You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1188 lines
39KB

  1. /*
  2. * TwinVQ decoder
  3. * Copyright (c) 2009 Vitor Sessak
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/float_dsp.h"
  22. #include "avcodec.h"
  23. #include "get_bits.h"
  24. #include "dsputil.h"
  25. #include "fft.h"
  26. #include "lsp.h"
  27. #include "sinewin.h"
  28. #include <math.h>
  29. #include <stdint.h>
  30. #include "twinvq_data.h"
  31. enum FrameType {
  32. FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
  33. FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
  34. FT_LONG, ///< Long frame (single sub-block + PPC)
  35. FT_PPC, ///< Periodic Peak Component (part of the long frame)
  36. };
  37. /**
  38. * Parameters and tables that are different for each frame type
  39. */
  40. struct FrameMode {
  41. uint8_t sub; ///< Number subblocks in each frame
  42. const uint16_t *bark_tab;
  43. /** number of distinct bark scale envelope values */
  44. uint8_t bark_env_size;
  45. const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
  46. uint8_t bark_n_coef;///< number of BSE CB coefficients to read
  47. uint8_t bark_n_bit; ///< number of bits of the BSE coefs
  48. //@{
  49. /** main codebooks for spectrum data */
  50. const int16_t *cb0;
  51. const int16_t *cb1;
  52. //@}
  53. uint8_t cb_len_read; ///< number of spectrum coefficients to read
  54. };
  55. /**
  56. * Parameters and tables that are different for every combination of
  57. * bitrate/sample rate
  58. */
  59. typedef struct {
  60. struct FrameMode fmode[3]; ///< frame type-dependant parameters
  61. uint16_t size; ///< frame size in samples
  62. uint8_t n_lsp; ///< number of lsp coefficients
  63. const float *lspcodebook;
  64. /* number of bits of the different LSP CB coefficients */
  65. uint8_t lsp_bit0;
  66. uint8_t lsp_bit1;
  67. uint8_t lsp_bit2;
  68. uint8_t lsp_split; ///< number of CB entries for the LSP decoding
  69. const int16_t *ppc_shape_cb; ///< PPC shape CB
  70. /** number of the bits for the PPC period value */
  71. uint8_t ppc_period_bit;
  72. uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
  73. uint8_t ppc_shape_len; ///< size of PPC shape CB
  74. uint8_t pgain_bit; ///< bits for PPC gain
  75. /** constant for peak period to peak width conversion */
  76. uint16_t peak_per2wid;
  77. } ModeTab;
  78. static const ModeTab mode_08_08 = {
  79. {
  80. { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
  81. { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
  82. { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
  83. },
  84. 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
  85. };
  86. static const ModeTab mode_11_08 = {
  87. {
  88. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
  89. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
  90. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
  91. },
  92. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  93. };
  94. static const ModeTab mode_11_10 = {
  95. {
  96. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
  97. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
  98. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
  99. },
  100. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  101. };
  102. static const ModeTab mode_16_16 = {
  103. {
  104. { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
  105. { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
  106. { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
  107. },
  108. 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
  109. };
  110. static const ModeTab mode_22_20 = {
  111. {
  112. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
  113. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
  114. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
  115. },
  116. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  117. };
  118. static const ModeTab mode_22_24 = {
  119. {
  120. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
  121. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
  122. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
  123. },
  124. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  125. };
  126. static const ModeTab mode_22_32 = {
  127. {
  128. { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
  129. { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
  130. { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
  131. },
