You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

980 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  91. if(AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
  92. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  93. s->use_variable_block_len= 0; // this fixes issue1503
  94. }
  95. }
  96. if(ff_wma_init(avctx, flags2)<0)
  97. return -1;
  98. /* init MDCT */
  99. for(i = 0; i < s->nb_block_sizes; i++)
  100. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  101. if (s->use_noise_coding) {
  102. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  103. ff_wma_hgain_huffbits, 1, 1,
  104. ff_wma_hgain_huffcodes, 2, 2, 0);
  105. }
  106. if (s->use_exp_vlc) {
  107. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  108. ff_aac_scalefactor_bits, 1, 1,
  109. ff_aac_scalefactor_code, 4, 4, 0);
  110. } else {
  111. wma_lsp_to_curve_init(s, s->frame_len);
  112. }
  113. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  114. avcodec_get_frame_defaults(&s->frame);
  115. avctx->coded_frame = &s->frame;
  116. return 0;
  117. }
  118. /**
  119. * compute x^-0.25 with an exponent and mantissa table. We use linear
  120. * interpolation to reduce the mantissa table size at a small speed
  121. * expense (linear interpolation approximately doubles the number of
  122. * bits of precision).
  123. */
  124. static inline float pow_m1_4(WMACodecContext *s, float x)
  125. {
  126. union {
  127. float f;
  128. unsigned int v;
  129. } u, t;
  130. unsigned int e, m;
  131. float a, b;
  132. u.f = x;
  133. e = u.v >> 23;
  134. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  135. /* build interpolation scale: 1 <= t < 2. */
  136. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  137. a = s->lsp_pow_m_table1[m];
  138. b = s->lsp_pow_m_table2[m];
  139. return s->lsp_pow_e_table[e] * (a + b * t.f);
  140. }
  141. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  142. {
  143. float wdel, a, b;
  144. int i, e, m;
  145. wdel = M_PI / frame_len;
  146. for(i=0;i<frame_len;i++)
  147. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  148. /* tables for x^-0.25 computation */
  149. for(i=0;i<256;i++) {
  150. e = i - 126;
  151. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  152. }
  153. /* NOTE: these two tables are needed to avoid two operations in
  154. pow_m1_4 */
  155. b = 1.0;
  156. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  157. m = (1 << LSP_POW_BITS) + i;
  158. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  159. a = pow(a, -0.25);
  160. s->lsp_pow_m_table1[i] = 2 * a - b;
  161. s->lsp_pow_m_table2[i] = b - a;
  162. b = a;
  163. }
  164. }
  165. /**
  166. * NOTE: We use the same code as Vorbis here
  167. * @todo optimize it further with SSE/3Dnow
  168. */
  169. static void wma_lsp_to_curve(WMACodecContext *s,
  170. float *out, float *val_max_ptr,
  171. int n, float *lsp)
  172. {
  173. int i, j;
  174. float p, q, w, v, val_max;
  175. val_max = 0;
  176. for(i=0;i<n;i++) {
  177. p = 0.5f;
  178. q = 0.5f;
  179. w = s->lsp_cos_table[i];
  180. for(j=1;j<NB_LSP_COEFS;j+=2){
  181. q *= w - lsp[j - 1];
  182. p *= w - lsp[j];
  183. }
  184. p *= p * (2.0f - w);
  185. q *= q * (2.0f + w);
  186. v = p + q;
  187. v = pow_m1_4(s, v);
  188. if (v > val_max)
  189. val_max = v;
  190. out[i] = v;
  191. }
  192. *val_max_ptr = val_max;
  193. }
  194. /**
  195. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  196. */
  197. static void decode_exp_lsp(WMACodecContext *s, int ch)
  198. {
  199. float lsp_coefs[NB_LSP_COEFS];
  200. int val, i;
  201. for(i = 0; i < NB_LSP_COEFS; i++) {
  202. if (i == 0 || i >= 8)
  203. val = get_bits(&s->gb, 3);
