You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

955 lines
32KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/intmath.h"
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "ratecontrol.h"
  30. #include "mpegvideo.h"
  31. #include "libavutil/eval.h"
  32. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  33. #include <assert.h>
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  39. void ff_write_pass1_stats(MpegEncContext *s){
  40. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  41. s->current_picture_ptr->f.display_picture_number, s->current_picture_ptr->f.coded_picture_number, s->pict_type,
  42. s->current_picture.f.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  43. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  44. }
  45. static double get_fps(AVCodecContext *avctx){
  46. return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
  47. }
  48. static inline double qp2bits(RateControlEntry *rce, double qp){
  49. if(qp<=0.0){
  50. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  51. }
  52. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  53. }
  54. static inline double bits2qp(RateControlEntry *rce, double bits){
  55. if(bits<0.9){
  56. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  57. }
  58. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  59. }
  60. int ff_rate_control_init(MpegEncContext *s)
  61. {
  62. RateControlContext *rcc= &s->rc_context;
  63. int i, res;
  64. static const char * const const_names[]={
  65. "PI",
  66. "E",
  67. "iTex",
  68. "pTex",
  69. "tex",
  70. "mv",
  71. "fCode",
  72. "iCount",
  73. "mcVar",
  74. "var",
  75. "isI",
  76. "isP",
  77. "isB",
  78. "avgQP",
  79. "qComp",
  80. /* "lastIQP",
  81. "lastPQP",
  82. "lastBQP",
  83. "nextNonBQP",*/
  84. "avgIITex",
  85. "avgPITex",
  86. "avgPPTex",
  87. "avgBPTex",
  88. "avgTex",
  89. NULL
  90. };
  91. static double (* const func1[])(void *, double)={
  92. (void *)bits2qp,
  93. (void *)qp2bits,
  94. NULL
  95. };
  96. static const char * const func1_names[]={
  97. "bits2qp",
  98. "qp2bits",
  99. NULL
  100. };
  101. emms_c();
  102. res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx);
  103. if (res < 0) {
  104. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  105. return res;
  106. }
  107. for(i=0; i<5; i++){
  108. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  109. rcc->pred[i].count= 1.0;
  110. rcc->pred[i].decay= 0.4;
  111. rcc->i_cplx_sum [i]=
  112. rcc->p_cplx_sum [i]=
  113. rcc->mv_bits_sum[i]=
  114. rcc->qscale_sum [i]=
  115. rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
  116. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  117. }
  118. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  119. if (!rcc->buffer_index)
  120. rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
  121. if(s->flags&CODEC_FLAG_PASS2){
  122. int i;
  123. char *p;
  124. /* find number of pics */
  125. p= s->avctx->stats_in;
  126. for(i=-1; p; i++){
  127. p= strchr(p+1, ';');
  128. }
  129. i+= s->max_b_frames;
  130. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  131. return -1;
  132. rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
  133. rcc->num_entries= i;
  134. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  135. for(i=0; i<rcc->num_entries; i++){
  136. RateControlEntry *rce= &rcc->entry[i];
  137. rce->pict_type= rce->new_pict_type=AV_PICTURE_TYPE_P;
  138. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  139. rce->misc_bits= s->mb_num + 10;
  140. rce->mb_var_sum= s->mb_num*100;
  141. }
  142. /* read stats */
  143. p= s->avctx->stats_in;
  144. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  145. RateControlEntry *rce;
  146. int picture_number;
  147. int e;
  148. char *next;
  149. next= strchr(p, ';');
  150. if(next){
  151. (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
  152. next++;
  153. }
  154. e= sscanf(p, " in:%d ", &picture_number);