  132. 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
  133. };
  134. static const ModeTab mode_44_40 = {
  135. {
  136. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
  137. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
  138. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
  139. },
  140. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  141. };
  142. static const ModeTab mode_44_48 = {
  143. {
  144. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
  145. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
  146. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
  147. },
  148. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  149. };
  150. typedef struct TwinContext {
  151. AVCodecContext *avctx;
  152. AVFrame frame;
  153. DSPContext dsp;
  154. AVFloatDSPContext fdsp;
  155. FFTContext mdct_ctx[3];
  156. const ModeTab *mtab;
  157. // history
  158. float lsp_hist[2][20]; ///< LSP coefficients of the last frame
  159. float bark_hist[3][2][40]; ///< BSE coefficients of last frame
  160. // bitstream parameters
  161. int16_t permut[4][4096];
  162. uint8_t length[4][2]; ///< main codebook stride
  163. uint8_t length_change[4];
  164. uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
  165. int bits_main_spec_change[4];
  166. int n_div[4];
  167. float *spectrum;
  168. float *curr_frame; ///< non-interleaved output
  169. float *prev_frame; ///< non-interleaved previous frame
  170. int last_block_pos[2];
  171. int discarded_packets;
  172. float *cos_tabs[3];
  173. // scratch buffers
  174. float *tmp_buf;
  175. } TwinContext;
  176. #define PPC_SHAPE_CB_SIZE 64
  177. #define PPC_SHAPE_LEN_MAX 60
  178. #define SUB_AMP_MAX 4500.0
  179. #define MULAW_MU 100.0
  180. #define GAIN_BITS 8
  181. #define AMP_MAX 13000.0
  182. #define SUB_GAIN_BITS 5
  183. #define WINDOW_TYPE_BITS 4
  184. #define PGAIN_MU 200
  185. #define LSP_COEFS_MAX 20
  186. #define LSP_SPLIT_MAX 4
  187. #define CHANNELS_MAX 2
  188. #define SUBBLOCKS_MAX 16
  189. #define BARK_N_COEF_MAX 4
  190. /** @note not speed critical, hence not optimized */
  191. static void memset_float(float *buf, float val, int size)
  192. {
  193. while (size--)
  194. *buf++ = val;
  195. }
  196. /**
  197. * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
  198. * spectrum pairs.
  199. *
  200. * @param lsp a vector of the cosinus of the LSP values
  201. * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
  202. * @param order the order of the LSP (and the size of the *lsp buffer). Must
  203. * be a multiple of four.
  204. * @return the LPC value
  205. *
  206. * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
  207. */
  208. static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
  209. {
  210. int j;
  211. float p = 0.5f;
  212. float q = 0.5f;
  213. float two_cos_w = 2.0f*cos_val;
  214. for (j = 0; j + 1 < order; j += 2*2) {
  215. // Unroll the loop once since order is a multiple of four
  216. q *= lsp[j ] - two_cos_w;
  217. p *= lsp[j+1] - two_cos_w;
  218. q *= lsp[j+2] - two_cos_w;
  219. p *= lsp[j+3] - two_cos_w;
  220. }
  221. p *= p * (2.0f - two_cos_w);
  222. q *= q * (2.0f + two_cos_w);
  223. return 0.5 / (p + q);
  224. }
  225. /**
  226. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  227. */
  228. static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
  229. {
  230. int i;
  231. const ModeTab *mtab = tctx->mtab;
  232. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  233. for (i = 0; i < size_s/2; i++) {
  234. float cos_i = tctx->cos_tabs[0][i];
  235. lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
  236. lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
  237. }
  238. }
  239. static void interpolate(float *out, float v1, float v2, int size)
  240. {
  241. int i;
  242. float step = (v1 - v2)/(size + 1);
  243. for (i = 0; i < size; i++) {
  244. v2 += step;
  245. out[i] = v2;
  246. }
  247. }
  248. static inline float get_cos(int idx, int part, const float *cos_tab, int size)
  249. {
  250. return part ? -cos_tab[size - idx - 1] :
  251. cos_tab[ idx ];
  252. }
  253. /**
  254. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  255. * Probably for speed reasons, the coefficients are evaluated as
  256. * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
  257. * where s is an evaluated value, i is a value interpolated from the others
  258. * and b might be either calculated or interpolated, depending on an
  259. * unexplained condition.
