You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1575 lines
52KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "internal.h"
  31. #include "get_bits.h"
  32. #include "put_bits.h"
  33. #include "dsputil.h"
  34. #include "thread.h"
  35. #define VLC_BITS 11
  36. #if HAVE_BIGENDIAN
  37. #define B 3
  38. #define G 2
  39. #define R 1
  40. #define A 0
  41. #else
  42. #define B 0
  43. #define G 1
  44. #define R 2
  45. #define A 3
  46. #endif
  47. typedef enum Predictor{
  48. LEFT= 0,
  49. PLANE,
  50. MEDIAN,
  51. } Predictor;
  52. typedef struct HYuvContext{
  53. AVCodecContext *avctx;
  54. Predictor predictor;
  55. GetBitContext gb;
  56. PutBitContext pb;
  57. int interlaced;
  58. int decorrelate;
  59. int bitstream_bpp;
  60. int version;
  61. int yuy2; //use yuy2 instead of 422P
  62. int bgr32; //use bgr32 instead of bgr24
  63. int width, height;
  64. int flags;
  65. int context;
  66. int picture_number;
  67. int last_slice_end;
  68. uint8_t *temp[3];
  69. uint64_t stats[3][256];
  70. uint8_t len[3][256];
  71. uint32_t bits[3][256];
  72. uint32_t pix_bgr_map[1<<VLC_BITS];
  73. VLC vlc[6]; //Y,U,V,YY,YU,YV
  74. AVFrame picture;
  75. uint8_t *bitstream_buffer;
  76. unsigned int bitstream_buffer_size;
  77. DSPContext dsp;
  78. }HYuvContext;
  79. #define classic_shift_luma_table_size 42
  80. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  81. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  82. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  83. 69,68, 0,
  84. 0,0,0,0,0,0,0,0,
  85. };
  86. #define classic_shift_chroma_table_size 59
  87. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  88. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  89. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  90. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0,
  91. 0,0,0,0,0,0,0,0,
  92. };
  93. static const unsigned char classic_add_luma[256] = {
  94. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  95. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  96. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  97. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  98. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  99. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  100. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  101. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  102. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  103. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  104. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  105. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  106. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  107. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  108. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  109. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  110. };
  111. static const unsigned char classic_add_chroma[256] = {
  112. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  113. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  114. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  115. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  116. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  117. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  118. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  119. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  120. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  121. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  122. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  123. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  124. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  125. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  126. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  127. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  128. };
  129. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int left){
  130. int i;
  131. if(w<32){
  132. for(i=0; i<w; i++){
  133. const int temp= src[i];
  134. dst[i]= temp - left;
  135. left= temp;
  136. }
  137. return left;
  138. }else{
  139. for(i=0; i<16; i++){
  140. const int temp= src[i];
  141. dst[i]= temp - left;
  142. left= temp;
  143. }
  144. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  145. return src[w-1];
  146. }
  147. }
  148. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha){
  149. int i;
  150. int r,g,b,a;
  151. r= *red;
  152. g= *green;
  153. b= *blue;
  154. a= *alpha;
  155. for(i=0; i<FFMIN(w,4); i++){
  156. const int rt= src[i*4+R];
  157. const int gt= src[i*4+G];
  158. const int bt= src[i*4+B];
  159. const int at= src[i*4+A];
  160. dst[i*4+R]= rt - r;
  161. dst[i*4+G]= gt - g;
  162. dst[i*4+B]= bt - b;
  163. dst[i*4+A]= at - a;
  164. r = rt;
  165. g = gt;
  166. b = bt;
  167. a = at;
  168. }
  169. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  170. *red= src[(w-1)*4+R];
  171. *green= src[(w-1)*4+G];
  172. *blue= src[(w-1)*4+B];
  173. *alpha= src[(w-1)*4+A];
  174. }
  175. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue){
  176. int i;
  177. int r,g,b;
  178. r= *red;
  179. g= *green;
  180. b= *blue;
  181. for(i=0; i<FFMIN(w,16); i++){
  182. const int rt= src[i*3+0];
  183. const int gt= src[i*3+1];
  184. const int bt= src[i*3+2];
  185. dst[i*3+0]= rt - r;
  186. dst[i*3+1]= gt - g;
  187. dst[i*3+2]= bt - b;
  188. r = rt;
  189. g = gt;
  190. b = bt;
  191. }
  192. s->dsp.diff_bytes(dst+48, src+48, src+48-3, w*3-48);
  193. *red= src[(w-1)*3+0];
  194. *green= src[(w-1)*3+1];
