You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

586 lines
22KB

  1. /*
  2. * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/intmath.h"
  21. #include "libavutil/log.h"
  22. #include "libavutil/opt.h"
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. #include "dwt.h"
  26. #include "snow.h"
  27. #include "rangecoder.h"
  28. #include "mathops.h"
  29. #include "mpegvideo.h"
  30. #include "h263.h"
  31. #undef NDEBUG
  32. #include <assert.h>
  33. static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
  34. Plane *p= &s->plane[plane_index];
  35. const int mb_w= s->b_width << s->block_max_depth;
  36. const int mb_h= s->b_height << s->block_max_depth;
  37. int x, y, mb_x;
  38. int block_size = MB_SIZE >> s->block_max_depth;
  39. int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
  40. int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
  41. const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
  42. int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
  43. int ref_stride= s->current_picture.linesize[plane_index];
  44. uint8_t *dst8= s->current_picture.data[plane_index];
  45. int w= p->width;
  46. int h= p->height;
  47. if(s->keyframe || (s->avctx->debug&512)){
  48. if(mb_y==mb_h)
  49. return;
  50. if(add){
  51. for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
  52. // DWTELEM * line = slice_buffer_get_line(sb, y);
  53. IDWTELEM * line = sb->line[y];
  54. for(x=0; x<w; x++){
  55. // int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
  56. int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
  57. v >>= FRAC_BITS;
  58. if(v&(~255)) v= ~(v>>31);
  59. dst8[x + y*ref_stride]= v;
  60. }
  61. }
  62. }else{
  63. for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
  64. // DWTELEM * line = slice_buffer_get_line(sb, y);
  65. IDWTELEM * line = sb->line[y];
  66. for(x=0; x<w; x++){
  67. line[x] -= 128 << FRAC_BITS;
  68. // buf[x + y*w]-= 128<<FRAC_BITS;
  69. }
  70. }
  71. }
  72. return;
  73. }
  74. for(mb_x=0; mb_x<=mb_w; mb_x++){
  75. add_yblock(s, 1, sb, old_buffer, dst8, obmc,
  76. block_w*mb_x - block_w/2,
  77. block_h*mb_y - block_h/2,
  78. block_w, block_h,
  79. w, h,
  80. w, ref_stride, obmc_stride,
  81. mb_x - 1, mb_y - 1,
  82. add, 0, plane_index);
  83. }
  84. }
  85. static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
  86. const int w= b->width;
  87. int y;
  88. const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
  89. int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
  90. int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
  91. int new_index = 0;
  92. if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
  93. qadd= 0;
  94. qmul= 1<<QEXPSHIFT;
  95. }
  96. /* If we are on the second or later slice, restore our index. */
  97. if (start_y != 0)
  98. new_index = save_state[0];
  99. for(y=start_y; y<h; y++){
  100. int x = 0;
  101. int v;
  102. IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
  103. memset(line, 0, b->width*sizeof(IDWTELEM));
  104. v = b->x_coeff[new_index].coeff;
  105. x = b->x_coeff[new_index++].x;
  106. while(x < w){
  107. register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT;
  108. register int u= -(v&1);
  109. line[x] = (t^u) - u;
  110. v = b->x_coeff[new_index].coeff;
  111. x = b->x_coeff[new_index++].x;
  112. }
  113. }
  114. /* Save our variables for the next slice. */
  115. save_state[0] = new_index;
  116. return;
  117. }
  118. static int decode_q_branch(SnowContext *s, int level, int x, int y){
  119. const int w= s->b_width << s->block_max_depth;
  120. const int rem_depth= s->block_max_depth - level;
  121. const int index= (x + y*w) << rem_depth;
  122. int trx= (x+1)<<rem_depth;
  123. const BlockNode *left = x ? &s->block[index-1] : &null_block;
  124. const BlockNode *top = y ? &s->block[index-w] : &null_block;
  125. const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
  126. const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
  127. int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
  128. int res;
  129. if(s->keyframe){
  130. set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
  131. return 0;
  132. }
  133. if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
  134. int type, mx, my;
  135. int l = left->color[0];
  136. int cb= left->color[1];
  137. int cr= left->color[2];
  138. int ref = 0;
  139. int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
  140. int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
  141. int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