  204. else
  205. val = get_bits(&s->gb, 4);
  206. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  207. }
  208. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  209. s->block_len, lsp_coefs);
  210. }
  211. /** pow(10, i / 16.0) for i in -60..95 */
  212. static const float pow_tab[] = {
  213. 1.7782794100389e-04, 2.0535250264571e-04,
  214. 2.3713737056617e-04, 2.7384196342644e-04,
  215. 3.1622776601684e-04, 3.6517412725484e-04,
  216. 4.2169650342858e-04, 4.8696752516586e-04,
  217. 5.6234132519035e-04, 6.4938163157621e-04,
  218. 7.4989420933246e-04, 8.6596432336006e-04,
  219. 1.0000000000000e-03, 1.1547819846895e-03,
  220. 1.3335214321633e-03, 1.5399265260595e-03,
  221. 1.7782794100389e-03, 2.0535250264571e-03,
  222. 2.3713737056617e-03, 2.7384196342644e-03,
  223. 3.1622776601684e-03, 3.6517412725484e-03,
  224. 4.2169650342858e-03, 4.8696752516586e-03,
  225. 5.6234132519035e-03, 6.4938163157621e-03,
  226. 7.4989420933246e-03, 8.6596432336006e-03,
  227. 1.0000000000000e-02, 1.1547819846895e-02,
  228. 1.3335214321633e-02, 1.5399265260595e-02,
  229. 1.7782794100389e-02, 2.0535250264571e-02,
  230. 2.3713737056617e-02, 2.7384196342644e-02,
  231. 3.1622776601684e-02, 3.6517412725484e-02,
  232. 4.2169650342858e-02, 4.8696752516586e-02,
  233. 5.6234132519035e-02, 6.4938163157621e-02,
  234. 7.4989420933246e-02, 8.6596432336007e-02,
  235. 1.0000000000000e-01, 1.1547819846895e-01,
  236. 1.3335214321633e-01, 1.5399265260595e-01,
  237. 1.7782794100389e-01, 2.0535250264571e-01,
  238. 2.3713737056617e-01, 2.7384196342644e-01,
  239. 3.1622776601684e-01, 3.6517412725484e-01,
  240. 4.2169650342858e-01, 4.8696752516586e-01,
  241. 5.6234132519035e-01, 6.4938163157621e-01,
  242. 7.4989420933246e-01, 8.6596432336007e-01,
  243. 1.0000000000000e+00, 1.1547819846895e+00,
  244. 1.3335214321633e+00, 1.5399265260595e+00,
  245. 1.7782794100389e+00, 2.0535250264571e+00,
  246. 2.3713737056617e+00, 2.7384196342644e+00,
  247. 3.1622776601684e+00, 3.6517412725484e+00,
  248. 4.2169650342858e+00, 4.8696752516586e+00,
  249. 5.6234132519035e+00, 6.4938163157621e+00,
  250. 7.4989420933246e+00, 8.6596432336007e+00,
  251. 1.0000000000000e+01, 1.1547819846895e+01,
  252. 1.3335214321633e+01, 1.5399265260595e+01,
  253. 1.7782794100389e+01, 2.0535250264571e+01,
  254. 2.3713737056617e+01, 2.7384196342644e+01,
  255. 3.1622776601684e+01, 3.6517412725484e+01,
  256. 4.2169650342858e+01, 4.8696752516586e+01,
  257. 5.6234132519035e+01, 6.4938163157621e+01,
  258. 7.4989420933246e+01, 8.6596432336007e+01,
  259. 1.0000000000000e+02, 1.1547819846895e+02,
  260. 1.3335214321633e+02, 1.5399265260595e+02,
  261. 1.7782794100389e+02, 2.0535250264571e+02,
  262. 2.3713737056617e+02, 2.7384196342644e+02,
  263. 3.1622776601684e+02, 3.6517412725484e+02,
  264. 4.2169650342858e+02, 4.8696752516586e+02,
  265. 5.6234132519035e+02, 6.4938163157621e+02,
  266. 7.4989420933246e+02, 8.6596432336007e+02,
  267. 1.0000000000000e+03, 1.1547819846895e+03,
  268. 1.3335214321633e+03, 1.5399265260595e+03,
  269. 1.7782794100389e+03, 2.0535250264571e+03,
  270. 2.3713737056617e+03, 2.7384196342644e+03,
  271. 3.1622776601684e+03, 3.6517412725484e+03,
  272. 4.2169650342858e+03, 4.8696752516586e+03,
  273. 5.6234132519035e+03, 6.4938163157621e+03,
  274. 7.4989420933246e+03, 8.6596432336007e+03,
  275. 1.0000000000000e+04, 1.1547819846895e+04,
  276. 1.3335214321633e+04, 1.5399265260595e+04,
  277. 1.7782794100389e+04, 2.0535250264571e+04,
  278. 2.3713737056617e+04, 2.7384196342644e+04,
  279. 3.1622776601684e+04, 3.6517412725484e+04,
  280. 4.2169650342858e+04, 4.8696752516586e+04,
  281. 5.6234132519035e+04, 6.4938163157621e+04,
  282. 7.4989420933246e+04, 8.6596432336007e+04,