  195. *blue= src[(w-1)*3+2];
  196. }
  197. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  198. int i, val, repeat;
  199. for(i=0; i<256;){
  200. repeat= get_bits(gb, 3);
  201. val = get_bits(gb, 5);
  202. if(repeat==0)
  203. repeat= get_bits(gb, 8);
  204. //printf("%d %d\n", val, repeat);
  205. if(i+repeat > 256 || get_bits_left(gb) < 0) {
  206. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  207. return -1;
  208. }
  209. while (repeat--)
  210. dst[i++] = val;
  211. }
  212. return 0;
  213. }
  214. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  215. int len, index;
  216. uint32_t bits=0;
  217. for(len=32; len>0; len--){
  218. for(index=0; index<256; index++){
  219. if(len_table[index]==len)
  220. dst[index]= bits++;
  221. }
  222. if(bits & 1){
  223. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  224. return -1;
  225. }
  226. bits >>= 1;
  227. }
  228. return 0;
  229. }
  230. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  231. typedef struct {
  232. uint64_t val;
  233. int name;
  234. } HeapElem;
  235. static void heap_sift(HeapElem *h, int root, int size)
  236. {
  237. while(root*2+1 < size) {
  238. int child = root*2+1;
  239. if(child < size-1 && h[child].val > h[child+1].val)
  240. child++;
  241. if(h[root].val > h[child].val) {
  242. FFSWAP(HeapElem, h[root], h[child]);
  243. root = child;
  244. } else
  245. break;
  246. }
  247. }
  248. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  249. HeapElem h[256];
  250. int up[2*256];
  251. int len[2*256];
  252. int offset, i, next;
  253. int size = 256;
  254. for(offset=1; ; offset<<=1){
  255. for(i=0; i<size; i++){
  256. h[i].name = i;
  257. h[i].val = (stats[i] << 8) + offset;
  258. }
  259. for(i=size/2-1; i>=0; i--)
  260. heap_sift(h, i, size);
  261. for(next=size; next<size*2-1; next++){
  262. // merge the two smallest entries, and put it back in the heap
  263. uint64_t min1v = h[0].val;
  264. up[h[0].name] = next;
  265. h[0].val = INT64_MAX;
  266. heap_sift(h, 0, size);
  267. up[h[0].name] = next;
  268. h[0].name = next;
  269. h[0].val += min1v;
  270. heap_sift(h, 0, size);
  271. }
  272. len[2*size-2] = 0;
  273. for(i=2*size-3; i>=size; i--)
  274. len[i] = len[up[i]] + 1;
  275. for(i=0; i<size; i++) {
  276. dst[i] = len[up[i]] + 1;
  277. if(dst[i] >= 32) break;
  278. }
  279. if(i==size) break;
  280. }
  281. }
  282. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  283. static void generate_joint_tables(HYuvContext *s){
  284. uint16_t symbols[1<<VLC_BITS];
  285. uint16_t bits[1<<VLC_BITS];
  286. uint8_t len[1<<VLC_BITS];
  287. if(s->bitstream_bpp < 24){
  288. int p, i, y, u;
  289. for(p=0; p<3; p++){
  290. for(i=y=0; y<256; y++){
  291. int len0 = s->len[0][y];
  292. int limit = VLC_BITS - len0;
  293. if(limit <= 0)
  294. continue;
  295. for(u=0; u<256; u++){
  296. int len1 = s->len[p][u];
  297. if(len1 > limit)
  298. continue;
  299. len[i] = len0 + len1;
  300. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  301. symbols[i] = (y<<8) + u;
  302. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  303. i++;
  304. }
  305. }
  306. ff_free_vlc(&s->vlc[3+p]);
  307. ff_init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  308. }
  309. }else{
  310. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  311. int i, b, g, r, code;
  312. int p0 = s->decorrelate;
  313. int p1 = !s->decorrelate;
  314. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  315. // cover all the combinations that fit in 11 bits total, and it doesn't
  316. // matter if we miss a few rare codes.
  317. for(i=0, g=-16; g<16; g++){
  318. int len0 = s->len[p0][g&255];
  319. int limit0 = VLC_BITS - len0;
  320. if(limit0 < 2)
  321. continue;
  322. for(b=-16; b<16; b++){
  323. int len1 = s->len[p1][b&255];
  324. int limit1 = limit0 - len1;
  325. if(limit1 < 1)
  326. continue;
  327. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  328. for(r=-16; r<16; r++){
  329. int len2 = s->len[2][r&255];
  330. if(len2 > limit1)
  331. continue;
  332. len[i] = len0 + len1 + len2;
  333. bits[i] = (code << len2) + s->bits[2][r&255];
  334. if(s->decorrelate){
  335. map[i][G] = g;
  336. map[i][B] = g+b;
  337. map[i][R] = g+r;
  338. }else{
  339. map[i][B] = g;
  340. map[i][G] = b;
  341. map[i][R] = r;
  342. }
  343. i++;
  344. }
  345. }
  346. }
  347. ff_free_vlc(&s->vlc[3]);
  348. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  349. }
  350. }
  351. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  352. GetBitContext gb;
  353. int i;
  354. init_get_bits(&gb, src, length*8);
  355. for(i=0; i<3; i++){
  356. if(read_len_table(s->len[i], &gb)<0)
  357. return -1;
  358. if(generate_bits_table(s->bits[i], s->len[i])<0){
  359. return -1;
  360. }
  361. ff_free_vlc(&s->vlc[i]);
  362. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  363. }
  364. generate_joint_tables(s);
  365. return (get_bits_count(&gb)+7)/8;
  366. }
  367. static int read_old_huffman_tables(HYuvContext *s){
  368. GetBitContext gb;
  369. int i;
  370. init_get_bits(&gb, classic_shift_luma, classic_shift_luma_table_size*8);
  371. if(read_len_table(s->len[0], &gb)<0)
  372. return -1;
  373. init_get_bits(&gb, classic_shift_chroma, classic_shift_chroma_table_size*8);
  374. if(read_len_table(s->len[1], &gb)<0)
  375. return -1;
  376. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  377. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  378. if(s->bitstream_bpp >= 24){
  379. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  380. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  381. }