  155. assert(picture_number >= 0);
  156. assert(picture_number < rcc->num_entries);
  157. rce= &rcc->entry[picture_number];
  158. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  159. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  160. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  161. if(e!=14){
  162. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  163. return -1;
  164. }
  165. p= next;
  166. }
  167. if(init_pass2(s) < 0) return -1;
  168. //FIXME maybe move to end
  169. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  170. #if CONFIG_LIBXVID
  171. return ff_xvid_rate_control_init(s);
  172. #else
  173. av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  174. return -1;
  175. #endif
  176. }
  177. }
  178. if(!(s->flags&CODEC_FLAG_PASS2)){
  179. rcc->short_term_qsum=0.001;
  180. rcc->short_term_qcount=0.001;
  181. rcc->pass1_rc_eq_output_sum= 0.001;
  182. rcc->pass1_wanted_bits=0.001;
  183. if(s->avctx->qblur > 1.0){
  184. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  185. return -1;
  186. }
  187. /* init stuff with the user specified complexity */
  188. if(s->avctx->rc_initial_cplx){
  189. for(i=0; i<60*30; i++){
  190. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  191. RateControlEntry rce;
  192. if (i%((s->gop_size+3)/4)==0) rce.pict_type= AV_PICTURE_TYPE_I;
  193. else if(i%(s->max_b_frames+1)) rce.pict_type= AV_PICTURE_TYPE_B;
  194. else rce.pict_type= AV_PICTURE_TYPE_P;
  195. rce.new_pict_type= rce.pict_type;
  196. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  197. rce.mb_var_sum = s->mb_num;
  198. rce.qscale = FF_QP2LAMBDA * 2;
  199. rce.f_code = 2;
  200. rce.b_code = 1;
  201. rce.misc_bits= 1;
  202. if(s->pict_type== AV_PICTURE_TYPE_I){
  203. rce.i_count = s->mb_num;
  204. rce.i_tex_bits= bits;
  205. rce.p_tex_bits= 0;
  206. rce.mv_bits= 0;
  207. }else{
  208. rce.i_count = 0; //FIXME we do know this approx
  209. rce.i_tex_bits= 0;
  210. rce.p_tex_bits= bits*0.9;
  211. rce.mv_bits= bits*0.1;
  212. }
  213. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  214. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  215. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  216. rcc->frame_count[rce.pict_type] ++;
  217. get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  218. rcc->pass1_wanted_bits+= s->bit_rate/get_fps(s); //FIXME misbehaves a little for variable fps
  219. }
  220. }
  221. }
  222. return 0;
  223. }
  224. void ff_rate_control_uninit(MpegEncContext *s)
  225. {
  226. RateControlContext *rcc= &s->rc_context;
  227. emms_c();
  228. av_expr_free(rcc->rc_eq_eval);
  229. av_freep(&rcc->entry);
  230. #if CONFIG_LIBXVID
  231. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  232. ff_xvid_rate_control_uninit(s);
  233. #endif
  234. }
  235. int ff_vbv_update(MpegEncContext *s, int frame_size){
  236. RateControlContext *rcc= &s->rc_context;
  237. const double fps= get_fps(s->avctx);
  238. const int buffer_size= s->avctx->rc_buffer_size;
  239. const double min_rate= s->avctx->rc_min_rate/fps;
  240. const double max_rate= s->avctx->rc_max_rate/fps;
  241. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  242. if(buffer_size){
  243. int left;
  244. rcc->buffer_index-= frame_size;
  245. if(rcc->buffer_index < 0){
  246. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  247. rcc->buffer_index= 0;
  248. }
  249. left= buffer_size - rcc->buffer_index - 1;
  250. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  251. if(rcc->buffer_index > buffer_size){
  252. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  253. if(stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  254. stuffing=4;
  255. rcc->buffer_index -= 8*stuffing;
  256. if(s->avctx->debug & FF_DEBUG_RC)
  257. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  258. return stuffing;
  259. }
  260. }
  261. return 0;
  262. }
  263. /**
  264. * Modify the bitrate curve from pass1 for one frame.
