You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

803 lines
24KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "libavutil/audioconvert.h"
  26. #include "avcodec.h"
  27. #include "internal.h"
  28. #include "put_bits.h"
  29. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  30. #define WFRAC_BITS 14 /* fractional bits for window */
  31. #include "mpegaudio.h"
  32. /* currently, cannot change these constants (need to modify
  33. quantization stage) */
  34. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  35. #define SAMPLES_BUF_SIZE 4096
  36. typedef struct MpegAudioContext {
  37. PutBitContext pb;
  38. int nb_channels;
  39. int lsf; /* 1 if mpeg2 low bitrate selected */
  40. int bitrate_index; /* bit rate */
  41. int freq_index;
  42. int frame_size; /* frame size, in bits, without padding */
  43. /* padding computation */
  44. int frame_frac, frame_frac_incr, do_padding;
  45. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  46. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  47. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  48. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  49. /* code to group 3 scale factors */
  50. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  51. int sblimit; /* number of used subbands */
  52. const unsigned char *alloc_table;
  53. } MpegAudioContext;
  54. /* define it to use floats in quantization (I don't like floats !) */
  55. #define USE_FLOATS
  56. #include "mpegaudiodata.h"
  57. #include "mpegaudiotab.h"
  58. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  59. {
  60. MpegAudioContext *s = avctx->priv_data;
  61. int freq = avctx->sample_rate;
  62. int bitrate = avctx->bit_rate;
  63. int channels = avctx->channels;
  64. int i, v, table;
  65. float a;
  66. if (channels <= 0 || channels > 2){
  67. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  68. return AVERROR(EINVAL);
  69. }
  70. bitrate = bitrate / 1000;
  71. s->nb_channels = channels;
  72. avctx->frame_size = MPA_FRAME_SIZE;
  73. avctx->delay = 512 - 32 + 1;
  74. /* encoding freq */
  75. s->lsf = 0;
  76. for(i=0;i<3;i++) {
  77. if (avpriv_mpa_freq_tab[i] == freq)
  78. break;
  79. if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
  80. s->lsf = 1;
  81. break;
  82. }
  83. }
  84. if (i == 3){
  85. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  86. return AVERROR(EINVAL);
  87. }
  88. s->freq_index = i;
  89. /* encoding bitrate & frequency */
  90. for(i=0;i<15;i++) {
  91. if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  92. break;
  93. }
  94. if (i == 15){
  95. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  96. return AVERROR(EINVAL);
  97. }
  98. s->bitrate_index = i;
  99. /* compute total header size & pad bit */
  100. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  101. s->frame_size = ((int)a) * 8;
  102. /* frame fractional size to compute padding */
  103. s->frame_frac = 0;
  104. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  105. /* select the right allocation table */
  106. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  107. /* number of used subbands */
  108. s->sblimit = ff_mpa_sblimit_table[table];
  109. s->alloc_table = ff_mpa_alloc_tables[table];
  110. av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  111. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  112. for(i=0;i<s->nb_channels;i++)
  113. s->samples_offset[i] = 0;
  114. for(i=0;i<257;i++) {
  115. int v;
  116. v = ff_mpa_enwindow[i];
