. rcc->next_p_qscale= 10;
  577. for(i=rcc->num_entries-1; i>=0; i--){
  578. RateControlEntry *rce= &rcc->entry[i];
  579. const int pict_type= rce->new_pict_type;
  580. if (pict_type==I_TYPE && s->avctx->i_quant_factor>0.0)
  581. qscale[i]= rcc->next_p_qscale*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  582. else if(pict_type==B_TYPE && s->avctx->b_quant_factor>0.0)
  583. qscale[i]= rcc->next_non_b_qscale*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  584. if(pict_type!=B_TYPE)
  585. rcc->next_non_b_qscale= qscale[i];
  586. if(pict_type==P_TYPE)
  587. rcc->next_p_qscale= qscale[i];
  588. }
  589. /* smooth curve */
  590. for(i=0; i<rcc->num_entries; i++){
  591. RateControlEntry *rce= &rcc->entry[i];
  592. const int pict_type= rce->new_pict_type;
  593. int j;
  594. double q=0.0, sum=0.0;
  595. for(j=0; j<filter_size; j++){
  596. int index= i+j-filter_size/2;
  597. double d= index-i;
  598. double coeff= s->qblur==0 ? 1.0 : exp(-d*d/(s->qblur * s->qblur));
  599. if(index < 0 || index >= rcc->num_entries) continue;
  600. if(pict_type != rcc->entry[index].new_pict_type) continue;
  601. q+= qscale[index] * coeff;
  602. sum+= coeff;
  603. }
  604. blured_qscale[i]= q/sum;
  605. }
  606. /* find expected bits */
  607. for(i=0; i<rcc->num_entries; i++){
  608. RateControlEntry *rce= &rcc->entry[i];
  609. double bits;
  610. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  611. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  612. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  613. update_rc_buffer(s, bits);
  614. rce->expected_bits= expected_bits;
  615. expected_bits += bits;
  616. }
  617. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  618. if(expected_bits > all_available_bits) rate_factor-= step;
  619. }
  620. free(qscale);
  621. free(blured_qscale);
  622. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  623. fprintf(stderr, "Error: 2pass curve failed to converge\n");
  624. return -1;
  625. }
  626. return 0;
  627. }