  382. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  383. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  384. for(i=0; i<3; i++){
  385. ff_free_vlc(&s->vlc[i]);
  386. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  387. }
  388. generate_joint_tables(s);
  389. return 0;
  390. }
  391. static av_cold void alloc_temp(HYuvContext *s){
  392. int i;
  393. if(s->bitstream_bpp<24){
  394. for(i=0; i<3; i++){
  395. s->temp[i]= av_malloc(s->width + 16);
  396. }
  397. }else{
  398. s->temp[0]= av_mallocz(4*s->width + 16);
  399. }
  400. }
  401. static av_cold int common_init(AVCodecContext *avctx){
  402. HYuvContext *s = avctx->priv_data;
  403. s->avctx= avctx;
  404. s->flags= avctx->flags;
  405. ff_dsputil_init(&s->dsp, avctx);
  406. s->width= avctx->width;
  407. s->height= avctx->height;
  408. av_assert1(s->width>0 && s->height>0);
  409. return 0;
  410. }
  411. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  412. static av_cold int decode_init(AVCodecContext *avctx)
  413. {
  414. HYuvContext *s = avctx->priv_data;
  415. common_init(avctx);
  416. memset(s->vlc, 0, 3*sizeof(VLC));
  417. avctx->coded_frame= &s->picture;
  418. avcodec_get_frame_defaults(&s->picture);
  419. s->interlaced= s->height > 288;
  420. s->bgr32=1;
  421. //if(avctx->extradata)
  422. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  423. if(avctx->extradata_size){
  424. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  425. s->version=1; // do such files exist at all?
  426. else
  427. s->version=2;
  428. }else
  429. s->version=0;
  430. if(s->version==2){
  431. int method, interlace;
  432. if (avctx->extradata_size < 4)
  433. return -1;
  434. method= ((uint8_t*)avctx->extradata)[0];
  435. s->decorrelate= method&64 ? 1 : 0;
  436. s->predictor= method&63;
  437. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  438. if(s->bitstream_bpp==0)
  439. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  440. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  441. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  442. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  443. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  444. return -1;
  445. }else{
  446. switch(avctx->bits_per_coded_sample&7){
  447. case 1:
  448. s->predictor= LEFT;
  449. s->decorrelate= 0;
  450. break;
  451. case 2:
  452. s->predictor= LEFT;
  453. s->decorrelate= 1;
  454. break;
  455. case 3:
  456. s->predictor= PLANE;
  457. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  458. break;
  459. case 4:
  460. s->predictor= MEDIAN;
  461. s->decorrelate= 0;
  462. break;
  463. default:
  464. s->predictor= LEFT; //OLD
  465. s->decorrelate= 0;
  466. break;
  467. }
  468. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  469. s->context= 0;
  470. if(read_old_huffman_tables(s) < 0)
  471. return -1;
  472. }
  473. switch(s->bitstream_bpp){
  474. case 12:
  475. avctx->pix_fmt = PIX_FMT_YUV420P;
  476. break;
  477. case 16:
  478. if(s->yuy2){
  479. avctx->pix_fmt = PIX_FMT_YUYV422;
  480. }else{
  481. avctx->pix_fmt = PIX_FMT_YUV422P;
  482. }
  483. break;
  484. case 24:
  485. case 32:
  486. if(s->bgr32){
  487. avctx->pix_fmt = PIX_FMT_RGB32;
  488. }else{
  489. avctx->pix_fmt = PIX_FMT_BGR24;
  490. }
  491. break;
  492. default:
  493. return AVERROR_INVALIDDATA;
  494. }
  495. if ((avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P) && avctx->width & 1) {
  496. av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
  497. return AVERROR_INVALIDDATA;
  498. }
  499. alloc_temp(s);
  500. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  501. return 0;
  502. }
  503. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  504. {
  505. HYuvContext *s = avctx->priv_data;
  506. int i;
  507. avctx->coded_frame= &s->picture;
  508. alloc_temp(s);
  509. for (i = 0; i < 6; i++)
  510. s->vlc[i].table = NULL;
  511. if(s->version==2){
  512. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  513. return -1;
  514. }else{
  515. if(read_old_huffman_tables(s) < 0)
  516. return -1;
  517. }
  518. return 0;
  519. }
  520. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  521. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  522. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  523. int i;
  524. int index= 0;
  525. for(i=0; i<256;){
  526. int val= len[i];
  527. int repeat=0;
  528. for(; i<256 && len[i]==val && repeat<255; i++)
  529. repeat++;
  530. av_assert0(val < 32 && val >0 && repeat<256 && repeat>0);
  531. if(repeat>7){
  532. buf[index++]= val;
  533. buf[index++]= repeat;
  534. }else{
  535. buf[index++]= val | (repeat<<5);
  536. }
  537. }
  538. return index;
  539. }
  540. static av_cold int encode_init(AVCodecContext *avctx)
  541. {
  542. HYuvContext *s = avctx->priv_data;
  543. int i, j;
  544. common_init(avctx);
  545. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  546. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  547. s->version=2;
  548. avctx->coded_frame= &s->picture;
  549. switch(avctx->pix_fmt){
  550. case PIX_FMT_YUV420P:
  551. case PIX_FMT_YUV422P:
  552. if (s->width & 1) {
  553. av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
  554. return AVERROR(EINVAL);
  555. }
  556. s->bitstream_bpp = avctx->pix_fmt == PIX_FMT_YUV420P ? 12 : 16;
  557. break;
  558. case PIX_FMT_RGB32:
  559. s->bitstream_bpp= 32;
  560. break;
  561. case PIX_FMT_RGB24:
  562. s->bitstream_bpp= 24;
  563. break;
  564. default:
  565. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  566. return -1;