  265. */
  266. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  267. RateControlContext *rcc= &s->rc_context;
  268. AVCodecContext *a= s->avctx;
  269. double q, bits;
  270. const int pict_type= rce->new_pict_type;
  271. const double mb_num= s->mb_num;
  272. int i;
  273. double const_values[]={
  274. M_PI,
  275. M_E,
  276. rce->i_tex_bits*rce->qscale,
  277. rce->p_tex_bits*rce->qscale,
  278. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  279. rce->mv_bits/mb_num,
  280. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  281. rce->i_count/mb_num,
  282. rce->mc_mb_var_sum/mb_num,
  283. rce->mb_var_sum/mb_num,
  284. rce->pict_type == AV_PICTURE_TYPE_I,
  285. rce->pict_type == AV_PICTURE_TYPE_P,
  286. rce->pict_type == AV_PICTURE_TYPE_B,
  287. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  288. a->qcompress,
  289. /* rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  290. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  291. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  292. rcc->next_non_b_qscale,*/
  293. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  294. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  295. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  296. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  297. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  298. 0
  299. };
  300. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  301. if (isnan(bits)) {
  302. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  303. return -1;
  304. }
  305. rcc->pass1_rc_eq_output_sum+= bits;
  306. bits*=rate_factor;
  307. if(bits<0.0) bits=0.0;
  308. bits+= 1.0; //avoid 1/0 issues
  309. /* user override */
  310. for(i=0; i<s->avctx->rc_override_count; i++){
  311. RcOverride *rco= s->avctx->rc_override;
  312. if(rco[i].start_frame > frame_num) continue;
  313. if(rco[i].end_frame < frame_num) continue;
  314. if(rco[i].qscale)
  315. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  316. else
  317. bits*= rco[i].quality_factor;
  318. }
  319. q= bits2qp(rce, bits);
  320. /* I/B difference */
  321. if (pict_type==AV_PICTURE_TYPE_I && s->avctx->i_quant_factor<0.0)
  322. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  323. else if(pict_type==AV_PICTURE_TYPE_B && s->avctx->b_quant_factor<0.0)
  324. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  325. if(q<1) q=1;
  326. return q;
  327. }
  328. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  329. RateControlContext *rcc= &s->rc_context;
  330. AVCodecContext *a= s->avctx;
  331. const int pict_type= rce->new_pict_type;
  332. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  333. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  334. if (pict_type==AV_PICTURE_TYPE_I && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==AV_PICTURE_TYPE_P))
  335. q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
  336. else if(pict_type==AV_PICTURE_TYPE_B && a->b_quant_factor>0.0)
  337. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  338. if(q<1) q=1;
  339. /* last qscale / qdiff stuff */
  340. if(rcc->last_non_b_pict_type==pict_type || pict_type!=AV_PICTURE_TYPE_I){
  341. double last_q= rcc->last_qscale_for[pict_type];
  342. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  343. if (q > last_q + maxdiff) q= last_q + maxdiff;
  344. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  345. }
  346. rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
  347. if(pict_type!=AV_PICTURE_TYPE_B)
  348. rcc->last_non_b_pict_type= pict_type;
  349. return q;
  350. }
  351. /**
  352. * Get the qmin & qmax for pict_type.
