You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

489 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "sinewin.h"
  23. #include "wma.h"
  24. #include "wma_common.h"
  25. #include "wmadata.h"
  26. #undef NDEBUG
  27. #include <assert.h>
  28. /* XXX: use same run/length optimization as mpeg decoders */
  29. //FIXME maybe split decode / encode or pass flag
  30. static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  31. float **plevel_table, uint16_t **pint_table,
  32. const CoefVLCTable *vlc_table)
  33. {
  34. int n = vlc_table->n;
  35. const uint8_t *table_bits = vlc_table->huffbits;
  36. const uint32_t *table_codes = vlc_table->huffcodes;
  37. const uint16_t *levels_table = vlc_table->levels;
  38. uint16_t *run_table, *level_table, *int_table;
  39. float *flevel_table;
  40. int i, l, j, k, level;
  41. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  42. run_table = av_malloc(n * sizeof(uint16_t));
  43. level_table = av_malloc(n * sizeof(uint16_t));
  44. flevel_table= av_malloc(n * sizeof(*flevel_table));
  45. int_table = av_malloc(n * sizeof(uint16_t));
  46. i = 2;
  47. level = 1;
  48. k = 0;
  49. while (i < n) {
  50. int_table[k] = i;
  51. l = levels_table[k++];
  52. for (j = 0; j < l; j++) {
  53. run_table[i] = j;
  54. level_table[i] = level;
  55. flevel_table[i]= level;
  56. i++;
  57. }
  58. level++;
  59. }
  60. *prun_table = run_table;
  61. *plevel_table = flevel_table;
  62. *pint_table = int_table;
  63. av_free(level_table);
  64. }
  65. int ff_wma_init(AVCodecContext *avctx, int flags2)
  66. {
  67. WMACodecContext *s = avctx->priv_data;
  68. int i;
  69. float bps1, high_freq;
  70. volatile float bps;
  71. int sample_rate1;
  72. int coef_vlc_table;
  73. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  74. || avctx->channels <= 0 || avctx->channels > 2
  75. || avctx->bit_rate <= 0)
  76. return -1;
  77. s->sample_rate = avctx->sample_rate;
  78. s->nb_channels = avctx->channels;
  79. s->bit_rate = avctx->bit_rate;
  80. s->block_align = avctx->block_align;
  81. ff_dsputil_init(&s->dsp, avctx);
  82. ff_fmt_convert_init(&s->fmt_conv, avctx);
  83. if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
  84. s->version = 1;
  85. } else {
  86. s->version = 2;
  87. }
  88. /* compute MDCT block size */
  89. s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
  90. s->next_block_len_bits = s->frame_len_bits;
  91. s->prev_block_len_bits = s->frame_len_bits;
  92. s->block_len_bits = s->frame_len_bits;
  93. s->frame_len = 1 << s->frame_len_bits;
  94. if (s->use_variable_block_len) {
  95. int nb_max, nb;
  96. nb = ((flags2 >> 3) & 3) + 1;
  97. if ((s->bit_rate / s->nb_channels) >= 32000)
  98. nb += 2;
  99. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  100. if (nb > nb_max)
  101. nb = nb_max;
  102. s->nb_block_sizes = nb + 1;
  103. } else {
  104. s->nb_block_sizes = 1;
  105. }
  106. /* init rate dependent parameters */
  107. s->use_noise_coding = 1;
  108. high_freq = s->sample_rate * 0.5;
  109. /* if version 2, then the rates are normalized */
  110. sample_rate1 = s->sample_rate;
  111. if (s->version == 2) {
  112. if (sample_rate1 >= 44100) {
  113. sample_rate1 = 44100;
  114. } else if (sample_rate1 >= 22050) {
  115. sample_rate1 = 22050;
  116. } else if (sample_rate1 >= 16000) {
  117. sample_rate1 = 16000;
  118. } else if (sample_rate1 >= 11025) {
  119. sample_rate1 = 11025;
  120. } else if (sample_rate1 >= 8000) {
  121. sample_rate1 = 8000;
  122. }
  123. }
  124. bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
  125. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  126. /* compute high frequency value and choose if noise coding should
  127. be activated */
  128. bps1 = bps;
  129. if (s->nb_channels == 2)
  130. bps1 = bps * 1.6;
  131. if (sample_rate1 == 44100) {
  132. if (bps1 >= 0.61) {
  133. s->use_noise_coding = 0;
  134. } else {
  135. high_freq = high_freq * 0.4;
  136. }
  137. } else if (sample_rate1 == 22050) {
  138. if (bps1 >= 1.16) {
  139. s->use_noise_coding = 0;
  140. } else if (bps1 >= 0.72) {
  141. high_freq = high_freq * 0.7;
  142. } else {
  143. high_freq = high_freq * 0.6;
  144. }
  145. } else if (sample_rate1 == 16000) {
  146. if (bps > 0.5) {
  147. high_freq = high_freq * 0.5;
  148. } else {
  149. high_freq = high_freq * 0.3;
  150. }
  151. } else if (sample_rate1 == 11025) {
  152. high_freq = high_freq * 0.7;
  153. } else if (sample_rate1 == 8000) {
  154. if (bps <= 0.625) {
  155. high_freq = high_freq * 0.5;
  156. } else if (bps > 0.75) {