  567. }
  568. avctx->bits_per_coded_sample= s->bitstream_bpp;
  569. s->decorrelate= s->bitstream_bpp >= 24;
  570. s->predictor= avctx->prediction_method;
  571. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  572. if(avctx->context_model==1){
  573. s->context= avctx->context_model;
  574. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  575. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  576. return -1;
  577. }
  578. }else s->context= 0;
  579. if(avctx->codec->id==AV_CODEC_ID_HUFFYUV){
  580. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  581. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  582. return -1;
  583. }
  584. if(avctx->context_model){
  585. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  586. return -1;
  587. }
  588. if(s->interlaced != ( s->height > 288 ))
  589. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  590. }
  591. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  592. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  593. return -1;
  594. }
  595. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  596. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  597. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  598. if(s->context)
  599. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  600. ((uint8_t*)avctx->extradata)[3]= 0;
  601. s->avctx->extradata_size= 4;
  602. if(avctx->stats_in){
  603. char *p= avctx->stats_in;
  604. for(i=0; i<3; i++)
  605. for(j=0; j<256; j++)
  606. s->stats[i][j]= 1;
  607. for(;;){
  608. for(i=0; i<3; i++){
  609. char *next;
  610. for(j=0; j<256; j++){
  611. s->stats[i][j]+= strtol(p, &next, 0);
  612. if(next==p) return -1;
  613. p=next;
  614. }
  615. }
  616. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  617. }
  618. }else{
  619. for(i=0; i<3; i++)
  620. for(j=0; j<256; j++){
  621. int d= FFMIN(j, 256-j);
  622. s->stats[i][j]= 100000000/(d+1);
  623. }
  624. }
  625. for(i=0; i<3; i++){
  626. generate_len_table(s->len[i], s->stats[i]);
  627. if(generate_bits_table(s->bits[i], s->len[i])<0){
  628. return -1;
  629. }
  630. s->avctx->extradata_size+=
  631. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  632. }
  633. if(s->context){
  634. for(i=0; i<3; i++){
  635. int pels = s->width*s->height / (i?40:10);
  636. for(j=0; j<256; j++){
  637. int d= FFMIN(j, 256-j);
  638. s->stats[i][j]= pels/(d+1);
  639. }
  640. }
  641. }else{
  642. for(i=0; i<3; i++)
  643. for(j=0; j<256; j++)
  644. s->stats[i][j]= 0;
  645. }
  646. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  647. alloc_temp(s);
  648. s->picture_number=0;
  649. return 0;
  650. }
  651. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  652. /* TODO instead of restarting the read when the code isn't in the first level
  653. * of the joint table, jump into the 2nd level of the individual table. */
  654. #define READ_2PIX(dst0, dst1, plane1){\
  655. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  656. if(code != 0xffff){\
  657. dst0 = code>>8;\
  658. dst1 = code;\
  659. }else{\
  660. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  661. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  662. }\
  663. }
  664. static void decode_422_bitstream(HYuvContext *s, int count){
  665. int i;
  666. count/=2;
  667. if(count >= (get_bits_left(&s->gb))/(31*4)){
  668. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  669. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  670. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  671. }
  672. }else{
  673. for(i=0; i<count; i++){
  674. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  675. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  676. }
  677. }
  678. }
  679. static void decode_gray_bitstream(HYuvContext *s, int count){
  680. int i;
  681. count/=2;
  682. if(count >= (get_bits_left(&s->gb))/(31*2)){
  683. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  684. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  685. }
  686. }else{
  687. for(i=0; i<count; i++){
  688. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  689. }
  690. }
  691. }
  692. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  693. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  694. int i;
  695. const uint8_t *y = s->temp[0] + offset;
  696. const uint8_t *u = s->temp[1] + offset/2;
  697. const uint8_t *v = s->temp[2] + offset/2;
  698. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  699. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  700. return -1;
  701. }
  702. #define LOAD4\
  703. int y0 = y[2*i];\
  704. int y1 = y[2*i+1];\
  705. int u0 = u[i];\
  706. int v0 = v[i];
  707. count/=2;
  708. if(s->flags&CODEC_FLAG_PASS1){
  709. for(i=0; i<count; i++){
  710. LOAD4;
  711. s->stats[0][y0]++;
  712. s->stats[1][u0]++;
  713. s->stats[0][y1]++;
  714. s->stats[2][v0]++;
  715. }
  716. }
  717. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  718. return 0;
  719. if(s->context){
  720. for(i=0; i<count; i++){
  721. LOAD4;
  722. s->stats[0][y0]++;
  723. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  724. s->stats[1][u0]++;
  725. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  726. s->stats[0][y1]++;
  727. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  728. s->stats[2][v0]++;
  729. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  730. }
  731. }else{
  732. for(i=0; i<count; i++){
  733. LOAD4;
  734. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  735. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  736. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  737. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  738. }