  260. *
  261. * @param step the size of a block "siiiibiiii"
  262. * @param in the cosinus of the LSP data
  263. * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
  264. (negative cossinus values)
  265. * @param size the size of the whole output
  266. */
  267. static inline void eval_lpcenv_or_interp(TwinContext *tctx,
  268. enum FrameType ftype,
  269. float *out, const float *in,
  270. int size, int step, int part)
  271. {
  272. int i;
  273. const ModeTab *mtab = tctx->mtab;
  274. const float *cos_tab = tctx->cos_tabs[ftype];
  275. // Fill the 's'
  276. for (i = 0; i < size; i += step)
  277. out[i] =
  278. eval_lpc_spectrum(in,
  279. get_cos(i, part, cos_tab, size),
  280. mtab->n_lsp);
  281. // Fill the 'iiiibiiii'
  282. for (i = step; i <= size - 2*step; i += step) {
  283. if (out[i + step] + out[i - step] > 1.95*out[i] ||
  284. out[i + step] >= out[i - step]) {
  285. interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
  286. } else {
  287. out[i - step/2] =
  288. eval_lpc_spectrum(in,
  289. get_cos(i-step/2, part, cos_tab, size),
  290. mtab->n_lsp);
  291. interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
  292. interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
  293. }
  294. }
  295. interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
  296. }
  297. static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
  298. const float *buf, float *lpc,
  299. int size, int step)
  300. {
  301. eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
  302. eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
  303. interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
  304. memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
  305. }
  306. /**
  307. * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
  308. * bitstream, sum the corresponding vectors and write the result to *out
  309. * after permutation.
  310. */
  311. static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
  312. enum FrameType ftype,
  313. const int16_t *cb0, const int16_t *cb1, int cb_len)
  314. {
  315. int pos = 0;
  316. int i, j;
  317. for (i = 0; i < tctx->n_div[ftype]; i++) {
  318. int tmp0, tmp1;
  319. int sign0 = 1;
  320. int sign1 = 1;
  321. const int16_t *tab0, *tab1;
  322. int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
  323. int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
  324. int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
  325. if (bits == 7) {
  326. if (get_bits1(gb))
  327. sign0 = -1;
  328. bits = 6;
  329. }
  330. tmp0 = get_bits(gb, bits);
  331. bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
  332. if (bits == 7) {
  333. if (get_bits1(gb))
  334. sign1 = -1;
  335. bits = 6;
  336. }
  337. tmp1 = get_bits(gb, bits);
  338. tab0 = cb0 + tmp0*cb_len;
  339. tab1 = cb1 + tmp1*cb_len;
  340. for (j = 0; j < length; j++)
  341. out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
  342. pos += length;
  343. }
  344. }
  345. static inline float mulawinv(float y, float clip, float mu)
  346. {
  347. y = av_clipf(y/clip, -1, 1);
  348. return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
  349. }
  350. /**
  351. * Evaluate a*b/400 rounded to the nearest integer. When, for example,
  352. * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
  353. * the following broken float-based implementation used by the binary decoder:
  354. *
  355. * @code
  356. * static int very_broken_op(int a, int b)
  357. * {
  358. * static float test; // Ugh, force gcc to do the division first...
  359. *
  360. * test = a/400.;
  361. * return b * test + 0.5;
  362. * }
  363. * @endcode
  364. *
  365. * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
  366. * between the original file (before encoding with Yamaha encoder) and the
  367. * decoded output increases, which leads one to believe that the encoder expects
  368. * exactly this broken calculation.
  369. */
  370. static int very_broken_op(int a, int b)
  371. {
  372. int x = a*b + 200;
  373. int size;
  374. const uint8_t *rtab;
  375. if (x%400 || b%5)
  376. return x/400;
  377. x /= 400;
  378. size = tabs[b/5].size;
  379. rtab = tabs[b/5].tab;
  380. return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
  381. }
  382. /**
  383. * Sum to data a periodic peak of a given period, width and shape.
  384. *
  385. * @param period the period of the peak divised by 400.0
  386. */
  387. static void add_peak(int period, int width, const float *shape,
  388. float ppc_gain, float *speech, int len)
  389. {
  390. int i, j;
  391. const float *shape_end = shape + len;
  392. int center;
  393. // First peak centered around zero
  394. for (i = 0; i < width/2; i++)
  395. speech[i] += ppc_gain * *shape++;
  396. for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
  397. center = very_broken_op(period, i);
  398. for (j = -width/2; j < (width+1)/2; j++)
  399. speech[j+center] += ppc_gain * *shape++;
  400. }
  401. // For the last block, be careful not to go beyond the end of the buffer
  402. center = very_broken_op(period, i);
  403. for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
  404. speech[j+center] += ppc_gain * *shape++;
  405. }
  406. static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
  407. float ppc_gain, float *speech)
  408. {
  409. const ModeTab *mtab = tctx->mtab;
  410. int isampf = tctx->avctx->sample_rate/1000;
  411. int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
  412. int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
  413. int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
  414. int period_range = max_period - min_period;
  415. // This is actually the period multiplied by 400. It is just linearly coded
  416. // between its maximum and minimum value.