  157. s->use_noise_coding = 0;
  158. } else {
  159. high_freq = high_freq * 0.65;
  160. }
  161. } else {
  162. if (bps >= 0.8) {
  163. high_freq = high_freq * 0.75;
  164. } else if (bps >= 0.6) {
  165. high_freq = high_freq * 0.6;
  166. } else {
  167. high_freq = high_freq * 0.5;
  168. }
  169. }
  170. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  171. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  172. s->version, s->nb_channels, s->sample_rate, s->bit_rate,
  173. s->block_align);
  174. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  175. bps, bps1, high_freq, s->byte_offset_bits);
  176. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  177. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  178. /* compute the scale factor band sizes for each MDCT block size */
  179. {
  180. int a, b, pos, lpos, k, block_len, i, j, n;
  181. const uint8_t *table;
  182. if (s->version == 1) {
  183. s->coefs_start = 3;
  184. } else {
  185. s->coefs_start = 0;
  186. }
  187. for (k = 0; k < s->nb_block_sizes; k++) {
  188. block_len = s->frame_len >> k;
  189. if (s->version == 1) {
  190. lpos = 0;
  191. for (i = 0; i < 25; i++) {
  192. a = ff_wma_critical_freqs[i];
  193. b = s->sample_rate;
  194. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  195. if (pos > block_len)
  196. pos = block_len;
  197. s->exponent_bands[0][i] = pos - lpos;
  198. if (pos >= block_len) {
  199. i++;
  200. break;
  201. }
  202. lpos = pos;
  203. }
  204. s->exponent_sizes[0] = i;
  205. } else {
  206. /* hardcoded tables */
  207. table = NULL;
  208. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  209. if (a < 3) {
  210. if (s->sample_rate >= 44100) {
  211. table = exponent_band_44100[a];
  212. } else if (s->sample_rate >= 32000) {
  213. table = exponent_band_32000[a];
  214. } else if (s->sample_rate >= 22050) {
  215. table = exponent_band_22050[a];
  216. }
  217. }
  218. if (table) {
  219. n = *table++;
  220. for (i = 0; i < n; i++)
  221. s->exponent_bands[k][i] = table[i];
  222. s->exponent_sizes[k] = n;
  223. } else {
  224. j = 0;
  225. lpos = 0;
  226. for (i = 0; i < 25; i++) {
  227. a = ff_wma_critical_freqs[i];
  228. b = s->sample_rate;
  229. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  230. pos <<= 2;
  231. if (pos > block_len)
  232. pos = block_len;
  233. if (pos > lpos)
  234. s->exponent_bands[k][j++] = pos - lpos;
  235. if (pos >= block_len)
  236. break;
  237. lpos = pos;
  238. }
  239. s->exponent_sizes[k] = j;
  240. }
  241. }
  242. /* max number of coefs */
  243. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  244. /* high freq computation */
  245. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  246. s->sample_rate + 0.5);
  247. n = s->exponent_sizes[k];
  248. j = 0;
  249. pos = 0;
  250. for (i = 0; i < n; i++) {
  251. int start, end;
  252. start = pos;
  253. pos += s->exponent_bands[k][i];
  254. end = pos;
  255. if (start < s->high_band_start[k])
  256. start = s->high_band_start[k];
  257. if (end > s->coefs_end[k])
  258. end = s->coefs_end[k];
  259. if (end > start)
  260. s->exponent_high_bands[k][j++] = end - start;
  261. }
  262. s->exponent_high_sizes[k] = j;
  263. #if 0
  264. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  265. s->frame_len >> k,
  266. s->coefs_end[k],
  267. s->high_band_start[k],
  268. s->exponent_high_sizes[k]);
  269. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  270. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  271. tprintf(s->avctx, "\n");
  272. #endif
  273. }
  274. }
  275. #ifdef TRACE
  276. {
  277. int i, j;
  278. for (i = 0; i < s->nb_block_sizes; i++) {
  279. tprintf(s->avctx, "%5d: n=%2d:",
  280. s->frame_len >> i,
  281. s->exponent_sizes[i]);
  282. for (j = 0; j < s->exponent_sizes[i]; j++)
  283. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  284. tprintf(s->avctx, "\n");
  285. }
  286. }
  287. #endif
  288. /* init MDCT windows : simple sinus window */
  289. for (i = 0; i < s->nb_block_sizes; i++) {
  290. ff_init_ff_sine_windows(s->frame_len_bits - i);
  291. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  292. }
  293. s->reset_block_lengths = 1;
  294. if (s->use_noise_coding) {
  295. /* init the noise generator */
  296. if (s->use_exp_vlc) {
  297. s->noise_mult = 0.02;
  298. } else {
  299. s->noise_mult = 0.04;
  300. }
  301. #ifdef TRACE
  302. for (i = 0; i < NOISE_TAB_SIZE; i++)
  303. s->noise_table[i] = 1.0 * s->noise_mult;
  304. #else
  305. {
  306. unsigned int seed;