  739. }
  740. return 0;
  741. }
  742. static int encode_gray_bitstream(HYuvContext *s, int count){
  743. int i;
  744. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  745. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  746. return -1;
  747. }
  748. #define LOAD2\
  749. int y0 = s->temp[0][2*i];\
  750. int y1 = s->temp[0][2*i+1];
  751. #define STAT2\
  752. s->stats[0][y0]++;\
  753. s->stats[0][y1]++;
  754. #define WRITE2\
  755. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  756. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  757. count/=2;
  758. if(s->flags&CODEC_FLAG_PASS1){
  759. for(i=0; i<count; i++){
  760. LOAD2;
  761. STAT2;
  762. }
  763. }
  764. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  765. return 0;
  766. if(s->context){
  767. for(i=0; i<count; i++){
  768. LOAD2;
  769. STAT2;
  770. WRITE2;
  771. }
  772. }else{
  773. for(i=0; i<count; i++){
  774. LOAD2;
  775. WRITE2;
  776. }
  777. }
  778. return 0;
  779. }
  780. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  781. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  782. int i;
  783. for(i=0; i<count; i++){
  784. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  785. if(code != -1){
  786. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  787. }else if(decorrelate){
  788. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  789. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  790. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  791. }else{
  792. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  793. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  794. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  795. }
  796. if(alpha)
  797. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  798. }
  799. }
  800. static void decode_bgr_bitstream(HYuvContext *s, int count){
  801. if(s->decorrelate){
  802. if(s->bitstream_bpp==24)
  803. decode_bgr_1(s, count, 1, 0);
  804. else
  805. decode_bgr_1(s, count, 1, 1);
  806. }else{
  807. if(s->bitstream_bpp==24)
  808. decode_bgr_1(s, count, 0, 0);
  809. else
  810. decode_bgr_1(s, count, 0, 1);
  811. }
  812. }
  813. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes){
  814. int i;
  815. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count){
  816. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  817. return -1;
  818. }
  819. #define LOAD3\
  820. int g= s->temp[0][planes==3 ? 3*i+1 : 4*i+G];\
  821. int b= (s->temp[0][planes==3 ? 3*i+2 : 4*i+B] - g) & 0xff;\
  822. int r= (s->temp[0][planes==3 ? 3*i+0 : 4*i+R] - g) & 0xff;\
  823. int a= s->temp[0][planes*i+A];
  824. #define STAT3\
  825. s->stats[0][b]++;\
  826. s->stats[1][g]++;\
  827. s->stats[2][r]++;\
  828. if(planes==4) s->stats[2][a]++;
  829. #define WRITE3\
  830. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  831. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  832. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
  833. if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  834. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  835. for(i=0; i<count; i++){
  836. LOAD3;
  837. STAT3;
  838. }
  839. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  840. for(i=0; i<count; i++){
  841. LOAD3;
  842. STAT3;
  843. WRITE3;
  844. }
  845. }else{
  846. for(i=0; i<count; i++){
  847. LOAD3;
  848. WRITE3;
  849. }
  850. }
  851. return 0;
  852. }
  853. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  854. static void draw_slice(HYuvContext *s, int y){
  855. int h, cy, i;
  856. int offset[AV_NUM_DATA_POINTERS];
  857. if(s->avctx->draw_horiz_band==NULL)
  858. return;
  859. h= y - s->last_slice_end;
  860. y -= h;
  861. if(s->bitstream_bpp==12){
  862. cy= y>>1;
  863. }else{
  864. cy= y;
  865. }
  866. offset[0] = s->picture.linesize[0]*y;
  867. offset[1] = s->picture.linesize[1]*cy;
  868. offset[2] = s->picture.linesize[2]*cy;
  869. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  870. offset[i] = 0;
  871. emms_c();
  872. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  873. s->last_slice_end= y + h;
  874. }
  875. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  876. const uint8_t *buf = avpkt->data;
  877. int buf_size = avpkt->size;
  878. HYuvContext *s = avctx->priv_data;
  879. const int width= s->width;
  880. const int width2= s->width>>1;
  881. const int height= s->height;
  882. int fake_ystride, fake_ustride, fake_vstride;
  883. AVFrame * const p= &s->picture;
  884. int table_size= 0;
  885. AVFrame *picture = data;
  886. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  887. if (!s->bitstream_buffer)
  888. return AVERROR(ENOMEM);
  889. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  890. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  891. if(p->data[0])
  892. ff_thread_release_buffer(avctx, p);
  893. p->reference= 0;
  894. if(ff_thread_get_buffer(avctx, p) < 0){
  895. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  896. return -1;
  897. }
  898. if(s->context){
  899. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  900. if(table_size < 0)
  901. return -1;
  902. }
  903. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  904. return -1;
  905. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  906. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  907. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  908. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  909. s->last_slice_end= 0;