  353. */
  354. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  355. int qmin= s->avctx->lmin;
  356. int qmax= s->avctx->lmax;
  357. assert(qmin <= qmax);
  358. if(pict_type==AV_PICTURE_TYPE_B){
  359. qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  360. qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  361. }else if(pict_type==AV_PICTURE_TYPE_I){
  362. qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  363. qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  364. }
  365. qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
  366. qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
  367. if(qmax<qmin) qmax= qmin;
  368. *qmin_ret= qmin;
  369. *qmax_ret= qmax;
  370. }
  371. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  372. RateControlContext *rcc= &s->rc_context;
  373. int qmin, qmax;
  374. const int pict_type= rce->new_pict_type;
  375. const double buffer_size= s->avctx->rc_buffer_size;
  376. const double fps= get_fps(s->avctx);
  377. const double min_rate= s->avctx->rc_min_rate / fps;
  378. const double max_rate= s->avctx->rc_max_rate / fps;
  379. get_qminmax(&qmin, &qmax, s, pict_type);
  380. /* modulation */
  381. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==AV_PICTURE_TYPE_P)
  382. q*= s->avctx->rc_qmod_amp;
  383. //printf("q:%f\n", q);
  384. /* buffer overflow/underflow protection */
  385. if(buffer_size){
  386. double expected_size= rcc->buffer_index;
  387. double q_limit;
  388. if(min_rate){
  389. double d= 2*(buffer_size - expected_size)/buffer_size;
  390. if(d>1.0) d=1.0;
  391. else if(d<0.0001) d=0.0001;
  392. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  393. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
  394. if(q > q_limit){
  395. if(s->avctx->debug&FF_DEBUG_RC){
  396. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  397. }
  398. q= q_limit;
  399. }
  400. }
  401. if(max_rate){
  402. double d= 2*expected_size/buffer_size;
  403. if(d>1.0) d=1.0;
  404. else if(d<0.0001) d=0.0001;
  405. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  406. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
  407. if(q < q_limit){
  408. if(s->avctx->debug&FF_DEBUG_RC){
  409. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  410. }
  411. q= q_limit;
  412. }
  413. }
  414. }
  415. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  416. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  417. if (q<qmin) q=qmin;
  418. else if(q>qmax) q=qmax;
  419. }else{
  420. double min2= log(qmin);
  421. double max2= log(qmax);
  422. q= log(q);
  423. q= (q - min2)/(max2-min2) - 0.5;
  424. q*= -4.0;
  425. q= 1.0/(1.0 + exp(q));
  426. q= q*(max2-min2) + min2;
  427. q= exp(q);
  428. }
  429. return q;
  430. }
  431. //----------------------------------
  432. // 1 Pass Code
  433. static double predict_size(Predictor *p, double q, double var)
  434. {
  435. return p->coeff*var / (q*p->count);
  436. }
  437. static void update_predictor(Predictor *p, double q, double var, double size)
  438. {
  439. double new_coeff= size*q / (var + 1);
  440. if(var<10) return;
  441. p->count*= p->decay;
  442. p->coeff*= p->decay;
  443. p->count++;
  444. p->coeff+= new_coeff;
  445. }
  446. static void adaptive_quantization(MpegEncContext *s, double q){
  447. int i;
  448. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  449. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  450. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  451. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  452. const float p_masking = s->avctx->p_masking;
  453. const float border_masking = s->avctx->border_masking;
  454. float bits_sum= 0.0;
  455. float cplx_sum= 0.0;
  456. float *cplx_tab = s->cplx_tab;
  457. float *bits_tab = s->bits_tab;
  458. const int qmin= s->avctx->mb_lmin;
  459. const int qmax= s->avctx->mb_lmax;
  460. Picture * const pic= &s->current_picture;
  461. const int mb_width = s->mb_width;
  462. const int mb_height = s->mb_height;
  463. for(i=0; i<s->mb_num; i++){
  464. const int mb_xy= s->mb_index2xy[i];
  465. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  466. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  467. const int lumi= pic->mb_mean[mb_xy];
  468. float bits, cplx, factor;
