You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

432 lines
14KB

  1. /*
  2. * samplerate conversion for both audio and video
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * samplerate conversion for both audio and video
  24. */
  25. #include <string.h>
  26. #include "avcodec.h"
  27. #include "audioconvert.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/mem.h"
  30. #include "libavutil/samplefmt.h"
  31. #define MAX_CHANNELS 8
  32. struct AVResampleContext;
  33. static const char *context_to_name(void *ptr)
  34. {
  35. return "audioresample";
  36. }
  37. static const AVOption options[] = {{NULL}};
  38. static const AVClass audioresample_context_class = {
  39. "ReSampleContext", context_to_name, options, LIBAVUTIL_VERSION_INT
  40. };
  41. struct ReSampleContext {
  42. struct AVResampleContext *resample_context;
  43. short *temp[MAX_CHANNELS];
  44. int temp_len;
  45. float ratio;
  46. /* channel convert */
  47. int input_channels, output_channels, filter_channels;
  48. AVAudioConvert *convert_ctx[2];
  49. enum AVSampleFormat sample_fmt[2]; ///< input and output sample format
  50. unsigned sample_size[2]; ///< size of one sample in sample_fmt
  51. short *buffer[2]; ///< buffers used for conversion to S16
  52. unsigned buffer_size[2]; ///< sizes of allocated buffers
  53. };
  54. /* n1: number of samples */
  55. static void stereo_to_mono(short *output, short *input, int n1)
  56. {
  57. short *p, *q;
  58. int n = n1;
  59. p = input;
  60. q = output;
  61. while (n >= 4) {
  62. q[0] = (p[0] + p[1]) >> 1;
  63. q[1] = (p[2] + p[3]) >> 1;
  64. q[2] = (p[4] + p[5]) >> 1;
  65. q[3] = (p[6] + p[7]) >> 1;
  66. q += 4;
  67. p += 8;
  68. n -= 4;
  69. }
  70. while (n > 0) {
  71. q[0] = (p[0] + p[1]) >> 1;
  72. q++;
  73. p += 2;
  74. n--;
  75. }
  76. }
  77. /* n1: number of samples */
  78. static void mono_to_stereo(short *output, short *input, int n1)
  79. {
  80. short *p, *q;
  81. int n = n1;
  82. int v;
  83. p = input;
  84. q = output;
  85. while (n >= 4) {
  86. v = p[0]; q[0] = v; q[1] = v;
  87. v = p[1]; q[2] = v; q[3] = v;
  88. v = p[2]; q[4] = v; q[5] = v;
  89. v = p[3]; q[6] = v; q[7] = v;
  90. q += 8;
  91. p += 4;
  92. n -= 4;
  93. }
  94. while (n > 0) {
  95. v = p[0]; q[0] = v; q[1] = v;
  96. q += 2;
  97. p += 1;
  98. n--;
  99. }
  100. }
  101. /*
  102. 5.1 to stereo input: [fl, fr, c, lfe, rl, rr]
  103. - Left = front_left + rear_gain * rear_left + center_gain * center
  104. - Right = front_right + rear_gain * rear_right + center_gain * center
  105. Where rear_gain is usually around 0.5-1.0 and
  106. center_gain is almost always 0.7 (-3 dB)
  107. */
  108. static void surround_to_stereo(short **output, short *input, int channels, int samples)
  109. {
  110. int i;
  111. short l, r;
  112. for (i = 0; i < samples; i++) {
  113. int fl,fr,c,rl,rr;
  114. fl = input[0];
  115. fr = input[1];
  116. c = input[2];
  117. // lfe = input[3];
  118. rl = input[4];
  119. rr = input[5];
  120. l = av_clip_int16(fl + (0.5 * rl) + (0.7 * c));
  121. r = av_clip_int16(fr + (0.5 * rr) + (0.7 * c));
  122. /* output l & r. */
  123. *output[0]++ = l;
  124. *output[1]++ = r;
  125. /* increment input. */
  126. input += channels;
  127. }
  128. }