  117. #if WFRAC_BITS != 16
  118. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  119. #endif
  120. filter_bank[i] = v;
  121. if ((i & 63) != 0)
  122. v = -v;
  123. if (i != 0)
  124. filter_bank[512 - i] = v;
  125. }
  126. for(i=0;i<64;i++) {
  127. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  128. if (v <= 0)
  129. v = 1;
  130. scale_factor_table[i] = v;
  131. #ifdef USE_FLOATS
  132. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  133. #else
  134. #define P 15
  135. scale_factor_shift[i] = 21 - P - (i / 3);
  136. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  137. #endif
  138. }
  139. for(i=0;i<128;i++) {
  140. v = i - 64;
  141. if (v <= -3)
  142. v = 0;
  143. else if (v < 0)
  144. v = 1;
  145. else if (v == 0)
  146. v = 2;
  147. else if (v < 3)
  148. v = 3;
  149. else
  150. v = 4;
  151. scale_diff_table[i] = v;
  152. }
  153. for(i=0;i<17;i++) {
  154. v = ff_mpa_quant_bits[i];
  155. if (v < 0)
  156. v = -v;
  157. else
  158. v = v * 3;
  159. total_quant_bits[i] = 12 * v;
  160. }
  161. #if FF_API_OLD_ENCODE_AUDIO
  162. avctx->coded_frame= avcodec_alloc_frame();
  163. if (!avctx->coded_frame)
  164. return AVERROR(ENOMEM);
  165. #endif
  166. return 0;
  167. }
  168. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  169. static void idct32(int *out, int *tab)
  170. {
  171. int i, j;
  172. int *t, *t1, xr;
  173. const int *xp = costab32;
  174. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  175. t = tab + 30;
  176. t1 = tab + 2;
  177. do {
  178. t[0] += t[-4];
  179. t[1] += t[1 - 4];
  180. t -= 4;
  181. } while (t != t1);
  182. t = tab + 28;
  183. t1 = tab + 4;
  184. do {
  185. t[0] += t[-8];
  186. t[1] += t[1-8];
  187. t[2] += t[2-8];
  188. t[3] += t[3-8];
  189. t -= 8;
  190. } while (t != t1);
  191. t = tab;
  192. t1 = tab + 32;
  193. do {
  194. t[ 3] = -t[ 3];
  195. t[ 6] = -t[ 6];
  196. t[11] = -t[11];
  197. t[12] = -t[12];
  198. t[13] = -t[13];
  199. t[15] = -t[15];
  200. t += 16;
  201. } while (t != t1);
  202. t = tab;
  203. t1 = tab + 8;
  204. do {
  205. int x1, x2, x3, x4;
  206. x3 = MUL(t[16], FIX(SQRT2*0.5));
  207. x4 = t[0] - x3;
  208. x3 = t[0] + x3;
  209. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  210. x1 = MUL((t[8] - x2), xp[0]);
  211. x2 = MUL((t[8] + x2), xp[1]);
  212. t[ 0] = x3 + x1;
  213. t[ 8] = x4 - x2;
  214. t[16] = x4 + x2;
  215. t[24] = x3 - x1;
  216. t++;
  217. } while (t != t1);
  218. xp += 2;
  219. t = tab;
  220. t1 = tab + 4;
  221. do {
  222. xr = MUL(t[28],xp[0]);
  223. t[28] = (t[0] - xr);
  224. t[0] = (t[0] + xr);
  225. xr = MUL(t[4],xp[1]);
  226. t[ 4] = (t[24] - xr);
  227. t[24] = (t[24] + xr);
  228. xr = MUL(t[20],xp[2]);
  229. t[20] = (t[8] - xr);
  230. t[ 8] = (t[8] + xr);
  231. xr = MUL(t[12],xp[3]);
  232. t[12] = (t[16] - xr);
  233. t[16] = (t[16] + xr);
  234. t++;
  235. } while (t != t1);
  236. xp += 4;
  237. for (i = 0; i < 4; i++) {
  238. xr = MUL(tab[30-i*4],xp[0]);
  239. tab[30-i*4] = (tab[i*4] - xr);
  240. tab[ i*4] = (tab[i*4] + xr);
  241. xr = MUL(tab[ 2+i*4],xp[1]);
  242. tab[ 2+i*4] = (tab[28-i*4] - xr);
  243. tab[28-i*4] = (tab[28-i*4] + xr);
  244. xr = MUL(tab[31-i*4],xp[0]);
  245. tab[31-i*4] = (tab[1+i*4] - xr);
  246. tab[ 1+i*4] = (tab[1+i*4] + xr);
  247. xr = MUL(tab[ 3+i*4],xp[1]);
  248. tab[ 3+i*4] = (tab[29-i*4] - xr);
  249. tab[29-i*4] = (tab[29-i*4] + xr);
  250. xp += 2;
  251. }
  252. t = tab + 30;
  253. t1 = tab + 1;
  254. do {
  255. xr = MUL(t1[0], *xp);