  307. float norm;
  308. seed = 1;
  309. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  310. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  311. seed = seed * 314159 + 1;
  312. s->noise_table[i] = (float)((int)seed) * norm;
  313. }
  314. }
  315. #endif
  316. }
  317. /* choose the VLC tables for the coefficients */
  318. coef_vlc_table = 2;
  319. if (s->sample_rate >= 32000) {
  320. if (bps1 < 0.72) {
  321. coef_vlc_table = 0;
  322. } else if (bps1 < 1.16) {
  323. coef_vlc_table = 1;
  324. }
  325. }
  326. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  327. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  328. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  329. s->coef_vlcs[0]);
  330. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  331. s->coef_vlcs[1]);
  332. return 0;
  333. }
  334. int ff_wma_total_gain_to_bits(int total_gain)
  335. {
  336. if (total_gain < 15) return 13;
  337. else if (total_gain < 32) return 12;
  338. else if (total_gain < 40) return 11;
  339. else if (total_gain < 45) return 10;
  340. else return 9;
  341. }
  342. int ff_wma_end(AVCodecContext *avctx)
  343. {
  344. WMACodecContext *s = avctx->priv_data;
  345. int i;
  346. for (i = 0; i < s->nb_block_sizes; i++)
  347. ff_mdct_end(&s->mdct_ctx[i]);
  348. if (s->use_exp_vlc) {
  349. ff_free_vlc(&s->exp_vlc);
  350. }
  351. if (s->use_noise_coding) {
  352. ff_free_vlc(&s->hgain_vlc);
  353. }
  354. for (i = 0; i < 2; i++) {
  355. ff_free_vlc(&s->coef_vlc[i]);
  356. av_free(s->run_table[i]);
  357. av_free(s->level_table[i]);
  358. av_free(s->int_table[i]);
  359. }
  360. return 0;
  361. }
  362. /**
  363. * Decode an uncompressed coefficient.
  364. * @param gb GetBitContext
  365. * @return the decoded coefficient
  366. */
  367. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  368. {
  369. /** consumes up to 34 bits */
  370. int n_bits = 8;
  371. /** decode length */
  372. if (get_bits1(gb)) {
  373. n_bits += 8;
  374. if (get_bits1(gb)) {
  375. n_bits += 8;
  376. if (get_bits1(gb)) {
  377. n_bits += 7;
  378. }
  379. }
  380. }
  381. return get_bits_long(gb, n_bits);
  382. }
  383. /**
  384. * Decode run level compressed coefficients.
  385. * @param avctx codec context
  386. * @param gb bitstream reader context
  387. * @param vlc vlc table for get_vlc2
  388. * @param level_table level codes
  389. * @param run_table run codes
  390. * @param version 0 for wma1,2 1 for wmapro
  391. * @param ptr output buffer
  392. * @param offset offset in the output buffer
  393. * @param num_coefs number of input coefficents
  394. * @param block_len input buffer length (2^n)
  395. * @param frame_len_bits number of bits for escaped run codes
  396. * @param coef_nb_bits number of bits for escaped level codes
  397. * @return 0 on success, -1 otherwise
  398. */
  399. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  400. VLC *vlc,
  401. const float *level_table, const uint16_t *run_table,
  402. int version, WMACoef *ptr, int offset,
  403. int num_coefs, int block_len, int frame_len_bits,
  404. int coef_nb_bits)
  405. {
  406. int code, level, sign;
  407. const uint32_t *ilvl = (const uint32_t*)level_table;
  408. uint32_t *iptr = (uint32_t*)ptr;
  409. const unsigned int coef_mask = block_len - 1;
  410. for (; offset < num_coefs; offset++) {
  411. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  412. if (code > 1) {
  413. /** normal code */
  414. offset += run_table[code];
  415. sign = get_bits1(gb) - 1;
  416. iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
  417. } else if (code == 1) {
  418. /** EOB */
  419. break;
  420. } else {
  421. /** escape */
  422. if (!version) {
  423. level = get_bits(gb, coef_nb_bits);
  424. /** NOTE: this is rather suboptimal. reading
  425. block_len_bits would be better */
  426. offset += get_bits(gb, frame_len_bits);
  427. } else {
  428. level = ff_wma_get_large_val(gb);
  429. /** escape decode */
  430. if (get_bits1(gb)) {
  431. if (get_bits1(gb)) {
  432. if (get_bits1(gb)) {
  433. av_log(avctx,AV_LOG_ERROR,
  434. "broken escape sequence\n");
  435. return -1;
  436. } else
  437. offset += get_bits(gb, frame_len_bits) + 4;
  438. } else
  439. offset += get_bits(gb, 2) + 1;
  440. }
  441. }
  442. sign = get_bits1(gb) - 1;
  443. ptr[offset & coef_mask] = (level^sign) - sign;
  444. }
  445. }
  446. /** NOTE: EOB can be omitted */
  447. if (offset > num_coefs) {
  448. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  449. return -1;
  450. }
  451. return 0;
  452. }