You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

214 lines
6.0KB

  1. /*
  2. * LSP routines for ACELP-based codecs
  3. *
  4. * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
  5. * Copyright (c) 2008 Vladimir Voroshilov
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <inttypes.h>
  24. #include "avcodec.h"
  25. #define FRAC_BITS 14
  26. #include "mathops.h"
  27. #include "lsp.h"
  28. #include "celp_math.h"
  29. #include "libavcodec/mips/lsp_mips.h"
  30. #include "libavutil/avassert.h"
  31. void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
  32. {
  33. int i, j;
  34. /* sort lsfq in ascending order. float bubble agorithm,
  35. O(n) if data already sorted, O(n^2) - otherwise */
  36. for(i=0; i<lp_order-1; i++)
  37. for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
  38. FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
  39. for(i=0; i<lp_order; i++)
  40. {
  41. lsfq[i] = FFMAX(lsfq[i], lsfq_min);
  42. lsfq_min = lsfq[i] + lsfq_min_distance;
  43. }
  44. lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
  45. }
  46. void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
  47. {
  48. int i;
  49. float prev = 0.0;
  50. for (i = 0; i < size; i++)
  51. prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
  52. }
  53. void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
  54. {
  55. int i;
  56. /* Convert LSF to LSP, lsp=cos(lsf) */
  57. for(i=0; i<lp_order; i++)
  58. // 20861 = 2.0 / PI in (0.15)
  59. lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
  60. }
  61. void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
  62. {
  63. int i;
  64. for(i = 0; i < lp_order; i++)
  65. lsp[i] = cos(2.0 * M_PI * lsf[i]);
  66. }
  67. /**
  68. * @brief decodes polynomial coefficients from LSP
  69. * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
  70. * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
  71. */
  72. static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
  73. {
  74. int i, j;
  75. f[0] = 0x400000; // 1.0 in (3.22)
  76. f[1] = -lsp[0] << 8; // *2 and (0.15) -> (3.22)
  77. for(i=2; i<=lp_half_order; i++)
  78. {
  79. f[i] = f[i-2];
  80. for(j=i; j>1; j--)
  81. f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
  82. f[1] -= lsp[2*i-2] << 8;
  83. }
  84. }
  85. void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
  86. {
  87. int i;
  88. int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
  89. int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
  90. lsp2poly(f1, lsp , lp_half_order);
  91. lsp2poly(f2, lsp+1, lp_half_order);
  92. /* 3.2.6 of G.729, Equations 25 and 26*/
  93. lp[0] = 4096;
  94. for(i=1; i<lp_half_order+1; i++)
  95. {
  96. int ff1 = f1[i] + f1[i-1]; // (3.22)
  97. int ff2 = f2[i] - f2[i-1]; // (3.22)
  98. ff1 += 1 << 10; // for rounding
  99. lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  100. lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  101. }
  102. }
  103. void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
  104. {
  105. int lp_half_order = lp_order >> 1;
  106. double buf[MAX_LP_HALF_ORDER + 1];
  107. double pa[MAX_LP_HALF_ORDER + 1];
  108. double *qa = buf + 1;
  109. int i,j;
  110. qa[-1] = 0.0;
  111. ff_lsp2polyf(lsp , pa, lp_half_order );
  112. ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
  113. for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
  114. double paf = pa[i] * (1 + lsp[lp_order - 1]);
  115. double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
  116. lp[i-1] = (paf + qaf) * 0.5;
  117. lp[j-1] = (paf - qaf) * 0.5;
  118. }
  119. lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
  120. pa[lp_half_order] * 0.5;
  121. lp[lp_order - 1] = lsp[lp_order - 1];
  122. }
  123. void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
  124. {
  125. int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
  126. int i;
  127. /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
  128. for(i=0; i<lp_order; i++)
  129. #ifdef G729_BITEXACT
  130. lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
  131. #else
  132. lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
  133. #endif
  134. ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
  135. /* LSP values for second subframe (3.2.5 of G.729)*/
  136. ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
  137. }
  138. #ifndef ff_lsp2polyf
  139. void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
  140. {
  141. int i, j;
  142. f[0] = 1.0;
  143. f[1] = -2 * lsp[0];
  144. lsp -= 2;
  145. for(i=2; i<=lp_half_order; i++)
  146. {
  147. double val = -2 * lsp[2*i];
  148. f[i] = val * f[i-1] + 2*f[i-2];
  149. for(j=i-1; j>1; j--)
  150. f[j] += f[j-1] * val + f[j-2];
  151. f[1] += val;
  152. }
  153. }
  154. #endif /* ff_lsp2polyf */
  155. void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
  156. {
  157. double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
  158. float *lpc2 = lpc + (lp_half_order << 1) - 1;
  159. av_assert2(lp_half_order <= MAX_LP_HALF_ORDER);
  160. ff_lsp2polyf(lsp, pa, lp_half_order);
  161. ff_lsp2polyf(lsp + 1, qa, lp_half_order);
  162. while (lp_half_order--) {
  163. double paf = pa[lp_half_order+1] + pa[lp_half_order];
  164. double qaf = qa[lp_half_order+1] - qa[lp_half_order];
  165. lpc [ lp_half_order] = 0.5*(paf+qaf);
  166. lpc2[-lp_half_order] = 0.5*(paf-qaf);
  167. }
  168. }
  169. void ff_sort_nearly_sorted_floats(float *vals, int len)
  170. {
  171. int i,j;
  172. for (i = 0; i < len - 1; i++)
  173. for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
  174. FFSWAP(float, vals[j], vals[j+1]);
  175. }