  129. static void deinterleave(short **output, short *input, int channels, int samples)
  130. {
  131. int i, j;
  132. for (i = 0; i < samples; i++) {
  133. for (j = 0; j < channels; j++) {
  134. *output[j]++ = *input++;
  135. }
  136. }
  137. }
  138. static void interleave(short *output, short **input, int channels, int samples)
  139. {
  140. int i, j;
  141. for (i = 0; i < samples; i++) {
  142. for (j = 0; j < channels; j++) {
  143. *output++ = *input[j]++;
  144. }
  145. }
  146. }
  147. static void ac3_5p1_mux(short *output, short *input1, short *input2, int n)
  148. {
  149. int i;
  150. short l, r;
  151. for (i = 0; i < n; i++) {
  152. l = *input1++;
  153. r = *input2++;
  154. *output++ = l; /* left */
  155. *output++ = (l / 2) + (r / 2); /* center */
  156. *output++ = r; /* right */
  157. *output++ = 0; /* left surround */
  158. *output++ = 0; /* right surroud */
  159. *output++ = 0; /* low freq */
  160. }
  161. }
  162. #define SUPPORT_RESAMPLE(ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8) \
  163. ch8<<7 | ch7<<6 | ch6<<5 | ch5<<4 | ch4<<3 | ch3<<2 | ch2<<1 | ch1<<0
  164. static const uint8_t supported_resampling[MAX_CHANNELS] = {
  165. // output ch: 1 2 3 4 5 6 7 8
  166. SUPPORT_RESAMPLE(1, 1, 0, 0, 0, 0, 0, 0), // 1 input channel
  167. SUPPORT_RESAMPLE(1, 1, 0, 0, 0, 1, 0, 0), // 2 input channels
  168. SUPPORT_RESAMPLE(0, 0, 1, 0, 0, 0, 0, 0), // 3 input channels
  169. SUPPORT_RESAMPLE(0, 0, 0, 1, 0, 0, 0, 0), // 4 input channels
  170. SUPPORT_RESAMPLE(0, 0, 0, 0, 1, 0, 0, 0), // 5 input channels
  171. SUPPORT_RESAMPLE(0, 1, 0, 0, 0, 1, 0, 0), // 6 input channels
  172. SUPPORT_RESAMPLE(0, 0, 0, 0, 0, 0, 1, 0), // 7 input channels
  173. SUPPORT_RESAMPLE(0, 0, 0, 0, 0, 0, 0, 1), // 8 input channels
  174. };
  175. ReSampleContext *av_audio_resample_init(int output_channels, int input_channels,
  176. int output_rate, int input_rate,
  177. enum AVSampleFormat sample_fmt_out,
  178. enum AVSampleFormat sample_fmt_in,
  179. int filter_length, int log2_phase_count,
  180. int linear, double cutoff)
  181. {
  182. ReSampleContext *s;
  183. if (input_channels > MAX_CHANNELS) {
  184. av_log(NULL, AV_LOG_ERROR,
  185. "Resampling with input channels greater than %d is unsupported.\n",
  186. MAX_CHANNELS);
  187. return NULL;
  188. }
  189. if (!(supported_resampling[input_channels-1] & (1<<(output_channels-1)))) {
  190. int i;
  191. av_log(NULL, AV_LOG_ERROR, "Unsupported audio resampling. Allowed "
  192. "output channels for %d input channel%s", input_channels,
  193. input_channels > 1 ? "s:" : ":");
  194. for (i = 0; i < MAX_CHANNELS; i++)
  195. if (supported_resampling[input_channels-1] & (1<<i))
  196. av_log(NULL, AV_LOG_ERROR, " %d", i + 1);
  197. av_log(NULL, AV_LOG_ERROR, "\n");
  198. return NULL;
  199. }
  200. s = av_mallocz(sizeof(ReSampleContext));
  201. if (!s) {
  202. av_log(NULL, AV_LOG_ERROR, "Can't allocate memory for resample context.\n");
  203. return NULL;
  204. }
  205. s->ratio = (float)output_rate / (float)input_rate;
  206. s->input_channels = input_channels;
  207. s->output_channels = output_channels;
  208. s->filter_channels = s->input_channels;
  209. if (s->output_channels < s->filter_channels)
  210. s->filter_channels = s->output_channels;
  211. s->sample_fmt[0] = sample_fmt_in;
