You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

593 lines
20KB

  1. /*
  2. * SVQ1 Encoder
  3. * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Sorenson Vector Quantizer #1 (SVQ1) video codec.
  24. * For more information of the SVQ1 algorithm, visit:
  25. * http://www.pcisys.net/~melanson/codecs/
  26. */
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "mpegvideo.h"
  30. #include "h263.h"
  31. #include "internal.h"
  32. #include "libavutil/avassert.h"
  33. #include "svq1.h"
  34. #include "svq1enc_cb.h"
  35. typedef struct SVQ1Context {
  36. MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX)
  37. AVCodecContext *avctx;
  38. DSPContext dsp;
  39. AVFrame picture;
  40. AVFrame current_picture;
  41. AVFrame last_picture;
  42. PutBitContext pb;
  43. GetBitContext gb;
  44. PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex
  45. int frame_width;
  46. int frame_height;
  47. /* Y plane block dimensions */
  48. int y_block_width;
  49. int y_block_height;
  50. /* U & V plane (C planes) block dimensions */
  51. int c_block_width;
  52. int c_block_height;
  53. uint16_t *mb_type;
  54. uint32_t *dummy;
  55. int16_t (*motion_val8[3])[2];
  56. int16_t (*motion_val16[3])[2];
  57. int64_t rd_total;
  58. uint8_t *scratchbuf;
  59. } SVQ1Context;
  60. static void svq1_write_header(SVQ1Context *s, int frame_type)
  61. {
  62. int i;
  63. /* frame code */
  64. put_bits(&s->pb, 22, 0x20);
  65. /* temporal reference (sure hope this is a "don't care") */
  66. put_bits(&s->pb, 8, 0x00);
  67. /* frame type */
  68. put_bits(&s->pb, 2, frame_type - 1);
  69. if (frame_type == AV_PICTURE_TYPE_I) {
  70. /* no checksum since frame code is 0x20 */
  71. /* no embedded string either */
  72. /* output 5 unknown bits (2 + 2 + 1) */
  73. put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */
  74. i= ff_match_2uint16((void*)ff_svq1_frame_size_table, FF_ARRAY_ELEMS(ff_svq1_frame_size_table), s->frame_width, s->frame_height);
  75. put_bits(&s->pb, 3, i);
  76. if (i == 7)
  77. {
  78. put_bits(&s->pb, 12, s->frame_width);
  79. put_bits(&s->pb, 12, s->frame_height);
  80. }
  81. }
  82. /* no checksum or extra data (next 2 bits get 0) */
  83. put_bits(&s->pb, 2, 0);
  84. }
  85. #define QUALITY_THRESHOLD 100
  86. #define THRESHOLD_MULTIPLIER 0.6
  87. static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){
  88. int count, y, x, i, j, split, best_mean, best_score, best_count;
  89. int best_vector[6];
  90. int block_sum[7]= {0, 0, 0, 0, 0, 0};
  91. int w= 2<<((level+2)>>1);
  92. int h= 2<<((level+1)>>1);
  93. int size=w*h;
  94. int16_t block[7][256];
  95. const int8_t *codebook_sum, *codebook;
  96. const uint16_t (*mean_vlc)[2];
  97. const uint8_t (*multistage_vlc)[2];
  98. best_score=0;
  99. //FIXME optimize, this doenst need to be done multiple times
  100. if(intra){
  101. codebook_sum= svq1_intra_codebook_sum[level];
  102. codebook= ff_svq1_intra_codebooks[level];
  103. mean_vlc= ff_svq1_intra_mean_vlc;
  104. multistage_vlc= ff_svq1_intra_multistage_vlc[level];
  105. for(y=0; y<h; y++){
  106. for(x=0; x<w; x++){
  107. int v= src[x + y*stride];
  108. block[0][x + w*y]= v;
  109. best_score += v*v;
  110. block_sum[0] += v;
  111. }
  112. }
  113. }else{
  114. codebook_sum= svq1_inter_codebook_sum[level];
  115. codebook= ff_svq1_inter_codebooks[level];
  116. mean_vlc= ff_svq1_inter_mean_vlc + 256;
  117. multistage_vlc= ff_svq1_inter_multistage_vlc[level];
  118. for(y=0; y<h; y++){
  119. for(x=0; x<w; x++){
  120. int v= src[x + y*stride] - ref[x + y*stride];
  121. block[0][x + w*y]= v;
  122. best_score += v*v;