  142. type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
  143. if(type){
  144. pred_mv(s, &mx, &my, 0, left, top, tr);
  145. l += get_symbol(&s->c, &s->block_state[32], 1);
  146. cb+= get_symbol(&s->c, &s->block_state[64], 1);
  147. cr+= get_symbol(&s->c, &s->block_state[96], 1);
  148. }else{
  149. if(s->ref_frames > 1)
  150. ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
  151. if (ref >= s->ref_frames) {
  152. av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n");
  153. return AVERROR_INVALIDDATA;
  154. }
  155. pred_mv(s, &mx, &my, ref, left, top, tr);
  156. mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
  157. my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
  158. }
  159. set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
  160. }else{
  161. if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 ||
  162. (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 ||
  163. (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 ||
  164. (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0)
  165. return res;
  166. }
  167. return 0;
  168. }
  169. static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
  170. const int w= b->width;
  171. const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
  172. const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
  173. const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
  174. int x,y;
  175. if(s->qlog == LOSSLESS_QLOG) return;
  176. for(y=start_y; y<end_y; y++){
  177. // DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
  178. IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  179. for(x=0; x<w; x++){
  180. int i= line[x];
  181. if(i<0){
  182. line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
  183. }else if(i>0){
  184. line[x]= (( i*qmul + qadd)>>(QEXPSHIFT));
  185. }
  186. }
  187. }
  188. }
  189. static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
  190. const int w= b->width;
  191. int x,y;
  192. IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
  193. IDWTELEM * prev;
  194. if (start_y != 0)
  195. line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  196. for(y=start_y; y<end_y; y++){
  197. prev = line;
  198. // line = slice_buffer_get_line_from_address(sb, src + (y * stride));
  199. line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  200. for(x=0; x<w; x++){
  201. if(x){
  202. if(use_median){
  203. if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
  204. else line[x] += line[x - 1];
  205. }else{
  206. if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
  207. else line[x] += line[x - 1];
  208. }
  209. }else{
  210. if(y) line[x] += prev[x];
  211. }
  212. }
  213. }
  214. }
  215. static void decode_qlogs(SnowContext *s){
  216. int plane_index, level, orientation;
  217. for(plane_index=0; plane_index<3; plane_index++){
  218. for(level=0; level<s->spatial_decomposition_count; level++){
  219. for(orientation=level ? 1:0; orientation<4; orientation++){
  220. int q;
  221. if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
  222. else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
  223. else q= get_symbol(&s->c, s->header_state, 1);
  224. s->plane[plane_index].band[level][orientation].qlog= q;
  225. }
  226. }
  227. }
  228. }
  229. #define GET_S(dst, check) \
  230. tmp= get_symbol(&s->c, s->header_state, 0);\
  231. if(!(check)){\
  232. av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
  233. return -1;\
  234. }\
  235. dst= tmp;
  236. static int decode_header(SnowContext *s){
  237. int plane_index, tmp;
  238. uint8_t kstate[32];
  239. memset(kstate, MID_STATE, sizeof(kstate));
  240. s->keyframe= get_rac(&s->c, kstate);
  241. if(s->keyframe || s->always_reset){
  242. ff_snow_reset_contexts(s);
  243. s->spatial_decomposition_type=
  244. s->qlog=
  245. s->qbias=
  246. s->mv_scale=
  247. s->block_max_depth= 0;
  248. }
  249. if(s->keyframe){
  250. GET_S(s->version, tmp <= 0U)
  251. s->always_reset= get_rac(&s->c, s->header_state);
  252. s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
  253. s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
  254. GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
  255. s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
  256. s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
  257. s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
  258. if(s->chroma_h_shift == 1 && s->chroma_v_shift==1){
  259. s->avctx->pix_fmt= PIX_FMT_YUV420P;
  260. }else if(s->chroma_h_shift == 0 && s->chroma_v_shift==0){