  469. int mb_x = mb_xy % s->mb_stride;
  470. int mb_y = mb_xy / s->mb_stride;
  471. int mb_distance;
  472. float mb_factor = 0.0;
  473. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  474. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  475. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  476. cplx= spat_cplx;
  477. factor= 1.0 + p_masking;
  478. }else{
  479. cplx= temp_cplx;
  480. factor= pow(temp_cplx, - temp_cplx_masking);
  481. }
  482. factor*=pow(spat_cplx, - spatial_cplx_masking);
  483. if(lumi>127)
  484. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  485. else
  486. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  487. if(mb_x < mb_width/5){
  488. mb_distance = mb_width/5 - mb_x;
  489. mb_factor = (float)mb_distance / (float)(mb_width/5);
  490. }else if(mb_x > 4*mb_width/5){
  491. mb_distance = mb_x - 4*mb_width/5;
  492. mb_factor = (float)mb_distance / (float)(mb_width/5);
  493. }
  494. if(mb_y < mb_height/5){
  495. mb_distance = mb_height/5 - mb_y;
  496. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  497. }else if(mb_y > 4*mb_height/5){
  498. mb_distance = mb_y - 4*mb_height/5;
  499. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  500. }
  501. factor*= 1.0 - border_masking*mb_factor;
  502. if(factor<0.00001) factor= 0.00001;
  503. bits= cplx*factor;
  504. cplx_sum+= cplx;
  505. bits_sum+= bits;
  506. cplx_tab[i]= cplx;
  507. bits_tab[i]= bits;
  508. }
  509. /* handle qmin/qmax clipping */
  510. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  511. float factor= bits_sum/cplx_sum;
  512. for(i=0; i<s->mb_num; i++){
  513. float newq= q*cplx_tab[i]/bits_tab[i];
  514. newq*= factor;
  515. if (newq > qmax){
  516. bits_sum -= bits_tab[i];
  517. cplx_sum -= cplx_tab[i]*q/qmax;
  518. }
  519. else if(newq < qmin){
  520. bits_sum -= bits_tab[i];
  521. cplx_sum -= cplx_tab[i]*q/qmin;
  522. }
  523. }
  524. if(bits_sum < 0.001) bits_sum= 0.001;
  525. if(cplx_sum < 0.001) cplx_sum= 0.001;
  526. }
  527. for(i=0; i<s->mb_num; i++){
  528. const int mb_xy= s->mb_index2xy[i];
  529. float newq= q*cplx_tab[i]/bits_tab[i];
  530. int intq;
  531. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  532. newq*= bits_sum/cplx_sum;
  533. }
  534. intq= (int)(newq + 0.5);
  535. if (intq > qmax) intq= qmax;
  536. else if(intq < qmin) intq= qmin;
  537. //if(i%s->mb_width==0) printf("\n");
  538. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  539. s->lambda_table[mb_xy]= intq;
  540. }
  541. }
  542. void ff_get_2pass_fcode(MpegEncContext *s){
  543. RateControlContext *rcc= &s->rc_context;
  544. int picture_number= s->picture_number;
  545. RateControlEntry *rce;
  546. rce= &rcc->entry[picture_number];
  547. s->f_code= rce->f_code;
  548. s->b_code= rce->b_code;
  549. }
  550. //FIXME rd or at least approx for dquant
  551. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  552. {
  553. float q;
  554. int qmin, qmax;
  555. float br_compensation;
  556. double diff;
  557. double short_term_q;
  558. double fps;
  559. int picture_number= s->picture_number;
  560. int64_t wanted_bits;
  561. RateControlContext *rcc= &s->rc_context;
  562. AVCodecContext *a= s->avctx;
  563. RateControlEntry local_rce, *rce;
  564. double bits;
  565. double rate_factor;
  566. int var;
  567. const int pict_type= s->pict_type;
  568. Picture * const pic= &s->current_picture;
  569. emms_c();
  570. #if CONFIG_LIBXVID
  571. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  572. return ff_xvid_rate_estimate_qscale(s, dry_run);
  573. #endif
  574. get_qminmax(&qmin, &qmax, s, pict_type);
  575. fps= get_fps(s->avctx);
  576. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  577. /* update predictors */
  578. if(picture_number>2 && !dry_run){
  579. const int last_var= s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  580. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  581. }
  582. if(s->flags&CODEC_FLAG_PASS2){
  583. assert(picture_number>=0);
  584. assert(picture_number<rcc->num_entries);
  585. rce= &rcc->entry[picture_number];
  586. wanted_bits= rce->expected_bits;
  587. }else{
  588. Picture *dts_pic;
  589. rce= &local_rce;
  590. //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