  910. if(s->bitstream_bpp<24){
  911. int y, cy;
  912. int lefty, leftu, leftv;
  913. int lefttopy, lefttopu, lefttopv;
  914. if(s->yuy2){
  915. p->data[0][3]= get_bits(&s->gb, 8);
  916. p->data[0][2]= get_bits(&s->gb, 8);
  917. p->data[0][1]= get_bits(&s->gb, 8);
  918. p->data[0][0]= get_bits(&s->gb, 8);
  919. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  920. return -1;
  921. }else{
  922. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  923. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  924. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  925. p->data[0][0]= get_bits(&s->gb, 8);
  926. switch(s->predictor){
  927. case LEFT:
  928. case PLANE:
  929. decode_422_bitstream(s, width-2);
  930. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  931. if(!(s->flags&CODEC_FLAG_GRAY)){
  932. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  933. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  934. }
  935. for(cy=y=1; y<s->height; y++,cy++){
  936. uint8_t *ydst, *udst, *vdst;
  937. if(s->bitstream_bpp==12){
  938. decode_gray_bitstream(s, width);
  939. ydst= p->data[0] + p->linesize[0]*y;
  940. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  941. if(s->predictor == PLANE){
  942. if(y>s->interlaced)
  943. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  944. }
  945. y++;
  946. if(y>=s->height) break;
  947. }
  948. draw_slice(s, y);
  949. ydst= p->data[0] + p->linesize[0]*y;
  950. udst= p->data[1] + p->linesize[1]*cy;
  951. vdst= p->data[2] + p->linesize[2]*cy;
  952. decode_422_bitstream(s, width);
  953. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  954. if(!(s->flags&CODEC_FLAG_GRAY)){
  955. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  956. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  957. }
  958. if(s->predictor == PLANE){
  959. if(cy>s->interlaced){
  960. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  961. if(!(s->flags&CODEC_FLAG_GRAY)){
  962. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  963. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  964. }
  965. }
  966. }
  967. }
  968. draw_slice(s, height);
  969. break;
  970. case MEDIAN:
  971. /* first line except first 2 pixels is left predicted */
  972. decode_422_bitstream(s, width-2);
  973. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  974. if(!(s->flags&CODEC_FLAG_GRAY)){
  975. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  976. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  977. }
  978. cy=y=1;
  979. /* second line is left predicted for interlaced case */
  980. if(s->interlaced){
  981. decode_422_bitstream(s, width);
  982. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  983. if(!(s->flags&CODEC_FLAG_GRAY)){
  984. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  985. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  986. }
  987. y++; cy++;
  988. }
  989. /* next 4 pixels are left predicted too */
  990. decode_422_bitstream(s, 4);
  991. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  992. if(!(s->flags&CODEC_FLAG_GRAY)){
  993. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  994. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  995. }
  996. /* next line except the first 4 pixels is median predicted */
  997. lefttopy= p->data[0][3];
  998. decode_422_bitstream(s, width-4);
  999. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  1000. if(!(s->flags&CODEC_FLAG_GRAY)){
  1001. lefttopu= p->data[1][1];
  1002. lefttopv= p->data[2][1];
  1003. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  1004. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  1005. }
  1006. y++; cy++;
  1007. for(; y<height; y++,cy++){
  1008. uint8_t *ydst, *udst, *vdst;
  1009. if(s->bitstream_bpp==12){
  1010. while(2*cy > y){
  1011. decode_gray_bitstream(s, width);
  1012. ydst= p->data[0] + p->linesize[0]*y;
  1013. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1014. y++;
  1015. }
  1016. if(y>=height) break;
  1017. }
  1018. draw_slice(s, y);
  1019. decode_422_bitstream(s, width);
  1020. ydst= p->data[0] + p->linesize[0]*y;
  1021. udst= p->data[1] + p->linesize[1]*cy;
  1022. vdst= p->data[2] + p->linesize[2]*cy;
  1023. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1024. if(!(s->flags&CODEC_FLAG_GRAY)){
  1025. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  1026. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  1027. }
  1028. }
  1029. draw_slice(s, height);
  1030. break;
  1031. }
  1032. }
  1033. }else{
  1034. int y;
  1035. int leftr, leftg, leftb, lefta;
  1036. const int last_line= (height-1)*p->linesize[0];
  1037. if(s->bitstream_bpp==32){
  1038. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  1039. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1040. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1041. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1042. }else{
  1043. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1044. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1045. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1046. lefta= p->data[0][last_line+A]= 255;
  1047. skip_bits(&s->gb, 8);
  1048. }
  1049. if(s->bgr32){
  1050. switch(s->predictor){
  1051. case LEFT:
  1052. case PLANE:
  1053. decode_bgr_bitstream(s, width-1);
  1054. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1055. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1056. decode_bgr_bitstream(s, width);
  1057. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1058. if(s->predictor == PLANE){
  1059. if(s->bitstream_bpp!=32) lefta=0;