  417. int period = min_period +
  418. ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
  419. int width;
  420. if (isampf == 22 && ibps == 32) {
  421. // For some unknown reason, NTT decided to code this case differently...
  422. width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
  423. } else
  424. width = (period )* mtab->peak_per2wid/(400*mtab->size);
  425. add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
  426. }
  427. static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
  428. float *out)
  429. {
  430. const ModeTab *mtab = tctx->mtab;
  431. int i, j;
  432. int sub = mtab->fmode[ftype].sub;
  433. float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
  434. float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
  435. if (ftype == FT_LONG) {
  436. for (i = 0; i < tctx->avctx->channels; i++)
  437. out[i] = (1./(1<<13)) *
  438. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  439. AMP_MAX, MULAW_MU);
  440. } else {
  441. for (i = 0; i < tctx->avctx->channels; i++) {
  442. float val = (1./(1<<23)) *
  443. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  444. AMP_MAX, MULAW_MU);
  445. for (j = 0; j < sub; j++) {
  446. out[i*sub + j] =
  447. val*mulawinv(sub_step* 0.5 +
  448. sub_step* get_bits(gb, SUB_GAIN_BITS),
  449. SUB_AMP_MAX, MULAW_MU);
  450. }
  451. }
  452. }
  453. }
  454. /**
  455. * Rearrange the LSP coefficients so that they have a minimum distance of
  456. * min_dist. This function does it exactly as described in section of 3.2.4
  457. * of the G.729 specification (but interestingly is different from what the
  458. * reference decoder actually does).
  459. */
  460. static void rearrange_lsp(int order, float *lsp, float min_dist)
  461. {
  462. int i;
  463. float min_dist2 = min_dist * 0.5;
  464. for (i = 1; i < order; i++)
  465. if (lsp[i] - lsp[i-1] < min_dist) {
  466. float avg = (lsp[i] + lsp[i-1]) * 0.5;
  467. lsp[i-1] = avg - min_dist2;
  468. lsp[i ] = avg + min_dist2;
  469. }
  470. }
  471. static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
  472. int lpc_hist_idx, float *lsp, float *hist)
  473. {
  474. const ModeTab *mtab = tctx->mtab;
  475. int i, j;
  476. const float *cb = mtab->lspcodebook;
  477. const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
  478. const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
  479. const int8_t funny_rounding[4] = {
  480. -2,
  481. mtab->lsp_split == 4 ? -2 : 1,
  482. mtab->lsp_split == 4 ? -2 : 1,
  483. 0
  484. };
  485. j = 0;
  486. for (i = 0; i < mtab->lsp_split; i++) {
  487. int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
  488. for (; j < chunk_end; j++)
  489. lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
  490. cb2[lpc_idx2[i] * mtab->n_lsp + j];
  491. }
  492. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  493. for (i = 0; i < mtab->n_lsp; i++) {
  494. float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
  495. float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
  496. hist[i] = lsp[i];
  497. lsp[i] = lsp[i] * tmp1 + tmp2;
  498. }
  499. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  500. rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
  501. ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
  502. }
  503. static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
  504. enum FrameType ftype, float *lpc)
  505. {
  506. int i;
  507. int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
  508. for (i = 0; i < tctx->mtab->n_lsp; i++)
  509. lsp[i] = 2*cos(lsp[i]);
  510. switch (ftype) {
  511. case FT_LONG:
  512. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
  513. break;
  514. case FT_MEDIUM:
  515. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
  516. break;
  517. case FT_SHORT:
  518. eval_lpcenv(tctx, lsp, lpc);
  519. break;
  520. }
  521. }
  522. static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
  523. float *in, float *prev, int ch)
  524. {
  525. FFTContext *mdct = &tctx->mdct_ctx[ftype];
  526. const ModeTab *mtab = tctx->mtab;
  527. int bsize = mtab->size / mtab->fmode[ftype].sub;
  528. int size = mtab->size;
  529. float *buf1 = tctx->tmp_buf;
  530. int j;
  531. int wsize; // Window size
  532. float *out = tctx->curr_frame + 2*ch*mtab->size;
  533. float *out2 = out;
  534. float *prev_buf;
  535. int first_wsize;
  536. static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
  537. int types_sizes[] = {
  538. mtab->size / mtab->fmode[FT_LONG ].sub,
  539. mtab->size / mtab->fmode[FT_MEDIUM].sub,
  540. mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
  541. };
  542. wsize = types_sizes[wtype_to_wsize[wtype]];
  543. first_wsize = wsize;
  544. prev_buf = prev + (size - bsize)/2;
  545. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  546. int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
  547. if (!j && wtype == 4)
  548. sub_wtype = 4;
  549. else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
  550. sub_wtype = 7;
  551. wsize = types_sizes[wtype_to_wsize[sub_wtype]];
  552. mdct->imdct_half(mdct, buf1 + bsize*j, in + bsize*j);
  553. tctx->dsp.vector_fmul_window(out2,
  554. prev_buf + (bsize-wsize)/2,
  555. buf1 + bsize*j,
  556. ff_sine_windows[av_log2(wsize)],
  557. wsize/2);
  558. out2 += wsize;
  559. memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
  560. out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
  561. prev_buf = buf1 + bsize*j + bsize/2;
  562. }
  563. tctx->last_block_pos[ch] = (size + first_wsize)/2;
  564. }
  565. static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
  566. float *out)
  567. {
  568. const ModeTab *mtab = tctx->mtab;
  569. int size1, size2;
  570. float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
  571. int i;
  572. for (i = 0; i < tctx->avctx->channels; i++) {
  573. imdct_and_window(tctx, ftype, wtype,
  574. tctx->spectrum + i*mtab->size,
  575. prev_buf + 2*i*mtab->size,
  576. i);
  577. }
  578. if (!out)
  579. return;
  580. size2 = tctx->last_block_pos[0];
  581. size1 = mtab->size - size2;
  582. if (tctx->avctx->channels == 2) {
  583. tctx->dsp.butterflies_float_interleave(out, prev_buf,
  584. &prev_buf[2*mtab->size],
  585. size1);
  586. out += 2 * size1;
  587. tctx->dsp.butterflies_float_interleave(out, tctx->curr_frame,
  588. &tctx->curr_frame[2*mtab->size],
  589. size2);
  590. } else {
  591. memcpy(out, prev_buf, size1 * sizeof(*out));
  592. out += size1;
  593. memcpy(out, tctx->curr_frame, size2 * sizeof(*out));
  594. }
  595. }
  596. static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
  597. int ch, float *out, float gain, enum FrameType ftype)
  598. {
  599. const ModeTab *mtab = tctx->mtab;
  600. int i,j;
  601. float *hist = tctx->bark_hist[ftype][ch];
  602. float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
  603. int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
  604. int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
  605. int idx = 0;
  606. for (i = 0; i < fw_cb_len; i++)
  607. for (j = 0; j < bark_n_coef; j++, idx++) {
  608. float tmp2 =
  609. mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
  610. float st = use_hist ?