  591. //but the reordering is simpler for now until h.264 b pyramid must be handeld
  592. if(s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  593. dts_pic= s->current_picture_ptr;
  594. else
  595. dts_pic= s->last_picture_ptr;
  596. //if(dts_pic)
  597. // av_log(NULL, AV_LOG_ERROR, "%"PRId64" %"PRId64" %"PRId64" %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number);
  598. if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
  599. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  600. else
  601. wanted_bits = (uint64_t)(s->bit_rate*(double)dts_pic->f.pts / fps);
  602. }
  603. diff= s->total_bits - wanted_bits;
  604. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  605. if(br_compensation<=0.0) br_compensation=0.001;
  606. var= pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  607. short_term_q = 0; /* avoid warning */
  608. if(s->flags&CODEC_FLAG_PASS2){
  609. if(pict_type!=AV_PICTURE_TYPE_I)
  610. assert(pict_type == rce->new_pict_type);
  611. q= rce->new_qscale / br_compensation;
  612. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  613. }else{
  614. rce->pict_type=
  615. rce->new_pict_type= pict_type;
  616. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  617. rce->mb_var_sum = pic-> mb_var_sum;
  618. rce->qscale = FF_QP2LAMBDA * 2;
  619. rce->f_code = s->f_code;
  620. rce->b_code = s->b_code;
  621. rce->misc_bits= 1;
  622. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  623. if(pict_type== AV_PICTURE_TYPE_I){
  624. rce->i_count = s->mb_num;
  625. rce->i_tex_bits= bits;
  626. rce->p_tex_bits= 0;
  627. rce->mv_bits= 0;
  628. }else{
  629. rce->i_count = 0; //FIXME we do know this approx
  630. rce->i_tex_bits= 0;
  631. rce->p_tex_bits= bits*0.9;
  632. rce->mv_bits= bits*0.1;
  633. }
  634. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  635. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  636. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  637. rcc->frame_count[pict_type] ++;
  638. bits= rce->i_tex_bits + rce->p_tex_bits;
  639. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  640. q= get_qscale(s, rce, rate_factor, picture_number);
  641. if (q < 0)
  642. return -1;
  643. assert(q>0.0);
  644. //printf("%f ", q);
  645. q= get_diff_limited_q(s, rce, q);
  646. //printf("%f ", q);
  647. assert(q>0.0);
  648. if(pict_type==AV_PICTURE_TYPE_P || s->intra_only){ //FIXME type dependent blur like in 2-pass
  649. rcc->short_term_qsum*=a->qblur;
  650. rcc->short_term_qcount*=a->qblur;
  651. rcc->short_term_qsum+= q;
  652. rcc->short_term_qcount++;
  653. //printf("%f ", q);
  654. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  655. //printf("%f ", q);
  656. }
  657. assert(q>0.0);
  658. q= modify_qscale(s, rce, q, picture_number);
  659. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  660. assert(q>0.0);
  661. }
  662. if(s->avctx->debug&FF_DEBUG_RC){
  663. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  664. av_get_picture_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  665. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  666. );
  667. }
  668. if (q<qmin) q=qmin;
  669. else if(q>qmax) q=qmax;
  670. if(s->adaptive_quant)
  671. adaptive_quantization(s, q);
  672. else
  673. q= (int)(q + 0.5);
  674. if(!dry_run){
  675. rcc->last_qscale= q;
  676. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  677. rcc->last_mb_var_sum= pic->mb_var_sum;
  678. }
  679. return q;
  680. }
  681. //----------------------------------------------
  682. // 2-Pass code
  683. static int init_pass2(MpegEncContext *s)
  684. {
  685. RateControlContext *rcc= &s->rc_context;
  686. AVCodecContext *a= s->avctx;
  687. int i, toobig;
  688. double fps= get_fps(s->avctx);
  689. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  690. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
  691. uint64_t all_const_bits;
  692. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  693. double rate_factor=0;
  694. double step;
  695. //int last_i_frame=-10000000;
  696. const int filter_size= (int)(a->qblur*4) | 1;
  697. double expected_bits;
  698. double *qscale, *blurred_qscale, qscale_sum;
  699. /* find complexity & const_bits & decide the pict_types */
  700. for(i=0; i<rcc->num_entries; i++){