  283. 1.0000000000000e+05, 1.1547819846895e+05,
  284. 1.3335214321633e+05, 1.5399265260595e+05,
  285. 1.7782794100389e+05, 2.0535250264571e+05,
  286. 2.3713737056617e+05, 2.7384196342644e+05,
  287. 3.1622776601684e+05, 3.6517412725484e+05,
  288. 4.2169650342858e+05, 4.8696752516586e+05,
  289. 5.6234132519035e+05, 6.4938163157621e+05,
  290. 7.4989420933246e+05, 8.6596432336007e+05,
  291. };
  292. /**
  293. * decode exponents coded with VLC codes
  294. */
  295. static int decode_exp_vlc(WMACodecContext *s, int ch)
  296. {
  297. int last_exp, n, code;
  298. const uint16_t *ptr;
  299. float v, max_scale;
  300. uint32_t *q, *q_end, iv;
  301. const float *ptab = pow_tab + 60;
  302. const uint32_t *iptab = (const uint32_t*)ptab;
  303. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  304. q = (uint32_t *)s->exponents[ch];
  305. q_end = q + s->block_len;
  306. max_scale = 0;
  307. if (s->version == 1) {
  308. last_exp = get_bits(&s->gb, 5) + 10;
  309. v = ptab[last_exp];
  310. iv = iptab[last_exp];
  311. max_scale = v;
  312. n = *ptr++;
  313. switch (n & 3) do {
  314. case 0: *q++ = iv;
  315. case 3: *q++ = iv;
  316. case 2: *q++ = iv;
  317. case 1: *q++ = iv;
  318. } while ((n -= 4) > 0);
  319. }else
  320. last_exp = 36;
  321. while (q < q_end) {
  322. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  323. if (code < 0){
  324. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  325. return -1;
  326. }
  327. /* NOTE: this offset is the same as MPEG4 AAC ! */
  328. last_exp += code - 60;
  329. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  330. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  331. last_exp);
  332. return -1;
  333. }
  334. v = ptab[last_exp];
  335. iv = iptab[last_exp];
  336. if (v > max_scale)
  337. max_scale = v;
  338. n = *ptr++;
  339. switch (n & 3) do {
  340. case 0: *q++ = iv;
  341. case 3: *q++ = iv;
  342. case 2: *q++ = iv;
  343. case 1: *q++ = iv;
  344. } while ((n -= 4) > 0);
  345. }
  346. s->max_exponent[ch] = max_scale;
  347. return 0;
  348. }
  349. /**
  350. * Apply MDCT window and add into output.
  351. *
  352. * We ensure that when the windows overlap their squared sum
  353. * is always 1 (MDCT reconstruction rule).
  354. */
  355. static void wma_window(WMACodecContext *s, float *out)
  356. {
  357. float *in = s->output;
  358. int block_len, bsize, n;
  359. /* left part */
  360. if (s->block_len_bits <= s->prev_block_len_bits) {
  361. block_len = s->block_len;
  362. bsize = s->frame_len_bits - s->block_len_bits;
  363. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  364. out, block_len);
  365. } else {
  366. block_len = 1 << s->prev_block_len_bits;
  367. n = (s->block_len - block_len) / 2;
  368. bsize = s->frame_len_bits - s->prev_block_len_bits;
  369. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  370. out+n, block_len);
  371. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  372. }
  373. out += s->block_len;
  374. in += s->block_len;
  375. /* right part */
  376. if (s->block_len_bits <= s->next_block_len_bits) {
  377. block_len = s->block_len;
  378. bsize = s->frame_len_bits - s->block_len_bits;
  379. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  380. } else {
  381. block_len = 1 << s->next_block_len_bits;
  382. n = (s->block_len - block_len) / 2;
  383. bsize = s->frame_len_bits - s->next_block_len_bits;
  384. memcpy(out, in, n*sizeof(float));
  385. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  386. memset(out+n+block_len, 0, n*sizeof(float));
  387. }
  388. }
  389. /**
  390. * @return 0 if OK. 1 if last block of frame. return -1 if
  391. * unrecorrable error.