  212. s->sample_fmt[1] = sample_fmt_out;
  213. s->sample_size[0] = av_get_bytes_per_sample(s->sample_fmt[0]);
  214. s->sample_size[1] = av_get_bytes_per_sample(s->sample_fmt[1]);
  215. if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) {
  216. if (!(s->convert_ctx[0] = av_audio_convert_alloc(AV_SAMPLE_FMT_S16, 1,
  217. s->sample_fmt[0], 1, NULL, 0))) {
  218. av_log(s, AV_LOG_ERROR,
  219. "Cannot convert %s sample format to s16 sample format\n",
  220. av_get_sample_fmt_name(s->sample_fmt[0]));
  221. av_free(s);
  222. return NULL;
  223. }
  224. }
  225. if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  226. if (!(s->convert_ctx[1] = av_audio_convert_alloc(s->sample_fmt[1], 1,
  227. AV_SAMPLE_FMT_S16, 1, NULL, 0))) {
  228. av_log(s, AV_LOG_ERROR,
  229. "Cannot convert s16 sample format to %s sample format\n",
  230. av_get_sample_fmt_name(s->sample_fmt[1]));
  231. av_audio_convert_free(s->convert_ctx[0]);
  232. av_free(s);
  233. return NULL;
  234. }
  235. }
  236. s->resample_context = av_resample_init(output_rate, input_rate,
  237. filter_length, log2_phase_count,
  238. linear, cutoff);
  239. *(const AVClass**)s->resample_context = &audioresample_context_class;
  240. return s;
  241. }
  242. /* resample audio. 'nb_samples' is the number of input samples */
  243. /* XXX: optimize it ! */
  244. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  245. {
  246. int i, nb_samples1;
  247. short *bufin[MAX_CHANNELS];
  248. short *bufout[MAX_CHANNELS];
  249. short *buftmp2[MAX_CHANNELS], *buftmp3[MAX_CHANNELS];
  250. short *output_bak = NULL;
  251. int lenout;
  252. if (s->input_channels == s->output_channels && s->ratio == 1.0 && 0) {
  253. /* nothing to do */
  254. memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  255. return nb_samples;
  256. }
  257. if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) {
  258. int istride[1] = { s->sample_size[0] };
  259. int ostride[1] = { 2 };
  260. const void *ibuf[1] = { input };
  261. void *obuf[1];
  262. unsigned input_size = nb_samples * s->input_channels * 2;
  263. if (!s->buffer_size[0] || s->buffer_size[0] < input_size) {
  264. av_free(s->buffer[0]);
  265. s->buffer_size[0] = input_size;
  266. s->buffer[0] = av_malloc(s->buffer_size[0]);
  267. if (!s->buffer[0]) {
  268. av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  269. return 0;
  270. }
  271. }
  272. obuf[0] = s->buffer[0];
  273. if (av_audio_convert(s->convert_ctx[0], obuf, ostride,
  274. ibuf, istride, nb_samples * s->input_channels) < 0) {
  275. av_log(s->resample_context, AV_LOG_ERROR,
  276. "Audio sample format conversion failed\n");
  277. return 0;
  278. }
  279. input = s->buffer[0];
  280. }
  281. lenout= 2*s->output_channels*nb_samples * s->ratio + 16;
  282. if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  283. int out_size = lenout * av_get_bytes_per_sample(s->sample_fmt[1]) *
  284. s->output_channels;
  285. output_bak = output;
  286. if (!s->buffer_size[1] || s->buffer_size[1] < out_size) {
  287. av_free(s->buffer[1]);
  288. s->buffer_size[1] = out_size;
  289. s->buffer[1] = av_malloc(s->buffer_size[1]);
  290. if (!s->buffer[1]) {
  291. av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  292. return 0;
  293. }
  294. }
  295. output = s->buffer[1];
