You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

401 lines
17KB

  1. /*
  2. * Copyright (C) 2011 Michael Niedermayer (michaelni@gmx.at)
  3. * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/common.h"
  23. #include "libavutil/libm.h"
  24. #include "libavutil/samplefmt.h"
  25. #include "avresample.h"
  26. #include "internal.h"
  27. #include "audio_data.h"
  28. #include "audio_mix.h"
  29. /* channel positions */
  30. #define FRONT_LEFT 0
  31. #define FRONT_RIGHT 1
  32. #define FRONT_CENTER 2
  33. #define LOW_FREQUENCY 3
  34. #define BACK_LEFT 4
  35. #define BACK_RIGHT 5
  36. #define FRONT_LEFT_OF_CENTER 6
  37. #define FRONT_RIGHT_OF_CENTER 7
  38. #define BACK_CENTER 8
  39. #define SIDE_LEFT 9
  40. #define SIDE_RIGHT 10
  41. #define TOP_CENTER 11
  42. #define TOP_FRONT_LEFT 12
  43. #define TOP_FRONT_CENTER 13
  44. #define TOP_FRONT_RIGHT 14
  45. #define TOP_BACK_LEFT 15
  46. #define TOP_BACK_CENTER 16
  47. #define TOP_BACK_RIGHT 17
  48. #define STEREO_LEFT 29
  49. #define STEREO_RIGHT 30
  50. #define WIDE_LEFT 31
  51. #define WIDE_RIGHT 32
  52. #define SURROUND_DIRECT_LEFT 33
  53. #define SURROUND_DIRECT_RIGHT 34
  54. #define SQRT3_2 1.22474487139158904909 /* sqrt(3/2) */
  55. static av_always_inline int even(uint64_t layout)
  56. {
  57. return (!layout || (layout & (layout - 1)));
  58. }
  59. static int sane_layout(uint64_t layout)
  60. {
  61. /* check that there is at least 1 front speaker */
  62. if (!(layout & AV_CH_LAYOUT_SURROUND))
  63. return 0;
  64. /* check for left/right symmetry */
  65. if (!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT)) ||
  66. !even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT)) ||
  67. !even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)) ||
  68. !even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)) ||
  69. !even(layout & (AV_CH_TOP_FRONT_LEFT | AV_CH_TOP_FRONT_RIGHT)) ||
  70. !even(layout & (AV_CH_TOP_BACK_LEFT | AV_CH_TOP_BACK_RIGHT)) ||
  71. !even(layout & (AV_CH_STEREO_LEFT | AV_CH_STEREO_RIGHT)) ||
  72. !even(layout & (AV_CH_WIDE_LEFT | AV_CH_WIDE_RIGHT)) ||
  73. !even(layout & (AV_CH_SURROUND_DIRECT_LEFT | AV_CH_SURROUND_DIRECT_RIGHT)))
  74. return 0;
  75. return 1;
  76. }
  77. int avresample_build_matrix(uint64_t in_layout, uint64_t out_layout,
  78. double center_mix_level, double surround_mix_level,
  79. double lfe_mix_level, int normalize,
  80. double *matrix_out, int stride,
  81. enum AVMatrixEncoding matrix_encoding)
  82. {
  83. int i, j, out_i, out_j;
  84. double matrix[64][64] = {{0}};
  85. int64_t unaccounted;
  86. double maxcoef = 0;
  87. int in_channels, out_channels;
  88. if ((out_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == AV_CH_LAYOUT_STEREO_DOWNMIX) {
  89. out_layout = AV_CH_LAYOUT_STEREO;
  90. }
  91. unaccounted = in_layout & ~out_layout;
  92. in_channels = av_get_channel_layout_nb_channels( in_layout);
  93. out_channels = av_get_channel_layout_nb_channels(out_layout);
  94. memset(matrix_out, 0, out_channels * stride * sizeof(*matrix_out));
  95. /* check if layouts are supported */
  96. if (!in_layout || in_channels > AVRESAMPLE_MAX_CHANNELS)
  97. return AVERROR(EINVAL);
  98. if (!out_layout || out_channels > AVRESAMPLE_MAX_CHANNELS)
  99. return AVERROR(EINVAL);
  100. /* check if layouts are unbalanced or abnormal */
  101. if (!sane_layout(in_layout) || !sane_layout(out_layout))
  102. return AVERROR_PATCHWELCOME;
  103. /* route matching input/output channels */
  104. for (i = 0; i < 64; i++) {
  105. if (in_layout & out_layout & (1ULL << i))
  106. matrix[i][i] = 1.0;
  107. }
  108. /* mix front center to front left/right */
  109. if (unaccounted & AV_CH_FRONT_CENTER) {
  110. if ((out_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO) {