  611. (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
  612. hist[idx] = tmp2;
  613. if (st < -1.) st = 1.;
  614. memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
  615. out += mtab->fmode[ftype].bark_tab[idx];
  616. }
  617. }
  618. static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
  619. float *out, enum FrameType ftype)
  620. {
  621. const ModeTab *mtab = tctx->mtab;
  622. int channels = tctx->avctx->channels;
  623. int sub = mtab->fmode[ftype].sub;
  624. int block_size = mtab->size / sub;
  625. float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
  626. float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
  627. uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
  628. uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
  629. uint8_t lpc_idx1[CHANNELS_MAX];
  630. uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
  631. uint8_t lpc_hist_idx[CHANNELS_MAX];
  632. int i, j, k;
  633. dequant(tctx, gb, out, ftype,
  634. mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
  635. mtab->fmode[ftype].cb_len_read);
  636. for (i = 0; i < channels; i++)
  637. for (j = 0; j < sub; j++)
  638. for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
  639. bark1[i][j][k] =
  640. get_bits(gb, mtab->fmode[ftype].bark_n_bit);
  641. for (i = 0; i < channels; i++)
  642. for (j = 0; j < sub; j++)
  643. bark_use_hist[i][j] = get_bits1(gb);
  644. dec_gain(tctx, gb, ftype, gain);
  645. for (i = 0; i < channels; i++) {
  646. lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
  647. lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
  648. for (j = 0; j < tctx->mtab->lsp_split; j++)
  649. lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
  650. }
  651. if (ftype == FT_LONG) {
  652. int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
  653. tctx->n_div[3];
  654. dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
  655. mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
  656. }
  657. for (i = 0; i < channels; i++) {
  658. float *chunk = out + mtab->size * i;
  659. float lsp[LSP_COEFS_MAX];
  660. for (j = 0; j < sub; j++) {
  661. dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
  662. tctx->tmp_buf, gain[sub*i+j], ftype);
  663. tctx->fdsp.vector_fmul(chunk + block_size*j, chunk + block_size*j,
  664. tctx->tmp_buf, block_size);
  665. }
  666. if (ftype == FT_LONG) {
  667. float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
  668. int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
  669. int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
  670. float v = 1./8192*
  671. mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
  672. decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
  673. chunk);
  674. }
  675. decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
  676. tctx->lsp_hist[i]);
  677. dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
  678. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  679. tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
  680. chunk += block_size;
  681. }
  682. }
  683. }
  684. static int twin_decode_frame(AVCodecContext * avctx, void *data,
  685. int *got_frame_ptr, AVPacket *avpkt)
  686. {
  687. const uint8_t *buf = avpkt->data;
  688. int buf_size = avpkt->size;
  689. TwinContext *tctx = avctx->priv_data;
  690. GetBitContext gb;
  691. const ModeTab *mtab = tctx->mtab;
  692. float *out = NULL;
  693. enum FrameType ftype;
  694. int window_type, ret;
  695. static const enum FrameType wtype_to_ftype_table[] = {
  696. FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
  697. FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
  698. };
  699. if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
  700. av_log(avctx, AV_LOG_ERROR,
  701. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  702. return AVERROR(EINVAL);
  703. }
  704. /* get output buffer */
  705. if (tctx->discarded_packets >= 2) {
  706. tctx->frame.nb_samples = mtab->size;
  707. if ((ret = avctx->get_buffer(avctx, &tctx->frame)) < 0) {
  708. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  709. return ret;
  710. }
  711. out = (float *)tctx->frame.data[0];
  712. }
  713. init_get_bits(&gb, buf, buf_size * 8);
  714. skip_bits(&gb, get_bits(&gb, 8));
  715. window_type = get_bits(&gb, WINDOW_TYPE_BITS);
  716. if (window_type > 8) {
  717. av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
  718. return -1;
  719. }
  720. ftype = wtype_to_ftype_table[window_type];
  721. read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
  722. imdct_output(tctx, ftype, window_type, out);
  723. FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
  724. if (tctx->discarded_packets < 2) {
  725. tctx->discarded_packets++;
  726. *got_frame_ptr = 0;
  727. return buf_size;
  728. }
  729. *got_frame_ptr = 1;
  730. *(AVFrame *)data = tctx->frame;
  731. return buf_size;
  732. }
  733. /**
  734. * Init IMDCT and windowing tables
  735. */
  736. static av_cold int init_mdct_win(TwinContext *tctx)
  737. {
  738. int i, j, ret;
  739. const ModeTab *mtab = tctx->mtab;
  740. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  741. int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
  742. int channels = tctx->avctx->channels;
  743. float norm = channels == 1 ? 2. : 1.;
  744. for (i = 0; i < 3; i++) {
  745. int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
  746. if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
  747. -sqrt(norm/bsize) / (1<<15))))
  748. return ret;
  749. }
  750. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
  751. mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
  752. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
  753. 2 * mtab->size * channels * sizeof(*tctx->spectrum),
  754. alloc_fail);
  755. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
  756. 2 * mtab->size * channels * sizeof(*tctx->curr_frame),
  757. alloc_fail);
  758. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
  759. 2 * mtab->size * channels * sizeof(*tctx->prev_frame),
  760. alloc_fail);
  761. for (i = 0; i < 3; i++) {
  762. int m = 4*mtab->size/mtab->fmode[i].sub;
  763. double freq = 2*M_PI/m;
  764. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
  765. (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
  766. for (j = 0; j <= m/8; j++)
  767. tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
  768. for (j = 1; j < m/8; j++)
  769. tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
  770. }
  771. ff_init_ff_sine_windows(av_log2(size_m));
  772. ff_init_ff_sine_windows(av_log2(size_s/2));
  773. ff_init_ff_sine_windows(av_log2(mtab->size));
  774. return 0;
  775. alloc_fail:
  776. return AVERROR(ENOMEM);
  777. }
  778. /**
  779. * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
  780. * each line do a cyclic permutation, i.e.