  256. t1[0] = (t[0] - xr);
  257. t[0] = (t[0] + xr);
  258. t -= 2;
  259. t1 += 2;
  260. xp++;
  261. } while (t >= tab);
  262. for(i=0;i<32;i++) {
  263. out[i] = tab[bitinv32[i]];
  264. }
  265. }
  266. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  267. static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
  268. {
  269. short *p, *q;
  270. int sum, offset, i, j;
  271. int tmp[64];
  272. int tmp1[32];
  273. int *out;
  274. offset = s->samples_offset[ch];
  275. out = &s->sb_samples[ch][0][0][0];
  276. for(j=0;j<36;j++) {
  277. /* 32 samples at once */
  278. for(i=0;i<32;i++) {
  279. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  280. samples += incr;
  281. }
  282. /* filter */
  283. p = s->samples_buf[ch] + offset;
  284. q = filter_bank;
  285. /* maxsum = 23169 */
  286. for(i=0;i<64;i++) {
  287. sum = p[0*64] * q[0*64];
  288. sum += p[1*64] * q[1*64];
  289. sum += p[2*64] * q[2*64];
  290. sum += p[3*64] * q[3*64];
  291. sum += p[4*64] * q[4*64];
  292. sum += p[5*64] * q[5*64];
  293. sum += p[6*64] * q[6*64];
  294. sum += p[7*64] * q[7*64];
  295. tmp[i] = sum;
  296. p++;
  297. q++;
  298. }
  299. tmp1[0] = tmp[16] >> WSHIFT;
  300. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  301. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  302. idct32(out, tmp1);
  303. /* advance of 32 samples */
  304. offset -= 32;
  305. out += 32;
  306. /* handle the wrap around */
  307. if (offset < 0) {
  308. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  309. s->samples_buf[ch], (512 - 32) * 2);
  310. offset = SAMPLES_BUF_SIZE - 512;
  311. }
  312. }
  313. s->samples_offset[ch] = offset;
  314. }
  315. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  316. unsigned char scale_factors[SBLIMIT][3],
  317. int sb_samples[3][12][SBLIMIT],
  318. int sblimit)
  319. {
  320. int *p, vmax, v, n, i, j, k, code;
  321. int index, d1, d2;
  322. unsigned char *sf = &scale_factors[0][0];
  323. for(j=0;j<sblimit;j++) {
  324. for(i=0;i<3;i++) {
  325. /* find the max absolute value */
  326. p = &sb_samples[i][0][j];
  327. vmax = abs(*p);
  328. for(k=1;k<12;k++) {
  329. p += SBLIMIT;
  330. v = abs(*p);
  331. if (v > vmax)
  332. vmax = v;
  333. }
  334. /* compute the scale factor index using log 2 computations */
  335. if (vmax > 1) {
  336. n = av_log2(vmax);
  337. /* n is the position of the MSB of vmax. now
  338. use at most 2 compares to find the index */
  339. index = (21 - n) * 3 - 3;
  340. if (index >= 0) {
  341. while (vmax <= scale_factor_table[index+1])
  342. index++;
  343. } else {
  344. index = 0; /* very unlikely case of overflow */
  345. }
  346. } else {
  347. index = 62; /* value 63 is not allowed */
  348. }
  349. av_dlog(NULL, "%2d:%d in=%x %x %d\n",
  350. j, i, vmax, scale_factor_table[index], index);
  351. /* store the scale factor */
  352. av_assert2(index >=0 && index <= 63);
  353. sf[i] = index;
  354. }
  355. /* compute the transmission factor : look if the scale factors
  356. are close enough to each other */
  357. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  358. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  359. /* handle the 25 cases */
  360. switch(d1 * 5 + d2) {
  361. case 0*5+0:
  362. case 0*5+4:
  363. case 3*5+4:
  364. case 4*5+0:
  365. case 4*5+4:
  366. code = 0;
  367. break;
  368. case 0*5+1:
  369. case 0*5+2:
  370. case 4*5+1:
  371. case 4*5+2:
  372. code = 3;
  373. sf[2] = sf[1];
  374. break;
  375. case 0*5+3:
  376. case 4*5+3:
  377. code = 3;
  378. sf[1] = sf[2];
  379. break;
  380. case 1*5+0:
  381. case 1*5+4:
  382. case 2*5+4:
  383. code = 1;
  384. sf[1] = sf[0];
  385. break;
  386. case 1*5+1:
  387. case 1*5+2:
  388. case 2*5+0:
  389. case 2*5+1:
  390. case 2*5+2:
  391. code = 2;
  392. sf[1] = sf[2] = sf[0];
  393. break;
  394. case 2*5+3:
  395. case 3*5+3:
  396. code = 2;
  397. sf[0] = sf[1] = sf[2];
  398. break;
  399. case 3*5+0:
  400. case 3*5+1:
  401. case 3*5+2:
  402. code = 2;
  403. sf[0] = sf[2] = sf[1];
  404. break;
  405. case 1*5+3:
  406. code = 2;
  407. if (sf[0] > sf[2])
  408. sf[0] = sf[2];
  409. sf[1] = sf[2] = sf[0];
  410. break;
  411. default:
  412. av_assert2(0); //cannot happen
  413. code = 0; /* kill warning */
  414. }
  415. av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
  416. sf[0], sf[1], sf[2], d1, d2, code);
  417. scale_code[j] = code;
  418. sf += 3;
  419. }
  420. }
  421. /* The most important function : psycho acoustic module. In this
  422. encoder there is basically none, so this is the worst you can do,
  423. but also this is the simpler. */
  424. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  425. {
  426. int i;
  427. for(i=0;i<s->sblimit;i++) {
  428. smr[i] = (int)(fixed_smr[i] * 10);
  429. }
  430. }
  431. #define SB_NOTALLOCATED 0
  432. #define SB_ALLOCATED 1
  433. #define SB_NOMORE 2
  434. /* Try to maximize the smr while using a number of bits inferior to
  435. the frame size. I tried to make the code simpler, faster and
  436. smaller than other encoders :-) */
  437. static void compute_bit_allocation(MpegAudioContext *s,
  438. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  439. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  440. int *padding)
  441. {
  442. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  443. int incr;
  444. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  445. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  446. const unsigned char *alloc;
  447. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  448. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  449. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  450. /* compute frame size and padding */
  451. max_frame_size = s->frame_size;
  452. s->frame_frac += s->frame_frac_incr;
  453. if (s->frame_frac >= 65536) {
  454. s->frame_frac -= 65536;
  455. s->do_padding = 1;
  456. max_frame_size += 8;
  457. } else {
  458. s->do_padding = 0;
  459. }
  460. /* compute the header + bit alloc size */
  461. current_frame_size = 32;
  462. alloc = s->alloc_table;
  463. for(i=0;i<s->sblimit;i++) {
  464. incr = alloc[0];
  465. current_frame_size += incr * s->nb_channels;
  466. alloc += 1 << incr;
  467. }
  468. for(;;) {
  469. /* look for the subband with the largest signal to mask ratio */
  470. max_sb = -1;
  471. max_ch = -1;
  472. max_smr = INT_MIN;
  473. for(ch=0;ch<s->nb_channels;ch++) {
  474. for(i=0;i<s->sblimit;i++) {
  475. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  476. max_smr = smr[ch][i];
  477. max_sb = i;
  478. max_ch = ch;
  479. }
  480. }
  481. }
  482. if (max_sb < 0)
  483. break;
  484. av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
  485. current_frame_size, max_frame_size, max_sb, max_ch,
  486. bit_alloc[max_ch][max_sb]);
  487. /* find alloc table entry (XXX: not optimal, should use
  488. pointer table) */
  489. alloc = s->alloc_table;
  490. for(i=0;i<max_sb;i++) {
  491. alloc += 1 << alloc[0];
  492. }