  392. */
  393. static int wma_decode_block(WMACodecContext *s)
  394. {
  395. int n, v, a, ch, bsize;
  396. int coef_nb_bits, total_gain;
  397. int nb_coefs[MAX_CHANNELS];
  398. float mdct_norm;
  399. FFTContext *mdct;
  400. #ifdef TRACE
  401. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  402. #endif
  403. /* compute current block length */
  404. if (s->use_variable_block_len) {
  405. n = av_log2(s->nb_block_sizes - 1) + 1;
  406. if (s->reset_block_lengths) {
  407. s->reset_block_lengths = 0;
  408. v = get_bits(&s->gb, n);
  409. if (v >= s->nb_block_sizes){
  410. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  411. return -1;
  412. }
  413. s->prev_block_len_bits = s->frame_len_bits - v;
  414. v = get_bits(&s->gb, n);
  415. if (v >= s->nb_block_sizes){
  416. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  417. return -1;
  418. }
  419. s->block_len_bits = s->frame_len_bits - v;
  420. } else {
  421. /* update block lengths */
  422. s->prev_block_len_bits = s->block_len_bits;
  423. s->block_len_bits = s->next_block_len_bits;
  424. }
  425. v = get_bits(&s->gb, n);
  426. if (v >= s->nb_block_sizes){
  427. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  428. return -1;
  429. }
  430. s->next_block_len_bits = s->frame_len_bits - v;
  431. } else {
  432. /* fixed block len */
  433. s->next_block_len_bits = s->frame_len_bits;
  434. s->prev_block_len_bits = s->frame_len_bits;
  435. s->block_len_bits = s->frame_len_bits;
  436. }
  437. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  438. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  439. return -1;
  440. }
  441. /* now check if the block length is coherent with the frame length */
  442. s->block_len = 1 << s->block_len_bits;
  443. if ((s->block_pos + s->block_len) > s->frame_len){
  444. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  445. return -1;
  446. }
  447. if (s->nb_channels == 2) {
  448. s->ms_stereo = get_bits1(&s->gb);
  449. }
  450. v = 0;
  451. for(ch = 0; ch < s->nb_channels; ch++) {
  452. a = get_bits1(&s->gb);
  453. s->channel_coded[ch] = a;
  454. v |= a;
  455. }
  456. bsize = s->frame_len_bits - s->block_len_bits;
  457. /* if no channel coded, no need to go further */
  458. /* XXX: fix potential framing problems */
  459. if (!v)
  460. goto next;
  461. /* read total gain and extract corresponding number of bits for
  462. coef escape coding */
  463. total_gain = 1;
  464. for(;;) {
  465. a = get_bits(&s->gb, 7);
  466. total_gain += a;
  467. if (a != 127)
  468. break;
  469. }
  470. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  471. /* compute number of coefficients */
  472. n = s->coefs_end[bsize] - s->coefs_start;
  473. for(ch = 0; ch < s->nb_channels; ch++)
  474. nb_coefs[ch] = n;
  475. /* complex coding */
  476. if (s->use_noise_coding) {
  477. for(ch = 0; ch < s->nb_channels; ch++) {
  478. if (s->channel_coded[ch]) {
  479. int i, n, a;
  480. n = s->exponent_high_sizes[bsize];
  481. for(i=0;i<n;i++) {
  482. a = get_bits1(&s->gb);
  483. s->high_band_coded[ch][i] = a;
  484. /* if noise coding, the coefficients are not transmitted */
  485. if (a)
  486. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  487. }
  488. }
  489. }
  490. for(ch = 0; ch < s->nb_channels; ch++) {
  491. if (s->channel_coded[ch]) {
  492. int i, n, val, code;
  493. n = s->exponent_high_sizes[bsize];
  494. val = (int)0x80000000;
  495. for(i=0;i<n;i++) {
  496. if (s->high_band_coded[ch][i]) {
  497. if (val == (int)0x80000000) {
  498. val = get_bits(&s->gb, 7) - 19;
  499. } else {
  500. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  501. if (code < 0){
  502. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  503. return -1;
  504. }
  505. val += code - 18;
  506. }
  507. s->high_band_values[ch][i] = val;
  508. }
  509. }
  510. }
  511. }
  512. }
  513. /* exponents can be reused in short blocks. */
  514. if ((s->block_len_bits == s->frame_len_bits) ||
  515. get_bits1(&s->gb)) {