  261. s->avctx->pix_fmt= PIX_FMT_YUV444P;
  262. }else if(s->chroma_h_shift == 2 && s->chroma_v_shift==2){
  263. s->avctx->pix_fmt= PIX_FMT_YUV410P;
  264. } else {
  265. av_log(s, AV_LOG_ERROR, "unsupported color subsample mode %d %d\n", s->chroma_h_shift, s->chroma_v_shift);
  266. s->chroma_h_shift = s->chroma_v_shift = 1;
  267. s->avctx->pix_fmt= PIX_FMT_YUV420P;
  268. return AVERROR_INVALIDDATA;
  269. }
  270. s->spatial_scalability= get_rac(&s->c, s->header_state);
  271. // s->rate_scalability= get_rac(&s->c, s->header_state);
  272. GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
  273. s->max_ref_frames++;
  274. decode_qlogs(s);
  275. }
  276. if(!s->keyframe){
  277. if(get_rac(&s->c, s->header_state)){
  278. for(plane_index=0; plane_index<2; plane_index++){
  279. int htaps, i, sum=0;
  280. Plane *p= &s->plane[plane_index];
  281. p->diag_mc= get_rac(&s->c, s->header_state);
  282. htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2;
  283. if((unsigned)htaps > HTAPS_MAX || htaps==0)
  284. return -1;
  285. p->htaps= htaps;
  286. for(i= htaps/2; i; i--){
  287. p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1));
  288. sum += p->hcoeff[i];
  289. }
  290. p->hcoeff[0]= 32-sum;
  291. }
  292. s->plane[2].diag_mc= s->plane[1].diag_mc;
  293. s->plane[2].htaps = s->plane[1].htaps;
  294. memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
  295. }
  296. if(get_rac(&s->c, s->header_state)){
  297. GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
  298. decode_qlogs(s);
  299. }
  300. }
  301. s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1);
  302. if(s->spatial_decomposition_type > 1U){
  303. av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported\n", s->spatial_decomposition_type);
  304. return -1;
  305. }
  306. if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
  307. s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 0){
  308. av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size\n", s->spatial_decomposition_count);
  309. return -1;
  310. }
  311. s->qlog += get_symbol(&s->c, s->header_state, 1);
  312. s->mv_scale += get_symbol(&s->c, s->header_state, 1);
  313. s->qbias += get_symbol(&s->c, s->header_state, 1);
  314. s->block_max_depth+= get_symbol(&s->c, s->header_state, 1);
  315. if(s->block_max_depth > 1 || s->block_max_depth < 0){
  316. av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large\n", s->block_max_depth);
  317. s->block_max_depth= 0;
  318. return -1;
  319. }
  320. return 0;
  321. }
  322. static av_cold int decode_init(AVCodecContext *avctx)
  323. {
  324. int ret;
  325. if ((ret = ff_snow_common_init(avctx)) < 0) {
  326. ff_snow_common_end(avctx->priv_data);
  327. return ret;
  328. }
  329. return 0;
  330. }
  331. static int decode_blocks(SnowContext *s){
  332. int x, y;
  333. int w= s->b_width;
  334. int h= s->b_height;
  335. int res;
  336. for(y=0; y<h; y++){
  337. for(x=0; x<w; x++){
  338. if ((res = decode_q_branch(s, 0, x, y)) < 0)
  339. return res;
  340. }
  341. }
  342. return 0;
  343. }
  344. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  345. const uint8_t *buf = avpkt->data;
  346. int buf_size = avpkt->size;
  347. SnowContext *s = avctx->priv_data;
  348. RangeCoder * const c= &s->c;
  349. int bytes_read;
  350. AVFrame *picture = data;
  351. int level, orientation, plane_index;
  352. int res;
  353. ff_init_range_decoder(c, buf, buf_size);
  354. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  355. s->current_picture.pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  356. if(decode_header(s)<0)
  357. return -1;
  358. if ((res=ff_snow_common_init_after_header(avctx)) < 0)
  359. return res;
  360. // realloc slice buffer for the case that spatial_decomposition_count changed
  361. ff_slice_buffer_destroy(&s->sb);
  362. if ((res = ff_slice_buffer_init(&s->sb, s->plane[0].height,
  363. (MB_SIZE >> s->block_max_depth) +
  364. s->spatial_decomposition_count * 11 + 1,
  365. s->plane[0].width,
  366. s->spatial_idwt_buffer)) < 0)
  367. return res;
  368. for(plane_index=0; plane_index<3; plane_index++){
  369. Plane *p= &s->plane[plane_index];
  370. p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
  371. && p->hcoeff[1]==-10
  372. && p->hcoeff[2]==2;
  373. }
  374. ff_snow_alloc_blocks(s);
  375. if(ff_snow_frame_start(s) < 0)
  376. return -1;
  377. //keyframe flag duplication mess FIXME
  378. if(avctx->debug&FF_DEBUG_PICT_INFO)
  379. av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog);
  380. if ((res = decode_blocks(s)) < 0)