  123. block_sum[0] += v;
  124. }
  125. }
  126. }
  127. best_count=0;
  128. best_score -= (int)(((unsigned)block_sum[0]*block_sum[0])>>(level+3));
  129. best_mean= (block_sum[0] + (size>>1)) >> (level+3);
  130. if(level<4){
  131. for(count=1; count<7; count++){
  132. int best_vector_score= INT_MAX;
  133. int best_vector_sum=-999, best_vector_mean=-999;
  134. const int stage= count-1;
  135. const int8_t *vector;
  136. for(i=0; i<16; i++){
  137. int sum= codebook_sum[stage*16 + i];
  138. int sqr, diff, score;
  139. vector = codebook + stage*size*16 + i*size;
  140. sqr = s->dsp.ssd_int8_vs_int16(vector, block[stage], size);
  141. diff= block_sum[stage] - sum;
  142. score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow
  143. if(score < best_vector_score){
  144. int mean= (diff + (size>>1)) >> (level+3);
  145. av_assert2(mean >-300 && mean<300);
  146. mean= av_clip(mean, intra?0:-256, 255);
  147. best_vector_score= score;
  148. best_vector[stage]= i;
  149. best_vector_sum= sum;
  150. best_vector_mean= mean;
  151. }
  152. }
  153. av_assert0(best_vector_mean != -999);
  154. vector= codebook + stage*size*16 + best_vector[stage]*size;
  155. for(j=0; j<size; j++){
  156. block[stage+1][j] = block[stage][j] - vector[j];
  157. }
  158. block_sum[stage+1]= block_sum[stage] - best_vector_sum;
  159. best_vector_score +=
  160. lambda*(+ 1 + 4*count
  161. + multistage_vlc[1+count][1]
  162. + mean_vlc[best_vector_mean][1]);
  163. if(best_vector_score < best_score){
  164. best_score= best_vector_score;
  165. best_count= count;
  166. best_mean= best_vector_mean;
  167. }
  168. }
  169. }
  170. split=0;
  171. if(best_score > threshold && level){
  172. int score=0;
  173. int offset= (level&1) ? stride*h/2 : w/2;
  174. PutBitContext backup[6];
  175. for(i=level-1; i>=0; i--){
  176. backup[i]= s->reorder_pb[i];
  177. }
  178. score += encode_block(s, src , ref , decoded , stride, level-1, threshold>>1, lambda, intra);
  179. score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra);
  180. score += lambda;
  181. if(score < best_score){
  182. best_score= score;
  183. split=1;
  184. }else{
  185. for(i=level-1; i>=0; i--){
  186. s->reorder_pb[i]= backup[i];
  187. }
  188. }
  189. }
  190. if (level > 0)
  191. put_bits(&s->reorder_pb[level], 1, split);
  192. if(!split){
  193. av_assert1((best_mean >= 0 && best_mean<256) || !intra);
  194. av_assert1(best_mean >= -256 && best_mean<256);
  195. av_assert1(best_count >=0 && best_count<7);
  196. av_assert1(level<4 || best_count==0);
  197. /* output the encoding */
  198. put_bits(&s->reorder_pb[level],
  199. multistage_vlc[1 + best_count][1],
  200. multistage_vlc[1 + best_count][0]);
  201. put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
  202. mean_vlc[best_mean][0]);
  203. for (i = 0; i < best_count; i++){
  204. av_assert2(best_vector[i]>=0 && best_vector[i]<16);
  205. put_bits(&s->reorder_pb[level], 4, best_vector[i]);
  206. }
  207. for(y=0; y<h; y++){
  208. for(x=0; x<w; x++){
  209. decoded[x + y*stride]= src[x + y*stride] - block[best_count][x + w*y] + best_mean;
  210. }
  211. }
  212. }
  213. return best_score;
  214. }
  215. static int svq1_encode_plane(SVQ1Context *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane,
  216. int width, int height, int src_stride, int stride)
  217. {
  218. int x, y;
  219. int i;
  220. int block_width, block_height;
  221. int level;
  222. int threshold[6];
  223. uint8_t *src = s->scratchbuf + stride * 16;
  224. const int lambda= (s->picture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT);