  701. RateControlEntry *rce= &rcc->entry[i];
  702. rce->new_pict_type= rce->pict_type;
  703. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  704. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  705. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  706. rcc->frame_count[rce->pict_type] ++;
  707. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  708. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  709. }
  710. all_const_bits= const_bits[AV_PICTURE_TYPE_I] + const_bits[AV_PICTURE_TYPE_P] + const_bits[AV_PICTURE_TYPE_B];
  711. if(all_available_bits < all_const_bits){
  712. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  713. return -1;
  714. }
  715. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  716. blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  717. toobig = 0;
  718. for(step=256*256; step>0.0000001; step*=0.5){
  719. expected_bits=0;
  720. rate_factor+= step;
  721. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  722. /* find qscale */
  723. for(i=0; i<rcc->num_entries; i++){
  724. RateControlEntry *rce= &rcc->entry[i];
  725. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  726. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  727. }
  728. assert(filter_size%2==1);
  729. /* fixed I/B QP relative to P mode */
  730. for(i=FFMAX(0, rcc->num_entries-300); i<rcc->num_entries; i++){
  731. RateControlEntry *rce= &rcc->entry[i];
  732. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  733. }
  734. for(i=rcc->num_entries-1; i>=0; i--){
  735. RateControlEntry *rce= &rcc->entry[i];
  736. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  737. }
  738. /* smooth curve */
  739. for(i=0; i<rcc->num_entries; i++){
  740. RateControlEntry *rce= &rcc->entry[i];
  741. const int pict_type= rce->new_pict_type;
  742. int j;
  743. double q=0.0, sum=0.0;
  744. for(j=0; j<filter_size; j++){
  745. int index= i+j-filter_size/2;
  746. double d= index-i;
  747. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  748. if(index < 0 || index >= rcc->num_entries) continue;
  749. if(pict_type != rcc->entry[index].new_pict_type) continue;
  750. q+= qscale[index] * coeff;
  751. sum+= coeff;
  752. }
  753. blurred_qscale[i]= q/sum;
  754. }
  755. /* find expected bits */
  756. for(i=0; i<rcc->num_entries; i++){
  757. RateControlEntry *rce= &rcc->entry[i];
  758. double bits;
  759. rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
  760. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  761. //printf("%d %f\n", rce->new_bits, blurred_qscale[i]);
  762. bits += 8*ff_vbv_update(s, bits);
  763. rce->expected_bits= expected_bits;
  764. expected_bits += bits;
  765. }
  766. /*
  767. av_log(s->avctx, AV_LOG_INFO,
  768. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  769. expected_bits, (int)all_available_bits, rate_factor);
  770. */
  771. if(expected_bits > all_available_bits) {
  772. rate_factor-= step;
  773. ++toobig;
  774. }
  775. }
  776. av_free(qscale);
  777. av_free(blurred_qscale);
  778. /* check bitrate calculations and print info */
  779. qscale_sum = 0.0;
  780. for(i=0; i<rcc->num_entries; i++){
  781. /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  782. i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
  783. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  784. }
  785. assert(toobig <= 40);
  786. av_log(s->avctx, AV_LOG_DEBUG,
  787. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  788. s->bit_rate,
  789. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  790. av_log(s->avctx, AV_LOG_DEBUG,
  791. "[lavc rc] estimated target average qp: %.3f\n",
  792. (float)qscale_sum / rcc->num_entries);
  793. if (toobig == 0) {
  794. av_log(s->avctx, AV_LOG_INFO,
  795. "[lavc rc] Using all of requested bitrate is not "
  796. "necessary for this video with these parameters.\n");
  797. } else if (toobig == 40) {
  798. av_log(s->avctx, AV_LOG_ERROR,
  799. "[lavc rc] Error: bitrate too low for this video "
  800. "with these parameters.\n");
  801. return -1;
  802. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  803. av_log(s->avctx, AV_LOG_ERROR,
  804. "[lavc rc] Error: 2pass curve failed to converge\n");
  805. return -1;
  806. }
  807. return 0;
  808. }