  493. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  494. /* nothing was coded for this band: add the necessary bits */
  495. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  496. incr += total_quant_bits[alloc[1]];
  497. } else {
  498. /* increments bit allocation */
  499. b = bit_alloc[max_ch][max_sb];
  500. incr = total_quant_bits[alloc[b + 1]] -
  501. total_quant_bits[alloc[b]];
  502. }
  503. if (current_frame_size + incr <= max_frame_size) {
  504. /* can increase size */
  505. b = ++bit_alloc[max_ch][max_sb];
  506. current_frame_size += incr;
  507. /* decrease smr by the resolution we added */
  508. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  509. /* max allocation size reached ? */
  510. if (b == ((1 << alloc[0]) - 1))
  511. subband_status[max_ch][max_sb] = SB_NOMORE;
  512. else
  513. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  514. } else {
  515. /* cannot increase the size of this subband */
  516. subband_status[max_ch][max_sb] = SB_NOMORE;
  517. }
  518. }
  519. *padding = max_frame_size - current_frame_size;
  520. av_assert0(*padding >= 0);
  521. }
  522. /*
  523. * Output the mpeg audio layer 2 frame. Note how the code is small
  524. * compared to other encoders :-)
  525. */
  526. static void encode_frame(MpegAudioContext *s,
  527. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  528. int padding)
  529. {
  530. int i, j, k, l, bit_alloc_bits, b, ch;
  531. unsigned char *sf;
  532. int q[3];
  533. PutBitContext *p = &s->pb;
  534. /* header */
  535. put_bits(p, 12, 0xfff);
  536. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  537. put_bits(p, 2, 4-2); /* layer 2 */
  538. put_bits(p, 1, 1); /* no error protection */
  539. put_bits(p, 4, s->bitrate_index);
  540. put_bits(p, 2, s->freq_index);
  541. put_bits(p, 1, s->do_padding); /* use padding */
  542. put_bits(p, 1, 0); /* private_bit */
  543. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  544. put_bits(p, 2, 0); /* mode_ext */
  545. put_bits(p, 1, 0); /* no copyright */
  546. put_bits(p, 1, 1); /* original */
  547. put_bits(p, 2, 0); /* no emphasis */
  548. /* bit allocation */
  549. j = 0;
  550. for(i=0;i<s->sblimit;i++) {
  551. bit_alloc_bits = s->alloc_table[j];
  552. for(ch=0;ch<s->nb_channels;ch++) {
  553. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  554. }
  555. j += 1 << bit_alloc_bits;
  556. }
  557. /* scale codes */
  558. for(i=0;i<s->sblimit;i++) {
  559. for(ch=0;ch<s->nb_channels;ch++) {
  560. if (bit_alloc[ch][i])
  561. put_bits(p, 2, s->scale_code[ch][i]);
  562. }
  563. }
  564. /* scale factors */
  565. for(i=0;i<s->sblimit;i++) {
  566. for(ch=0;ch<s->nb_channels;ch++) {
  567. if (bit_alloc[ch][i]) {
  568. sf = &s->scale_factors[ch][i][0];
  569. switch(s->scale_code[ch][i]) {
  570. case 0:
  571. put_bits(p, 6, sf[0]);
  572. put_bits(p, 6, sf[1]);
  573. put_bits(p, 6, sf[2]);
  574. break;
  575. case 3:
  576. case 1:
  577. put_bits(p, 6, sf[0]);
  578. put_bits(p, 6, sf[2]);
  579. break;
  580. case 2:
  581. put_bits(p, 6, sf[0]);
  582. break;
  583. }
  584. }
  585. }
  586. }
  587. /* quantization & write sub band samples */
  588. for(k=0;k<3;k++) {
  589. for(l=0;l<12;l+=3) {
  590. j = 0;
  591. for(i=0;i<s->sblimit;i++) {
  592. bit_alloc_bits = s->alloc_table[j];
  593. for(ch=0;ch<s->nb_channels;ch++) {
  594. b = bit_alloc[ch][i];
  595. if (b) {
  596. int qindex, steps, m, sample, bits;
  597. /* we encode 3 sub band samples of the same sub band at a time */
  598. qindex = s->alloc_table[j+b];