  516. for(ch = 0; ch < s->nb_channels; ch++) {
  517. if (s->channel_coded[ch]) {
  518. if (s->use_exp_vlc) {
  519. if (decode_exp_vlc(s, ch) < 0)
  520. return -1;
  521. } else {
  522. decode_exp_lsp(s, ch);
  523. }
  524. s->exponents_bsize[ch] = bsize;
  525. }
  526. }
  527. }
  528. /* parse spectral coefficients : just RLE encoding */
  529. for(ch = 0; ch < s->nb_channels; ch++) {
  530. if (s->channel_coded[ch]) {
  531. int tindex;
  532. WMACoef* ptr = &s->coefs1[ch][0];
  533. /* special VLC tables are used for ms stereo because
  534. there is potentially less energy there */
  535. tindex = (ch == 1 && s->ms_stereo);
  536. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  537. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  538. s->level_table[tindex], s->run_table[tindex],
  539. 0, ptr, 0, nb_coefs[ch],
  540. s->block_len, s->frame_len_bits, coef_nb_bits);
  541. }
  542. if (s->version == 1 && s->nb_channels >= 2) {
  543. align_get_bits(&s->gb);
  544. }
  545. }
  546. /* normalize */
  547. {
  548. int n4 = s->block_len / 2;
  549. mdct_norm = 1.0 / (float)n4;
  550. if (s->version == 1) {
  551. mdct_norm *= sqrt(n4);
  552. }
  553. }
  554. /* finally compute the MDCT coefficients */
  555. for(ch = 0; ch < s->nb_channels; ch++) {
  556. if (s->channel_coded[ch]) {
  557. WMACoef *coefs1;
  558. float *coefs, *exponents, mult, mult1, noise;
  559. int i, j, n, n1, last_high_band, esize;
  560. float exp_power[HIGH_BAND_MAX_SIZE];
  561. coefs1 = s->coefs1[ch];
  562. exponents = s->exponents[ch];
  563. esize = s->exponents_bsize[ch];
  564. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  565. mult *= mdct_norm;
  566. coefs = s->coefs[ch];
  567. if (s->use_noise_coding) {
  568. mult1 = mult;
  569. /* very low freqs : noise */
  570. for(i = 0;i < s->coefs_start; i++) {
  571. *coefs++ = s->noise_table[s->noise_index] *
  572. exponents[i<<bsize>>esize] * mult1;
  573. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  574. }
  575. n1 = s->exponent_high_sizes[bsize];
  576. /* compute power of high bands */
  577. exponents = s->exponents[ch] +
  578. (s->high_band_start[bsize]<<bsize>>esize);
  579. last_high_band = 0; /* avoid warning */
  580. for(j=0;j<n1;j++) {
  581. n = s->exponent_high_bands[s->frame_len_bits -
  582. s->block_len_bits][j];
  583. if (s->high_band_coded[ch][j]) {
  584. float e2, v;
  585. e2 = 0;
  586. for(i = 0;i < n; i++) {
  587. v = exponents[i<<bsize>>esize];
  588. e2 += v * v;
  589. }
  590. exp_power[j] = e2 / n;
  591. last_high_band = j;
  592. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  593. }
  594. exponents += n<<bsize>>esize;
  595. }
  596. /* main freqs and high freqs */
  597. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  598. for(j=-1;j<n1;j++) {
  599. if (j < 0) {
  600. n = s->high_band_start[bsize] -
  601. s->coefs_start;
  602. } else {
  603. n = s->exponent_high_bands[s->frame_len_bits -
  604. s->block_len_bits][j];
  605. }
  606. if (j >= 0 && s->high_band_coded[ch][j]) {
  607. /* use noise with specified power */
  608. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  609. /* XXX: use a table */
  610. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  611. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  612. mult1 *= mdct_norm;
  613. for(i = 0;i < n; i++) {
  614. noise = s->noise_table[s->noise_index];
  615. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  616. *coefs++ = noise *
  617. exponents[i<<bsize>>esize] * mult1;
  618. }
  619. exponents += n<<bsize>>esize;
  620. } else {
  621. /* coded values + small noise */
  622. for(i = 0;i < n; i++) {
  623. noise = s->noise_table[s->noise_index];
  624. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  625. *coefs++ = ((*coefs1++) + noise) *
  626. exponents[i<<bsize>>esize] * mult;
  627. }
  628. exponents += n<<bsize>>esize;
  629. }
  630. }
  631. /* very high freqs : noise */
  632. n = s->block_len - s->coefs_end[bsize];