  225. /* figure out the acceptable level thresholds in advance */
  226. threshold[5] = QUALITY_THRESHOLD;
  227. for (level = 4; level >= 0; level--)
  228. threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;
  229. block_width = (width + 15) / 16;
  230. block_height = (height + 15) / 16;
  231. if(s->picture.pict_type == AV_PICTURE_TYPE_P){
  232. s->m.avctx= s->avctx;
  233. s->m.current_picture_ptr= &s->m.current_picture;
  234. s->m.last_picture_ptr = &s->m.last_picture;
  235. s->m.last_picture.f.data[0] = ref_plane;
  236. s->m.linesize=
  237. s->m.last_picture.f.linesize[0] =
  238. s->m.new_picture.f.linesize[0] =
  239. s->m.current_picture.f.linesize[0] = stride;
  240. s->m.width= width;
  241. s->m.height= height;
  242. s->m.mb_width= block_width;
  243. s->m.mb_height= block_height;
  244. s->m.mb_stride= s->m.mb_width+1;
  245. s->m.b8_stride= 2*s->m.mb_width+1;
  246. s->m.f_code=1;
  247. s->m.pict_type= s->picture.pict_type;
  248. s->m.me_method= s->avctx->me_method;
  249. s->m.me.scene_change_score=0;
  250. s->m.flags= s->avctx->flags;
  251. // s->m.out_format = FMT_H263;
  252. // s->m.unrestricted_mv= 1;
  253. s->m.lambda= s->picture.quality;
  254. s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
  255. s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
  256. if(!s->motion_val8[plane]){
  257. s->motion_val8 [plane]= av_mallocz((s->m.b8_stride*block_height*2 + 2)*2*sizeof(int16_t));
  258. s->motion_val16[plane]= av_mallocz((s->m.mb_stride*(block_height + 2) + 1)*2*sizeof(int16_t));
  259. }
  260. s->m.mb_type= s->mb_type;
  261. //dummies, to avoid segfaults
  262. s->m.current_picture.mb_mean= (uint8_t *)s->dummy;
  263. s->m.current_picture.mb_var= (uint16_t*)s->dummy;
  264. s->m.current_picture.mc_mb_var= (uint16_t*)s->dummy;
  265. s->m.current_picture.f.mb_type = s->dummy;
  266. s->m.current_picture.f.motion_val[0] = s->motion_val8[plane] + 2;
  267. s->m.p_mv_table= s->motion_val16[plane] + s->m.mb_stride + 1;
  268. s->m.dsp= s->dsp; //move
  269. ff_init_me(&s->m);
  270. s->m.me.dia_size= s->avctx->dia_size;
  271. s->m.first_slice_line=1;
  272. for (y = 0; y < block_height; y++) {
  273. s->m.new_picture.f.data[0] = src - y*16*stride; //ugly
  274. s->m.mb_y= y;
  275. for(i=0; i<16 && i + 16*y<height; i++){
  276. memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
  277. for(x=width; x<16*block_width; x++)
  278. src[i*stride+x]= src[i*stride+x-1];
  279. }
  280. for(; i<16 && i + 16*y<16*block_height; i++)
  281. memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
  282. for (x = 0; x < block_width; x++) {
  283. s->m.mb_x= x;
  284. ff_init_block_index(&s->m);
  285. ff_update_block_index(&s->m);
  286. ff_estimate_p_frame_motion(&s->m, x, y);
  287. }
  288. s->m.first_slice_line=0;
  289. }
  290. ff_fix_long_p_mvs(&s->m);
  291. ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0);
  292. }
  293. s->m.first_slice_line=1;
  294. for (y = 0; y < block_height; y++) {
  295. for(i=0; i<16 && i + 16*y<height; i++){
  296. memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
  297. for(x=width; x<16*block_width; x++)
  298. src[i*stride+x]= src[i*stride+x-1];
  299. }
  300. for(; i<16 && i + 16*y<16*block_height; i++)
  301. memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
  302. s->m.mb_y= y;
  303. for (x = 0; x < block_width; x++) {
  304. uint8_t reorder_buffer[3][6][7*32];
  305. int count[3][6];
  306. int offset = y * 16 * stride + x * 16;
  307. uint8_t *decoded= decoded_plane + offset;
  308. uint8_t *ref= ref_plane + offset;
  309. int score[4]={0,0,0,0}, best;
  310. uint8_t *temp = s->scratchbuf;