  781. * abcdefghijklm -> defghijklmabc
  782. * where the amount to be shifted is evaluated depending on the column.
  783. */
  784. static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
  785. int block_size,
  786. const uint8_t line_len[2], int length_div,
  787. enum FrameType ftype)
  788. {
  789. int i,j;
  790. for (i = 0; i < line_len[0]; i++) {
  791. int shift;
  792. if (num_blocks == 1 ||
  793. (ftype == FT_LONG && num_vect % num_blocks) ||
  794. (ftype != FT_LONG && num_vect & 1 ) ||
  795. i == line_len[1]) {
  796. shift = 0;
  797. } else if (ftype == FT_LONG) {
  798. shift = i;
  799. } else
  800. shift = i*i;
  801. for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
  802. tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
  803. }
  804. }
  805. /**
  806. * Interpret the input data as in the following table:
  807. *
  808. * @verbatim
  809. *
  810. * abcdefgh
  811. * ijklmnop
  812. * qrstuvw
  813. * x123456
  814. *
  815. * @endverbatim
  816. *
  817. * and transpose it, giving the output
  818. * aiqxbjr1cks2dlt3emu4fvn5gow6hp
  819. */
  820. static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
  821. const uint8_t line_len[2], int length_div)
  822. {
  823. int i,j;
  824. int cont= 0;
  825. for (i = 0; i < num_vect; i++)
  826. for (j = 0; j < line_len[i >= length_div]; j++)
  827. out[cont++] = in[j*num_vect + i];
  828. }
  829. static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
  830. {
  831. int block_size = size/n_blocks;
  832. int i;
  833. for (i = 0; i < size; i++)
  834. out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
  835. }
  836. static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
  837. {
  838. int block_size;
  839. const ModeTab *mtab = tctx->mtab;
  840. int size;
  841. int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
  842. if (ftype == FT_PPC) {
  843. size = tctx->avctx->channels;
  844. block_size = mtab->ppc_shape_len;
  845. } else {
  846. size = tctx->avctx->channels * mtab->fmode[ftype].sub;
  847. block_size = mtab->size / mtab->fmode[ftype].sub;
  848. }
  849. permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
  850. block_size, tctx->length[ftype],
  851. tctx->length_change[ftype], ftype);
  852. transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
  853. tctx->length[ftype], tctx->length_change[ftype]);
  854. linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
  855. size*block_size);
  856. }
  857. static av_cold void init_bitstream_params(TwinContext *tctx)
  858. {
  859. const ModeTab *mtab = tctx->mtab;
  860. int n_ch = tctx->avctx->channels;
  861. int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
  862. tctx->avctx->sample_rate;
  863. int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
  864. mtab->lsp_split*mtab->lsp_bit2);
  865. int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
  866. mtab->ppc_period_bit);
  867. int bsize_no_main_cb[3];
  868. int bse_bits[3];
  869. int i;
  870. enum FrameType frametype;
  871. for (i = 0; i < 3; i++)
  872. // +1 for history usage switch
  873. bse_bits[i] = n_ch *
  874. (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
  875. bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
  876. WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
  877. for (i = 0; i < 2; i++)
  878. bsize_no_main_cb[i] =
  879. lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
  880. mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
  881. // The remaining bits are all used for the main spectrum coefficients
  882. for (i = 0; i < 4; i++) {
  883. int bit_size;
  884. int vect_size;
  885. int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
  886. if (i == 3) {
  887. bit_size = n_ch * mtab->ppc_shape_bit;
  888. vect_size = n_ch * mtab->ppc_shape_len;
  889. } else {
  890. bit_size = total_fr_bits - bsize_no_main_cb[i];
  891. vect_size = n_ch * mtab->size;
  892. }
  893. tctx->n_div[i] = (bit_size + 13) / 14;