  111. matrix[FRONT_LEFT ][FRONT_CENTER] += M_SQRT1_2;
  112. matrix[FRONT_RIGHT][FRONT_CENTER] += M_SQRT1_2;
  113. } else
  114. return AVERROR_PATCHWELCOME;
  115. }
  116. /* mix front left/right to center */
  117. if (unaccounted & AV_CH_LAYOUT_STEREO) {
  118. if (out_layout & AV_CH_FRONT_CENTER) {
  119. matrix[FRONT_CENTER][FRONT_LEFT ] += M_SQRT1_2;
  120. matrix[FRONT_CENTER][FRONT_RIGHT] += M_SQRT1_2;
  121. /* mix left/right/center to center */
  122. if (in_layout & AV_CH_FRONT_CENTER)
  123. matrix[FRONT_CENTER][FRONT_CENTER] = center_mix_level * M_SQRT2;
  124. } else
  125. return AVERROR_PATCHWELCOME;
  126. }
  127. /* mix back center to back, side, or front */
  128. if (unaccounted & AV_CH_BACK_CENTER) {
  129. if (out_layout & AV_CH_BACK_LEFT) {
  130. matrix[BACK_LEFT ][BACK_CENTER] += M_SQRT1_2;
  131. matrix[BACK_RIGHT][BACK_CENTER] += M_SQRT1_2;
  132. } else if (out_layout & AV_CH_SIDE_LEFT) {
  133. matrix[SIDE_LEFT ][BACK_CENTER] += M_SQRT1_2;
  134. matrix[SIDE_RIGHT][BACK_CENTER] += M_SQRT1_2;
  135. } else if (out_layout & AV_CH_FRONT_LEFT) {
  136. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
  137. matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  138. if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
  139. matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level * M_SQRT1_2;
  140. matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
  141. } else {
  142. matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level;
  143. matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level;
  144. }
  145. } else {
  146. matrix[FRONT_LEFT ][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
  147. matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
  148. }
  149. } else if (out_layout & AV_CH_FRONT_CENTER) {
  150. matrix[FRONT_CENTER][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
  151. } else
  152. return AVERROR_PATCHWELCOME;
  153. }
  154. /* mix back left/right to back center, side, or front */
  155. if (unaccounted & AV_CH_BACK_LEFT) {
  156. if (out_layout & AV_CH_BACK_CENTER) {
  157. matrix[BACK_CENTER][BACK_LEFT ] += M_SQRT1_2;
  158. matrix[BACK_CENTER][BACK_RIGHT] += M_SQRT1_2;
  159. } else if (out_layout & AV_CH_SIDE_LEFT) {
  160. /* if side channels do not exist in the input, just copy back
  161. channels to side channels, otherwise mix back into side */
  162. if (in_layout & AV_CH_SIDE_LEFT) {
  163. matrix[SIDE_LEFT ][BACK_LEFT ] += M_SQRT1_2;
  164. matrix[SIDE_RIGHT][BACK_RIGHT] += M_SQRT1_2;
  165. } else {
  166. matrix[SIDE_LEFT ][BACK_LEFT ] += 1.0;
  167. matrix[SIDE_RIGHT][BACK_RIGHT] += 1.0;
  168. }
  169. } else if (out_layout & AV_CH_FRONT_LEFT) {
  170. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
  171. matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * M_SQRT1_2;
  172. matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
  173. matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
  174. matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * M_SQRT1_2;
  175. } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  176. matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * SQRT3_2;
  177. matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
  178. matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
  179. matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * SQRT3_2;
  180. } else {
  181. matrix[FRONT_LEFT ][BACK_LEFT ] += surround_mix_level;
  182. matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level;
  183. }
  184. } else if (out_layout & AV_CH_FRONT_CENTER) {
  185. matrix[FRONT_CENTER][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
  186. matrix[FRONT_CENTER][BACK_RIGHT] += surround_mix_level * M_SQRT1_2;
  187. } else