  311. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3000){ //FIXME check size
  312. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  313. return -1;
  314. }
  315. s->m.mb_x= x;
  316. ff_init_block_index(&s->m);
  317. ff_update_block_index(&s->m);
  318. if(s->picture.pict_type == AV_PICTURE_TYPE_I || (s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTRA)){
  319. for(i=0; i<6; i++){
  320. init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7*32);
  321. }
  322. if(s->picture.pict_type == AV_PICTURE_TYPE_P){
  323. const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA];
  324. put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
  325. score[0]= vlc[1]*lambda;
  326. }
  327. score[0]+= encode_block(s, src+16*x, NULL, temp, stride, 5, 64, lambda, 1);
  328. for(i=0; i<6; i++){
  329. count[0][i]= put_bits_count(&s->reorder_pb[i]);
  330. flush_put_bits(&s->reorder_pb[i]);
  331. }
  332. }else
  333. score[0]= INT_MAX;
  334. best=0;
  335. if(s->picture.pict_type == AV_PICTURE_TYPE_P){
  336. const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER];
  337. int mx, my, pred_x, pred_y, dxy;
  338. int16_t *motion_ptr;
  339. motion_ptr= ff_h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
  340. if(s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTER){
  341. for(i=0; i<6; i++)
  342. init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7*32);
  343. put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
  344. s->m.pb= s->reorder_pb[5];
  345. mx= motion_ptr[0];
  346. my= motion_ptr[1];
  347. av_assert1(mx>=-32 && mx<=31);
  348. av_assert1(my>=-32 && my<=31);
  349. av_assert1(pred_x>=-32 && pred_x<=31);
  350. av_assert1(pred_y>=-32 && pred_y<=31);
  351. ff_h263_encode_motion(&s->m, mx - pred_x, 1);
  352. ff_h263_encode_motion(&s->m, my - pred_y, 1);
  353. s->reorder_pb[5]= s->m.pb;
  354. score[1] += lambda*put_bits_count(&s->reorder_pb[5]);
  355. dxy= (mx&1) + 2*(my&1);
  356. s->dsp.put_pixels_tab[0][dxy](temp+16, ref + (mx>>1) + stride*(my>>1), stride, 16);
  357. score[1]+= encode_block(s, src+16*x, temp+16, decoded, stride, 5, 64, lambda, 0);
  358. best= score[1] <= score[0];
  359. vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP];
  360. score[2]= s->dsp.sse[0](NULL, src+16*x, ref, stride, 16);
  361. score[2]+= vlc[1]*lambda;
  362. if(score[2] < score[best] && mx==0 && my==0){
  363. best=2;
  364. s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
  365. for(i=0; i<6; i++){
  366. count[2][i]=0;
  367. }
  368. put_bits(&s->pb, vlc[1], vlc[0]);
  369. }
  370. }
  371. if(best==1){
  372. for(i=0; i<6; i++){
  373. count[1][i]= put_bits_count(&s->reorder_pb[i]);
  374. flush_put_bits(&s->reorder_pb[i]);
  375. }
  376. }else{
  377. motion_ptr[0 ] = motion_ptr[1 ]=
  378. motion_ptr[2 ] = motion_ptr[3 ]=
  379. motion_ptr[0+2*s->m.b8_stride] = motion_ptr[1+2*s->m.b8_stride]=
  380. motion_ptr[2+2*s->m.b8_stride] = motion_ptr[3+2*s->m.b8_stride]=0;
  381. }
  382. }
  383. s->rd_total += score[best];
  384. for(i=5; i>=0; i--){
  385. avpriv_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]);
  386. }
  387. if(best==0){
  388. s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
  389. }
  390. }
  391. s->m.first_slice_line=0;
  392. }
  393. return 0;
  394. }
  395. static av_cold int svq1_encode_init(AVCodecContext *avctx)
  396. {
  397. SVQ1Context * const s = avctx->priv_data;
  398. ff_dsputil_init(&s->dsp, avctx);
  399. avctx->coded_frame = &s->picture;
  400. s->frame_width = avctx->width;
  401. s->frame_height = avctx->height;
  402. s->y_block_width = (s->frame_width + 15) / 16;