  894. rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  895. rounded_down = (bit_size )/tctx->n_div[i];
  896. num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
  897. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  898. tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
  899. tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
  900. tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
  901. tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
  902. tctx->bits_main_spec_change[i] = num_rounded_up;
  903. rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  904. rounded_down = (vect_size )/tctx->n_div[i];
  905. num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
  906. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  907. tctx->length[i][0] = rounded_up;
  908. tctx->length[i][1] = rounded_down;
  909. tctx->length_change[i] = num_rounded_up;
  910. }
  911. for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
  912. construct_perm_table(tctx, frametype);
  913. }
  914. static av_cold int twin_decode_close(AVCodecContext *avctx)
  915. {
  916. TwinContext *tctx = avctx->priv_data;
  917. int i;
  918. for (i = 0; i < 3; i++) {
  919. ff_mdct_end(&tctx->mdct_ctx[i]);
  920. av_free(tctx->cos_tabs[i]);
  921. }
  922. av_free(tctx->curr_frame);
  923. av_free(tctx->spectrum);
  924. av_free(tctx->prev_frame);
  925. av_free(tctx->tmp_buf);
  926. return 0;
  927. }
  928. static av_cold int twin_decode_init(AVCodecContext *avctx)
  929. {
  930. int ret;
  931. TwinContext *tctx = avctx->priv_data;
  932. int isampf, ibps;
  933. tctx->avctx = avctx;
  934. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  935. if (!avctx->extradata || avctx->extradata_size < 12) {
  936. av_log(avctx, AV_LOG_ERROR, "Missing or incomplete extradata\n");
  937. return AVERROR_INVALIDDATA;
  938. }
  939. avctx->channels = AV_RB32(avctx->extradata ) + 1;
  940. avctx->bit_rate = AV_RB32(avctx->extradata + 4) * 1000;
  941. isampf = AV_RB32(avctx->extradata + 8);
  942. switch (isampf) {
  943. case 44: avctx->sample_rate = 44100; break;
  944. case 22: avctx->sample_rate = 22050; break;
  945. case 11: avctx->sample_rate = 11025; break;
  946. default: avctx->sample_rate = isampf * 1000; break;
  947. }
  948. if (avctx->channels > CHANNELS_MAX) {
  949. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
  950. avctx->channels);
  951. return -1;
  952. }
  953. ibps = avctx->bit_rate / (1000 * avctx->channels);
  954. switch ((isampf << 8) + ibps) {
  955. case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
  956. case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
  957. case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
  958. case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
  959. case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
  960. case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
  961. case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
  962. case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
  963. case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
  964. default:
  965. av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
  966. return -1;
  967. }
  968. ff_dsputil_init(&tctx->dsp, avctx);
  969. avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  970. if ((ret = init_mdct_win(tctx))) {
  971. av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
  972. twin_decode_close(avctx);
  973. return ret;
  974. }
  975. init_bitstream_params(tctx);
  976. memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
  977. avcodec_get_frame_defaults(&tctx->frame);
  978. avctx->coded_frame = &tctx->frame;
  979. return 0;
  980. }
  981. AVCodec ff_twinvq_decoder = {
  982. .name = "twinvq",
  983. .type = AVMEDIA_TYPE_AUDIO,
  984. .id = AV_CODEC_ID_TWINVQ,
  985. .priv_data_size = sizeof(TwinContext),
  986. .init = twin_decode_init,
  987. .close = twin_decode_close,
  988. .decode = twin_decode_frame,
  989. .capabilities = CODEC_CAP_DR1,
  990. .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
  991. };