  1060. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1061. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1062. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1063. }
  1064. }
  1065. }
  1066. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1067. break;
  1068. default:
  1069. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1070. }
  1071. }else{
  1072. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1073. return -1;
  1074. }
  1075. }
  1076. emms_c();
  1077. *picture= *p;
  1078. *data_size = sizeof(AVFrame);
  1079. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1080. }
  1081. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1082. static int common_end(HYuvContext *s){
  1083. int i;
  1084. for(i=0; i<3; i++){
  1085. av_freep(&s->temp[i]);
  1086. }
  1087. return 0;
  1088. }
  1089. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1090. static av_cold int decode_end(AVCodecContext *avctx)
  1091. {
  1092. HYuvContext *s = avctx->priv_data;
  1093. int i;
  1094. if (s->picture.data[0])
  1095. avctx->release_buffer(avctx, &s->picture);
  1096. common_end(s);
  1097. av_freep(&s->bitstream_buffer);
  1098. for(i=0; i<6; i++){
  1099. ff_free_vlc(&s->vlc[i]);
  1100. }
  1101. return 0;
  1102. }
  1103. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1104. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1105. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1106. const AVFrame *pict, int *got_packet)
  1107. {
  1108. HYuvContext *s = avctx->priv_data;
  1109. const int width= s->width;
  1110. const int width2= s->width>>1;
  1111. const int height= s->height;
  1112. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1113. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1114. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1115. AVFrame * const p= &s->picture;
  1116. int i, j, size = 0, ret;
  1117. if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0)
  1118. return ret;
  1119. *p = *pict;
  1120. p->pict_type= AV_PICTURE_TYPE_I;
  1121. p->key_frame= 1;
  1122. if(s->context){
  1123. for(i=0; i<3; i++){
  1124. generate_len_table(s->len[i], s->stats[i]);
  1125. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1126. return -1;
  1127. size += store_table(s, s->len[i], &pkt->data[size]);
  1128. }
  1129. for(i=0; i<3; i++)
  1130. for(j=0; j<256; j++)
  1131. s->stats[i][j] >>= 1;
  1132. }
  1133. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1134. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1135. int lefty, leftu, leftv, y, cy;
  1136. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1137. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1138. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1139. put_bits(&s->pb, 8, p->data[0][0]);
  1140. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1141. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1142. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1143. encode_422_bitstream(s, 2, width-2);
  1144. if(s->predictor==MEDIAN){
  1145. int lefttopy, lefttopu, lefttopv;
  1146. cy=y=1;
  1147. if(s->interlaced){
  1148. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1149. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1150. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1151. encode_422_bitstream(s, 0, width);
  1152. y++; cy++;
  1153. }
  1154. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1155. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1156. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1157. encode_422_bitstream(s, 0, 4);
  1158. lefttopy= p->data[0][3];
  1159. lefttopu= p->data[1][1];
  1160. lefttopv= p->data[2][1];
  1161. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1162. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1163. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1164. encode_422_bitstream(s, 0, width-4);
  1165. y++; cy++;
  1166. for(; y<height; y++,cy++){
  1167. uint8_t *ydst, *udst, *vdst;
  1168. if(s->bitstream_bpp==12){
  1169. while(2*cy > y){
  1170. ydst= p->data[0] + p->linesize[0]*y;
  1171. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1172. encode_gray_bitstream(s, width);
  1173. y++;
  1174. }
  1175. if(y>=height) break;
  1176. }
  1177. ydst= p->data[0] + p->linesize[0]*y;
  1178. udst= p->data[1] + p->linesize[1]*cy;
  1179. vdst= p->data[2] + p->linesize[2]*cy;
  1180. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1181. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1182. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1183. encode_422_bitstream(s, 0, width);
  1184. }
  1185. }else{
  1186. for(cy=y=1; y<height; y++,cy++){
  1187. uint8_t *ydst, *udst, *vdst;
  1188. /* encode a luma only line & y++ */
  1189. if(s->bitstream_bpp==12){
  1190. ydst= p->data[0] + p->linesize[0]*y;
  1191. if(s->predictor == PLANE && s->interlaced < y){
  1192. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1193. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1194. }else{
  1195. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1196. }
  1197. encode_gray_bitstream(s, width);
  1198. y++;
  1199. if(y>=height) break;
  1200. }
  1201. ydst= p->data[0] + p->linesize[0]*y;
  1202. udst= p->data[1] + p->linesize[1]*cy;
  1203. vdst= p->data[2] + p->linesize[2]*cy;
  1204. if(s->predictor == PLANE && s->interlaced < cy){
  1205. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1206. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1207. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1208. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1209. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1210. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1211. }else{