  403. s->y_block_height = (s->frame_height + 15) / 16;
  404. s->c_block_width = (s->frame_width / 4 + 15) / 16;
  405. s->c_block_height = (s->frame_height / 4 + 15) / 16;
  406. s->avctx= avctx;
  407. s->m.avctx= avctx;
  408. s->m.picture_structure = PICT_FRAME;
  409. s->m.me.temp =
  410. s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
  411. s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
  412. s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
  413. s->mb_type = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int16_t));
  414. s->dummy = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int32_t));
  415. ff_h263_encode_init(&s->m); //mv_penalty
  416. return 0;
  417. }
  418. static int svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  419. const AVFrame *pict, int *got_packet)
  420. {
  421. SVQ1Context * const s = avctx->priv_data;
  422. AVFrame * const p = &s->picture;
  423. AVFrame temp;
  424. int i, ret;
  425. if ((ret = ff_alloc_packet2(avctx, pkt, s->y_block_width*s->y_block_height*MAX_MB_BYTES*3 + FF_MIN_BUFFER_SIZE) < 0))
  426. return ret;
  427. if(avctx->pix_fmt != PIX_FMT_YUV410P){
  428. av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
  429. return -1;
  430. }
  431. if(!s->current_picture.data[0]){
  432. avctx->get_buffer(avctx, &s->current_picture);
  433. avctx->get_buffer(avctx, &s->last_picture);
  434. s->scratchbuf = av_malloc(s->current_picture.linesize[0] * 16 * 2);
  435. }
  436. temp= s->current_picture;
  437. s->current_picture= s->last_picture;
  438. s->last_picture= temp;
  439. init_put_bits(&s->pb, pkt->data, pkt->size);
  440. *p = *pict;
  441. p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
  442. p->key_frame = p->pict_type == AV_PICTURE_TYPE_I;
  443. svq1_write_header(s, p->pict_type);
  444. for(i=0; i<3; i++){
  445. if(svq1_encode_plane(s, i,
  446. s->picture.data[i], s->last_picture.data[i], s->current_picture.data[i],
  447. s->frame_width / (i?4:1), s->frame_height / (i?4:1),
  448. s->picture.linesize[i], s->current_picture.linesize[i]) < 0)
  449. return -1;
  450. }
  451. // avpriv_align_put_bits(&s->pb);
  452. while(put_bits_count(&s->pb) & 31)
  453. put_bits(&s->pb, 1, 0);
  454. flush_put_bits(&s->pb);
  455. pkt->size = put_bits_count(&s->pb) / 8;
  456. if (p->pict_type == AV_PICTURE_TYPE_I)
  457. pkt->flags |= AV_PKT_FLAG_KEY;
  458. *got_packet = 1;
  459. return 0;
  460. }
  461. static av_cold int svq1_encode_end(AVCodecContext *avctx)
  462. {
  463. SVQ1Context * const s = avctx->priv_data;
  464. int i;
  465. av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total/(double)(avctx->width*avctx->height*avctx->frame_number));
  466. av_freep(&s->m.me.scratchpad);
  467. av_freep(&s->m.me.map);
  468. av_freep(&s->m.me.score_map);
  469. av_freep(&s->mb_type);
  470. av_freep(&s->dummy);
  471. av_freep(&s->scratchbuf);
  472. for(i=0; i<3; i++){
  473. av_freep(&s->motion_val8[i]);
  474. av_freep(&s->motion_val16[i]);
  475. }
  476. if(s->current_picture.data[0])
  477. avctx->release_buffer(avctx, &s->current_picture);
  478. if(s->last_picture.data[0])
  479. avctx->release_buffer(avctx, &s->last_picture);
  480. return 0;
  481. }
  482. AVCodec ff_svq1_encoder = {
  483. .name = "svq1",
  484. .type = AVMEDIA_TYPE_VIDEO,
  485. .id = AV_CODEC_ID_SVQ1,
  486. .priv_data_size = sizeof(SVQ1Context),
  487. .init = svq1_encode_init,
  488. .encode2 = svq1_encode_frame,
  489. .close = svq1_encode_end,
  490. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV410P, PIX_FMT_NONE },
  491. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
  492. };