  296. }
  297. /* XXX: move those malloc to resample init code */
  298. for (i = 0; i < s->filter_channels; i++) {
  299. bufin[i] = av_malloc((nb_samples + s->temp_len) * sizeof(short));
  300. memcpy(bufin[i], s->temp[i], s->temp_len * sizeof(short));
  301. buftmp2[i] = bufin[i] + s->temp_len;
  302. bufout[i] = av_malloc(lenout * sizeof(short));
  303. }
  304. if (s->input_channels == 2 && s->output_channels == 1) {
  305. buftmp3[0] = output;
  306. stereo_to_mono(buftmp2[0], input, nb_samples);
  307. } else if (s->output_channels >= 2 && s->input_channels == 1) {
  308. buftmp3[0] = bufout[0];
  309. memcpy(buftmp2[0], input, nb_samples * sizeof(short));
  310. } else if (s->input_channels == 6 && s->output_channels ==2) {
  311. buftmp3[0] = bufout[0];
  312. buftmp3[1] = bufout[1];
  313. surround_to_stereo(buftmp2, input, s->input_channels, nb_samples);
  314. } else if (s->output_channels >= s->input_channels && s->input_channels >= 2) {
  315. for (i = 0; i < s->input_channels; i++) {
  316. buftmp3[i] = bufout[i];
  317. }
  318. deinterleave(buftmp2, input, s->input_channels, nb_samples);
  319. } else {
  320. buftmp3[0] = output;
  321. memcpy(buftmp2[0], input, nb_samples * sizeof(short));
  322. }
  323. nb_samples += s->temp_len;
  324. /* resample each channel */
  325. nb_samples1 = 0; /* avoid warning */
  326. for (i = 0; i < s->filter_channels; i++) {
  327. int consumed;
  328. int is_last = i + 1 == s->filter_channels;
  329. nb_samples1 = av_resample(s->resample_context, buftmp3[i], bufin[i],
  330. &consumed, nb_samples, lenout, is_last);
  331. s->temp_len = nb_samples - consumed;
  332. s->temp[i] = av_realloc(s->temp[i], s->temp_len * sizeof(short));
  333. memcpy(s->temp[i], bufin[i] + consumed, s->temp_len * sizeof(short));
  334. }
  335. if (s->output_channels == 2 && s->input_channels == 1) {
  336. mono_to_stereo(output, buftmp3[0], nb_samples1);
  337. } else if (s->output_channels == 6 && s->input_channels == 2) {
  338. ac3_5p1_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  339. } else if ((s->output_channels == s->input_channels && s->input_channels >= 2) ||
  340. (s->output_channels == 2 && s->input_channels == 6)) {
  341. interleave(output, buftmp3, s->output_channels, nb_samples1);
  342. }
  343. if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  344. int istride[1] = { 2 };
  345. int ostride[1] = { s->sample_size[1] };
  346. const void *ibuf[1] = { output };
  347. void *obuf[1] = { output_bak };
  348. if (av_audio_convert(s->convert_ctx[1], obuf, ostride,
  349. ibuf, istride, nb_samples1 * s->output_channels) < 0) {
  350. av_log(s->resample_context, AV_LOG_ERROR,
  351. "Audio sample format convertion failed\n");
  352. return 0;
  353. }
  354. }
  355. for (i = 0; i < s->filter_channels; i++) {
  356. av_free(bufin[i]);
  357. av_free(bufout[i]);
  358. }
  359. return nb_samples1;
  360. }
  361. void audio_resample_close(ReSampleContext *s)
  362. {
  363. int i;
  364. av_resample_close(s->resample_context);
  365. for (i = 0; i < s->filter_channels; i++)
  366. av_freep(&s->temp[i]);
  367. av_freep(&s->buffer[0]);
  368. av_freep(&s->buffer[1]);
  369. av_audio_convert_free(s->convert_ctx[0]);
  370. av_audio_convert_free(s->convert_ctx[1]);
  371. av_free(s);
  372. }