  1212. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1213. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1214. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1215. }
  1216. encode_422_bitstream(s, 0, width);
  1217. }
  1218. }
  1219. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1220. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1221. const int stride = -p->linesize[0];
  1222. const int fake_stride = -fake_ystride;
  1223. int y;
  1224. int leftr, leftg, leftb, lefta;
  1225. put_bits(&s->pb, 8, lefta= data[A]);
  1226. put_bits(&s->pb, 8, leftr= data[R]);
  1227. put_bits(&s->pb, 8, leftg= data[G]);
  1228. put_bits(&s->pb, 8, leftb= data[B]);
  1229. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb, &lefta);
  1230. encode_bgra_bitstream(s, width-1, 4);
  1231. for(y=1; y<s->height; y++){
  1232. uint8_t *dst = data + y*stride;
  1233. if(s->predictor == PLANE && s->interlaced < y){
  1234. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1235. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
  1236. }else{
  1237. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
  1238. }
  1239. encode_bgra_bitstream(s, width, 4);
  1240. }
  1241. }else if(avctx->pix_fmt == PIX_FMT_RGB24){
  1242. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1243. const int stride = -p->linesize[0];
  1244. const int fake_stride = -fake_ystride;
  1245. int y;
  1246. int leftr, leftg, leftb;
  1247. put_bits(&s->pb, 8, leftr= data[0]);
  1248. put_bits(&s->pb, 8, leftg= data[1]);
  1249. put_bits(&s->pb, 8, leftb= data[2]);
  1250. put_bits(&s->pb, 8, 0);
  1251. sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb);
  1252. encode_bgra_bitstream(s, width-1, 3);
  1253. for(y=1; y<s->height; y++){
  1254. uint8_t *dst = data + y*stride;
  1255. if(s->predictor == PLANE && s->interlaced < y){
  1256. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3);
  1257. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1258. }else{
  1259. sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1260. }
  1261. encode_bgra_bitstream(s, width, 3);
  1262. }
  1263. }else{
  1264. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1265. }
  1266. emms_c();
  1267. size+= (put_bits_count(&s->pb)+31)/8;
  1268. put_bits(&s->pb, 16, 0);
  1269. put_bits(&s->pb, 15, 0);
  1270. size/= 4;
  1271. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1272. int j;
  1273. char *p= avctx->stats_out;
  1274. char *end= p + 1024*30;
  1275. for(i=0; i<3; i++){
  1276. for(j=0; j<256; j++){
  1277. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1278. p+= strlen(p);
  1279. s->stats[i][j]= 0;
  1280. }
  1281. snprintf(p, end-p, "\n");
  1282. p++;
  1283. }
  1284. } else
  1285. avctx->stats_out[0] = '\0';
  1286. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1287. flush_put_bits(&s->pb);
  1288. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1289. }
  1290. s->picture_number++;
  1291. pkt->size = size*4;
  1292. pkt->flags |= AV_PKT_FLAG_KEY;
  1293. *got_packet = 1;
  1294. return 0;
  1295. }
  1296. static av_cold int encode_end(AVCodecContext *avctx)
  1297. {
  1298. HYuvContext *s = avctx->priv_data;
  1299. common_end(s);
  1300. av_freep(&avctx->extradata);
  1301. av_freep(&avctx->stats_out);
  1302. return 0;
  1303. }
  1304. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1305. #if CONFIG_HUFFYUV_DECODER
  1306. AVCodec ff_huffyuv_decoder = {
  1307. .name = "huffyuv",
  1308. .type = AVMEDIA_TYPE_VIDEO,
  1309. .id = AV_CODEC_ID_HUFFYUV,
  1310. .priv_data_size = sizeof(HYuvContext),
  1311. .init = decode_init,
  1312. .close = decode_end,
  1313. .decode = decode_frame,
  1314. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1315. CODEC_CAP_FRAME_THREADS,
  1316. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1317. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1318. };
  1319. #endif
  1320. #if CONFIG_FFVHUFF_DECODER
  1321. AVCodec ff_ffvhuff_decoder = {
  1322. .name = "ffvhuff",
  1323. .type = AVMEDIA_TYPE_VIDEO,
  1324. .id = AV_CODEC_ID_FFVHUFF,
  1325. .priv_data_size = sizeof(HYuvContext),
  1326. .init = decode_init,
  1327. .close = decode_end,
  1328. .decode = decode_frame,
  1329. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1330. CODEC_CAP_FRAME_THREADS,
  1331. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1332. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1333. };
  1334. #endif
  1335. #if CONFIG_HUFFYUV_ENCODER
  1336. AVCodec ff_huffyuv_encoder = {
  1337. .name = "huffyuv",
  1338. .type = AVMEDIA_TYPE_VIDEO,
  1339. .id = AV_CODEC_ID_HUFFYUV,
  1340. .priv_data_size = sizeof(HYuvContext),
  1341. .init = encode_init,
  1342. .encode2 = encode_frame,
  1343. .close = encode_end,
  1344. .pix_fmts = (const enum PixelFormat[]){
  1345. PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE
  1346. },
  1347. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1348. };
  1349. #endif
  1350. #if CONFIG_FFVHUFF_ENCODER
  1351. AVCodec ff_ffvhuff_encoder = {
  1352. .name = "ffvhuff",
  1353. .type = AVMEDIA_TYPE_VIDEO,
  1354. .id = AV_CODEC_ID_FFVHUFF,
  1355. .priv_data_size = sizeof(HYuvContext),
  1356. .init = encode_init,
  1357. .encode2 = encode_frame,
  1358. .close = encode_end,
  1359. .pix_fmts = (const enum PixelFormat[]){
  1360. PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE
  1361. },
  1362. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1363. };
  1364. #endif