  599. steps = ff_mpa_quant_steps[qindex];
  600. for(m=0;m<3;m++) {
  601. sample = s->sb_samples[ch][k][l + m][i];
  602. /* divide by scale factor */
  603. #ifdef USE_FLOATS
  604. {
  605. float a;
  606. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  607. q[m] = (int)((a + 1.0) * steps * 0.5);
  608. }
  609. #else
  610. {
  611. int q1, e, shift, mult;
  612. e = s->scale_factors[ch][i][k];
  613. shift = scale_factor_shift[e];
  614. mult = scale_factor_mult[e];
  615. /* normalize to P bits */
  616. if (shift < 0)
  617. q1 = sample << (-shift);
  618. else
  619. q1 = sample >> shift;
  620. q1 = (q1 * mult) >> P;
  621. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  622. }
  623. #endif
  624. if (q[m] >= steps)
  625. q[m] = steps - 1;
  626. av_assert2(q[m] >= 0 && q[m] < steps);
  627. }
  628. bits = ff_mpa_quant_bits[qindex];
  629. if (bits < 0) {
  630. /* group the 3 values to save bits */
  631. put_bits(p, -bits,
  632. q[0] + steps * (q[1] + steps * q[2]));
  633. } else {
  634. put_bits(p, bits, q[0]);
  635. put_bits(p, bits, q[1]);
  636. put_bits(p, bits, q[2]);
  637. }
  638. }
  639. }
  640. /* next subband in alloc table */
  641. j += 1 << bit_alloc_bits;
  642. }
  643. }
  644. }
  645. /* padding */
  646. for(i=0;i<padding;i++)
  647. put_bits(p, 1, 0);
  648. /* flush */
  649. flush_put_bits(p);
  650. }
  651. static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  652. const AVFrame *frame, int *got_packet_ptr)
  653. {
  654. MpegAudioContext *s = avctx->priv_data;
  655. const int16_t *samples = (const int16_t *)frame->data[0];
  656. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  657. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  658. int padding, i, ret;
  659. for(i=0;i<s->nb_channels;i++) {
  660. filter(s, i, samples + i, s->nb_channels);
  661. }
  662. for(i=0;i<s->nb_channels;i++) {
  663. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  664. s->sb_samples[i], s->sblimit);
  665. }
  666. for(i=0;i<s->nb_channels;i++) {
  667. psycho_acoustic_model(s, smr[i]);
  668. }
  669. compute_bit_allocation(s, smr, bit_alloc, &padding);
  670. if ((ret = ff_alloc_packet2(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE)))
  671. return ret;
  672. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  673. encode_frame(s, bit_alloc, padding);
  674. if (frame->pts != AV_NOPTS_VALUE)
  675. avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  676. avpkt->size = put_bits_count(&s->pb) / 8;
  677. *got_packet_ptr = 1;
  678. return 0;
  679. }
  680. static av_cold int MPA_encode_close(AVCodecContext *avctx)
  681. {
  682. #if FF_API_OLD_ENCODE_AUDIO
  683. av_freep(&avctx->coded_frame);
  684. #endif
  685. return 0;
  686. }
  687. static const AVCodecDefault mp2_defaults[] = {
  688. { "b", "128k" },
  689. { NULL },
  690. };
  691. AVCodec ff_mp2_encoder = {
  692. .name = "mp2",
  693. .type = AVMEDIA_TYPE_AUDIO,
  694. .id = AV_CODEC_ID_MP2,
  695. .priv_data_size = sizeof(MpegAudioContext),
  696. .init = MPA_encode_init,
  697. .encode2 = MPA_encode_frame,
  698. .close = MPA_encode_close,
  699. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  700. AV_SAMPLE_FMT_NONE },
  701. .supported_samplerates = (const int[]){
  702. 44100, 48000, 32000, 22050, 24000, 16000, 0
  703. },
  704. .channel_layouts = (const uint64_t[]){ AV_CH_LAYOUT_MONO,
  705. AV_CH_LAYOUT_STEREO,
  706. 0 },
  707. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  708. .defaults = mp2_defaults,
  709. };