  381. return res;
  382. for(plane_index=0; plane_index<3; plane_index++){
  383. Plane *p= &s->plane[plane_index];
  384. int w= p->width;
  385. int h= p->height;
  386. int x, y;
  387. int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
  388. if(s->avctx->debug&2048){
  389. memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
  390. predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
  391. for(y=0; y<h; y++){
  392. for(x=0; x<w; x++){
  393. int v= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x];
  394. s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v;
  395. }
  396. }
  397. }
  398. {
  399. for(level=0; level<s->spatial_decomposition_count; level++){
  400. for(orientation=level ? 1 : 0; orientation<4; orientation++){
  401. SubBand *b= &p->band[level][orientation];
  402. unpack_coeffs(s, b, b->parent, orientation);
  403. }
  404. }
  405. }
  406. {
  407. const int mb_h= s->b_height << s->block_max_depth;
  408. const int block_size = MB_SIZE >> s->block_max_depth;
  409. const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
  410. const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
  411. int mb_y;
  412. DWTCompose cs[MAX_DECOMPOSITIONS];
  413. int yd=0, yq=0;
  414. int y;
  415. int end_y;
  416. ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
  417. for(mb_y=0; mb_y<=mb_h; mb_y++){
  418. int slice_starty = block_h*mb_y;
  419. int slice_h = block_h*(mb_y+1);
  420. if (!(s->keyframe || s->avctx->debug&512)){
  421. slice_starty = FFMAX(0, slice_starty - (block_h >> 1));
  422. slice_h -= (block_h >> 1);
  423. }
  424. for(level=0; level<s->spatial_decomposition_count; level++){
  425. for(orientation=level ? 1 : 0; orientation<4; orientation++){
  426. SubBand *b= &p->band[level][orientation];
  427. int start_y;
  428. int end_y;
  429. int our_mb_start = mb_y;
  430. int our_mb_end = (mb_y + 1);
  431. const int extra= 3;
  432. start_y = (mb_y ? ((block_h * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
  433. end_y = (((block_h * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
  434. if (!(s->keyframe || s->avctx->debug&512)){
  435. start_y = FFMAX(0, start_y - (block_h >> (1+s->spatial_decomposition_count - level)));
  436. end_y = FFMAX(0, end_y - (block_h >> (1+s->spatial_decomposition_count - level)));
  437. }
  438. start_y = FFMIN(b->height, start_y);
  439. end_y = FFMIN(b->height, end_y);
  440. if (start_y != end_y){
  441. if (orientation == 0){
  442. SubBand * correlate_band = &p->band[0][0];
  443. int correlate_end_y = FFMIN(b->height, end_y + 1);
  444. int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
  445. decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
  446. correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
  447. dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
  448. }
  449. else
  450. decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
  451. }
  452. }
  453. }
  454. for(; yd<slice_h; yd+=4){
  455. ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, s->temp_idwt_buffer, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
  456. }
  457. if(s->qlog == LOSSLESS_QLOG){
  458. for(; yq<slice_h && yq<h; yq++){
  459. IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
  460. for(x=0; x<w; x++){
  461. line[x] <<= FRAC_BITS;
  462. }
  463. }
  464. }
  465. predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
  466. y = FFMIN(p->height, slice_starty);
  467. end_y = FFMIN(p->height, slice_h);
  468. while(y < end_y)
  469. ff_slice_buffer_release(&s->sb, y++);
  470. }
  471. ff_slice_buffer_flush(&s->sb);
  472. }
  473. }
  474. emms_c();
  475. ff_snow_release_buffer(avctx);
  476. if(!(s->avctx->debug&2048))
  477. *picture= s->current_picture;
  478. else
  479. *picture= s->mconly_picture;
  480. *data_size = sizeof(AVFrame);
  481. bytes_read= c->bytestream - c->bytestream_start;
  482. if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
  483. return bytes_read;
  484. }
  485. static av_cold int decode_end(AVCodecContext *avctx)
  486. {
  487. SnowContext *s = avctx->priv_data;
  488. ff_slice_buffer_destroy(&s->sb);
  489. ff_snow_common_end(s);
  490. return 0;
  491. }
  492. AVCodec ff_snow_decoder = {
  493. .name = "snow",
  494. .type = AVMEDIA_TYPE_VIDEO,
  495. .id = AV_CODEC_ID_SNOW,
  496. .priv_data_size = sizeof(SnowContext),
  497. .init = decode_init,
  498. .close = decode_end,
  499. .decode = decode_frame,
  500. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
  501. .long_name = NULL_IF_CONFIG_SMALL("Snow"),
  502. };