  633. mult1 = mult * exponents[((-1<<bsize))>>esize];
  634. for(i = 0; i < n; i++) {
  635. *coefs++ = s->noise_table[s->noise_index] * mult1;
  636. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  637. }
  638. } else {
  639. /* XXX: optimize more */
  640. for(i = 0;i < s->coefs_start; i++)
  641. *coefs++ = 0.0;
  642. n = nb_coefs[ch];
  643. for(i = 0;i < n; i++) {
  644. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  645. }
  646. n = s->block_len - s->coefs_end[bsize];
  647. for(i = 0;i < n; i++)
  648. *coefs++ = 0.0;
  649. }
  650. }
  651. }
  652. #ifdef TRACE
  653. for(ch = 0; ch < s->nb_channels; ch++) {
  654. if (s->channel_coded[ch]) {
  655. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  656. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  657. }
  658. }
  659. #endif
  660. if (s->ms_stereo && s->channel_coded[1]) {
  661. /* nominal case for ms stereo: we do it before mdct */
  662. /* no need to optimize this case because it should almost
  663. never happen */
  664. if (!s->channel_coded[0]) {
  665. tprintf(s->avctx, "rare ms-stereo case happened\n");
  666. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  667. s->channel_coded[0] = 1;
  668. }
  669. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  670. }
  671. next:
  672. mdct = &s->mdct_ctx[bsize];
  673. for(ch = 0; ch < s->nb_channels; ch++) {
  674. int n4, index;
  675. n4 = s->block_len / 2;
  676. if(s->channel_coded[ch]){
  677. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  678. }else if(!(s->ms_stereo && ch==1))
  679. memset(s->output, 0, sizeof(s->output));
  680. /* multiply by the window and add in the frame */
  681. index = (s->frame_len / 2) + s->block_pos - n4;
  682. wma_window(s, &s->frame_out[ch][index]);
  683. }
  684. /* update block number */
  685. s->block_num++;
  686. s->block_pos += s->block_len;
  687. if (s->block_pos >= s->frame_len)
  688. return 1;
  689. else
  690. return 0;
  691. }
  692. /* decode a frame of frame_len samples */
  693. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  694. {
  695. int ret, n, ch, incr;
  696. const float *output[MAX_CHANNELS];
  697. #ifdef TRACE
  698. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  699. #endif
  700. /* read each block */
  701. s->block_num = 0;
  702. s->block_pos = 0;
  703. for(;;) {
  704. ret = wma_decode_block(s);
  705. if (ret < 0)
  706. return -1;
  707. if (ret)
  708. break;
  709. }
  710. /* convert frame to integer */
  711. n = s->frame_len;
  712. incr = s->nb_channels;
  713. for (ch = 0; ch < MAX_CHANNELS; ch++)
  714. output[ch] = s->frame_out[ch];
  715. s->fmt_conv.float_to_int16_interleave(samples, output, n, incr);
  716. for (ch = 0; ch < incr; ch++) {
  717. /* prepare for next block */
  718. memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
  719. }
  720. #ifdef TRACE
  721. dump_shorts(s, "samples", samples, n * s->nb_channels);
  722. #endif
  723. return 0;
  724. }
  725. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  726. int *got_frame_ptr, AVPacket *avpkt)
  727. {
  728. const uint8_t *buf = avpkt->data;
  729. int buf_size = avpkt->size;
  730. WMACodecContext *s = avctx->priv_data;
  731. int nb_frames, bit_offset, i, pos, len, ret;
  732. uint8_t *q;
  733. int16_t *samples;
  734. tprintf(avctx, "***decode_superframe:\n");
  735. if(buf_size==0){
  736. s->last_superframe_len = 0;
  737. return 0;
  738. }
  739. if (buf_size < s->block_align) {
  740. av_log(avctx, AV_LOG_ERROR,
  741. "Input packet size too small (%d < %d)\n",
  742. buf_size, s->block_align);
  743. return AVERROR_INVALIDDATA;
  744. }
  745. if(s->block_align)
  746. buf_size = s->block_align;
  747. init_get_bits(&s->gb, buf, buf_size*8);
  748. if (s->use_bit_reservoir) {
  749. /* read super frame header */
  750. skip_bits(&s->gb, 4); /* super frame index */
  751. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  752. } else {
  753. nb_frames = 1;
  754. }
  755. /* get output buffer */
  756. s->frame.nb_samples = nb_frames * s->frame_len;