  188. return AVERROR_PATCHWELCOME;
  189. }
  190. /* mix side left/right into back or front */
  191. if (unaccounted & AV_CH_SIDE_LEFT) {
  192. if (out_layout & AV_CH_BACK_LEFT) {
  193. /* if back channels do not exist in the input, just copy side
  194. channels to back channels, otherwise mix side into back */
  195. if (in_layout & AV_CH_BACK_LEFT) {
  196. matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
  197. matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
  198. } else {
  199. matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
  200. matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
  201. }
  202. } else if (out_layout & AV_CH_BACK_CENTER) {
  203. matrix[BACK_CENTER][SIDE_LEFT ] += M_SQRT1_2;
  204. matrix[BACK_CENTER][SIDE_RIGHT] += M_SQRT1_2;
  205. } else if (out_layout & AV_CH_FRONT_LEFT) {
  206. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
  207. matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * M_SQRT1_2;
  208. matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
  209. matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
  210. matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * M_SQRT1_2;
  211. } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  212. matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * SQRT3_2;
  213. matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
  214. matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
  215. matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * SQRT3_2;
  216. } else {
  217. matrix[FRONT_LEFT ][SIDE_LEFT ] += surround_mix_level;
  218. matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level;
  219. }
  220. } else if (out_layout & AV_CH_FRONT_CENTER) {
  221. matrix[FRONT_CENTER][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
  222. matrix[FRONT_CENTER][SIDE_RIGHT] += surround_mix_level * M_SQRT1_2;
  223. } else
  224. return AVERROR_PATCHWELCOME;
  225. }
  226. /* mix left-of-center/right-of-center into front left/right or center */
  227. if (unaccounted & AV_CH_FRONT_LEFT_OF_CENTER) {
  228. if (out_layout & AV_CH_FRONT_LEFT) {
  229. matrix[FRONT_LEFT ][FRONT_LEFT_OF_CENTER ] += 1.0;
  230. matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER] += 1.0;
  231. } else if (out_layout & AV_CH_FRONT_CENTER) {
  232. matrix[FRONT_CENTER][FRONT_LEFT_OF_CENTER ] += M_SQRT1_2;
  233. matrix[FRONT_CENTER][FRONT_RIGHT_OF_CENTER] += M_SQRT1_2;
  234. } else
  235. return AVERROR_PATCHWELCOME;
  236. }
  237. /* mix LFE into front left/right or center */
  238. if (unaccounted & AV_CH_LOW_FREQUENCY) {
  239. if (out_layout & AV_CH_FRONT_CENTER) {
  240. matrix[FRONT_CENTER][LOW_FREQUENCY] += lfe_mix_level;
  241. } else if (out_layout & AV_CH_FRONT_LEFT) {
  242. matrix[FRONT_LEFT ][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
  243. matrix[FRONT_RIGHT][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
  244. } else
  245. return AVERROR_PATCHWELCOME;
  246. }
  247. /* transfer internal matrix to output matrix and calculate maximum
  248. per-channel coefficient sum */
  249. for (out_i = i = 0; out_i < out_channels && i < 64; i++) {
  250. double sum = 0;
  251. for (out_j = j = 0; out_j < in_channels && j < 64; j++) {
  252. matrix_out[out_i * stride + out_j] = matrix[i][j];
  253. sum += fabs(matrix[i][j]);
  254. if (in_layout & (1ULL << j))
  255. out_j++;
  256. }
  257. maxcoef = FFMAX(maxcoef, sum);
  258. if (out_layout & (1ULL << i))
  259. out_i++;
  260. }
  261. /* normalize */
  262. if (normalize && maxcoef > 1.0) {
  263. for (i = 0; i < out_channels; i++)
  264. for (j = 0; j < in_channels; j++)
  265. matrix_out[i * stride + j] /= maxcoef;
  266. }
  267. return 0;
  268. }
  269. int avresample_get_matrix(AVAudioResampleContext *avr, double *matrix,