  757. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  758. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  759. return ret;
  760. }
  761. samples = (int16_t *)s->frame.data[0];
  762. if (s->use_bit_reservoir) {
  763. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  764. if (bit_offset > get_bits_left(&s->gb)) {
  765. av_log(avctx, AV_LOG_ERROR,
  766. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  767. bit_offset, get_bits_left(&s->gb), buf_size);
  768. goto fail;
  769. }
  770. if (s->last_superframe_len > 0) {
  771. // printf("skip=%d\n", s->last_bitoffset);
  772. /* add bit_offset bits to last frame */
  773. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  774. MAX_CODED_SUPERFRAME_SIZE)
  775. goto fail;
  776. q = s->last_superframe + s->last_superframe_len;
  777. len = bit_offset;
  778. while (len > 7) {
  779. *q++ = (get_bits)(&s->gb, 8);
  780. len -= 8;
  781. }
  782. if (len > 0) {
  783. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  784. }
  785. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  786. /* XXX: bit_offset bits into last frame */
  787. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  788. /* skip unused bits */
  789. if (s->last_bitoffset > 0)
  790. skip_bits(&s->gb, s->last_bitoffset);
  791. /* this frame is stored in the last superframe and in the
  792. current one */
  793. if (wma_decode_frame(s, samples) < 0)
  794. goto fail;
  795. samples += s->nb_channels * s->frame_len;
  796. nb_frames--;
  797. }
  798. /* read each frame starting from bit_offset */
  799. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  800. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  801. return AVERROR_INVALIDDATA;
  802. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  803. len = pos & 7;
  804. if (len > 0)
  805. skip_bits(&s->gb, len);
  806. s->reset_block_lengths = 1;
  807. for(i=0;i<nb_frames;i++) {
  808. if (wma_decode_frame(s, samples) < 0)
  809. goto fail;
  810. samples += s->nb_channels * s->frame_len;
  811. }
  812. /* we copy the end of the frame in the last frame buffer */
  813. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  814. s->last_bitoffset = pos & 7;
  815. pos >>= 3;
  816. len = buf_size - pos;
  817. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  818. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  819. goto fail;
  820. }
  821. s->last_superframe_len = len;
  822. memcpy(s->last_superframe, buf + pos, len);
  823. } else {
  824. /* single frame decode */
  825. if (wma_decode_frame(s, samples) < 0)
  826. goto fail;
  827. samples += s->nb_channels * s->frame_len;
  828. }
  829. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  830. *got_frame_ptr = 1;
  831. *(AVFrame *)data = s->frame;
  832. return buf_size;
  833. fail:
  834. /* when error, we reset the bit reservoir */
  835. s->last_superframe_len = 0;
  836. return -1;
  837. }
  838. static av_cold void flush(AVCodecContext *avctx)
  839. {
  840. WMACodecContext *s = avctx->priv_data;
  841. s->last_bitoffset=
  842. s->last_superframe_len= 0;
  843. }
  844. #if CONFIG_WMAV1_DECODER
  845. AVCodec ff_wmav1_decoder = {
  846. .name = "wmav1",
  847. .type = AVMEDIA_TYPE_AUDIO,
  848. .id = AV_CODEC_ID_WMAV1,
  849. .priv_data_size = sizeof(WMACodecContext),
  850. .init = wma_decode_init,
  851. .close = ff_wma_end,
  852. .decode = wma_decode_superframe,
  853. .flush = flush,
  854. .capabilities = CODEC_CAP_DR1,
  855. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  856. };
  857. #endif
  858. #if CONFIG_WMAV2_DECODER
  859. AVCodec ff_wmav2_decoder = {
  860. .name = "wmav2",
  861. .type = AVMEDIA_TYPE_AUDIO,
  862. .id = AV_CODEC_ID_WMAV2,
  863. .priv_data_size = sizeof(WMACodecContext),
  864. .init = wma_decode_init,
  865. .close = ff_wma_end,
  866. .decode = wma_decode_superframe,
  867. .flush = flush,
  868. .capabilities = CODEC_CAP_DR1,
  869. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  870. };
  871. #endif