  270. int stride)
  271. {
  272. int in_channels, out_channels, i, o;
  273. in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout);
  274. out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout);
  275. if ( in_channels <= 0 || in_channels > AVRESAMPLE_MAX_CHANNELS ||
  276. out_channels <= 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) {
  277. av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n");
  278. return AVERROR(EINVAL);
  279. }
  280. switch (avr->mix_coeff_type) {
  281. case AV_MIX_COEFF_TYPE_Q8:
  282. if (!avr->am->matrix_q8[0]) {
  283. av_log(avr, AV_LOG_ERROR, "matrix is not set\n");
  284. return AVERROR(EINVAL);
  285. }
  286. for (o = 0; o < out_channels; o++)
  287. for (i = 0; i < in_channels; i++)
  288. matrix[o * stride + i] = avr->am->matrix_q8[o][i] / 256.0;
  289. break;
  290. case AV_MIX_COEFF_TYPE_Q15:
  291. if (!avr->am->matrix_q15[0]) {
  292. av_log(avr, AV_LOG_ERROR, "matrix is not set\n");
  293. return AVERROR(EINVAL);
  294. }
  295. for (o = 0; o < out_channels; o++)
  296. for (i = 0; i < in_channels; i++)
  297. matrix[o * stride + i] = avr->am->matrix_q15[o][i] / 32768.0;
  298. break;
  299. case AV_MIX_COEFF_TYPE_FLT:
  300. if (!avr->am->matrix_flt[0]) {
  301. av_log(avr, AV_LOG_ERROR, "matrix is not set\n");
  302. return AVERROR(EINVAL);
  303. }
  304. for (o = 0; o < out_channels; o++)
  305. for (i = 0; i < in_channels; i++)
  306. matrix[o * stride + i] = avr->am->matrix_flt[o][i];
  307. break;
  308. default:
  309. av_log(avr, AV_LOG_ERROR, "Invalid mix coeff type\n");
  310. return AVERROR(EINVAL);
  311. }
  312. return 0;
  313. }
  314. int avresample_set_matrix(AVAudioResampleContext *avr, const double *matrix,
  315. int stride)
  316. {
  317. int in_channels, out_channels, i, o;
  318. in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout);
  319. out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout);
  320. if ( in_channels <= 0 || in_channels > AVRESAMPLE_MAX_CHANNELS ||
  321. out_channels <= 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) {
  322. av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n");
  323. return AVERROR(EINVAL);
  324. }
  325. if (avr->am->matrix) {
  326. av_free(avr->am->matrix[0]);
  327. avr->am->matrix = NULL;
  328. }
  329. #define CONVERT_MATRIX(type, expr) \
  330. avr->am->matrix_## type[0] = av_mallocz(out_channels * in_channels * \
  331. sizeof(*avr->am->matrix_## type[0])); \
  332. if (!avr->am->matrix_## type[0]) \
  333. return AVERROR(ENOMEM); \
  334. for (o = 0; o < out_channels; o++) { \
  335. if (o > 0) \
  336. avr->am->matrix_## type[o] = avr->am->matrix_## type[o - 1] + \
  337. in_channels; \
  338. for (i = 0; i < in_channels; i++) { \
  339. double v = matrix[o * stride + i]; \
  340. avr->am->matrix_## type[o][i] = expr; \
  341. } \
  342. } \
  343. avr->am->matrix = (void **)avr->am->matrix_## type;
  344. switch (avr->mix_coeff_type) {
  345. case AV_MIX_COEFF_TYPE_Q8:
  346. CONVERT_MATRIX(q8, av_clip_int16(lrint(256.0 * v)))
  347. break;
  348. case AV_MIX_COEFF_TYPE_Q15:
  349. CONVERT_MATRIX(q15, av_clipl_int32(llrint(32768.0 * v)))
  350. break;
  351. case AV_MIX_COEFF_TYPE_FLT:
  352. CONVERT_MATRIX(flt, v)
  353. break;
  354. default:
  355. av_log(avr, AV_LOG_ERROR, "Invalid mix coeff type\n");
  356. return AVERROR(EINVAL);
  357. }
  358. /* TODO: detect situations where we can just swap around pointers
  359. instead of doing matrix multiplications with 0.0 and 1.0 */
  360. /* set AudioMix params */
  361. avr->am->in_layout = avr->in_channel_layout;
  362. avr->am->out_layout = avr->out_channel_layout;
  363. avr->am->in_channels = in_channels;
  364. avr->am->out_channels = out_channels;
  365. return 0;
  366. }