You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1172 lines
43KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... cavlc bitstream decoding
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 cavlc bitstream decoding.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #define CABAC 0
  27. #define UNCHECKED_BITSTREAM_READER 1
  28. #include "internal.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h264.h"
  32. #include "h264data.h" // FIXME FIXME FIXME
  33. #include "h264_mvpred.h"
  34. #include "golomb.h"
  35. #include "libavutil/avassert.h"
  36. static const uint8_t golomb_to_inter_cbp_gray[16]={
  37. 0, 1, 2, 4, 8, 3, 5,10,12,15, 7,11,13,14, 6, 9,
  38. };
  39. static const uint8_t golomb_to_intra4x4_cbp_gray[16]={
  40. 15, 0, 7,11,13,14, 3, 5,10,12, 1, 2, 4, 8, 6, 9,
  41. };
  42. static const uint8_t chroma_dc_coeff_token_len[4*5]={
  43. 2, 0, 0, 0,
  44. 6, 1, 0, 0,
  45. 6, 6, 3, 0,
  46. 6, 7, 7, 6,
  47. 6, 8, 8, 7,
  48. };
  49. static const uint8_t chroma_dc_coeff_token_bits[4*5]={
  50. 1, 0, 0, 0,
  51. 7, 1, 0, 0,
  52. 4, 6, 1, 0,
  53. 3, 3, 2, 5,
  54. 2, 3, 2, 0,
  55. };
  56. static const uint8_t chroma422_dc_coeff_token_len[4*9]={
  57. 1, 0, 0, 0,
  58. 7, 2, 0, 0,
  59. 7, 7, 3, 0,
  60. 9, 7, 7, 5,
  61. 9, 9, 7, 6,
  62. 10, 10, 9, 7,
  63. 11, 11, 10, 7,
  64. 12, 12, 11, 10,
  65. 13, 12, 12, 11,
  66. };
  67. static const uint8_t chroma422_dc_coeff_token_bits[4*9]={
  68. 1, 0, 0, 0,
  69. 15, 1, 0, 0,
  70. 14, 13, 1, 0,
  71. 7, 12, 11, 1,
  72. 6, 5, 10, 1,
  73. 7, 6, 4, 9,
  74. 7, 6, 5, 8,
  75. 7, 6, 5, 4,
  76. 7, 5, 4, 4,
  77. };
  78. static const uint8_t coeff_token_len[4][4*17]={
  79. {
  80. 1, 0, 0, 0,
  81. 6, 2, 0, 0, 8, 6, 3, 0, 9, 8, 7, 5, 10, 9, 8, 6,
  82. 11,10, 9, 7, 13,11,10, 8, 13,13,11, 9, 13,13,13,10,
  83. 14,14,13,11, 14,14,14,13, 15,15,14,14, 15,15,15,14,
  84. 16,15,15,15, 16,16,16,15, 16,16,16,16, 16,16,16,16,
  85. },
  86. {
  87. 2, 0, 0, 0,
  88. 6, 2, 0, 0, 6, 5, 3, 0, 7, 6, 6, 4, 8, 6, 6, 4,
  89. 8, 7, 7, 5, 9, 8, 8, 6, 11, 9, 9, 6, 11,11,11, 7,
  90. 12,11,11, 9, 12,12,12,11, 12,12,12,11, 13,13,13,12,
  91. 13,13,13,13, 13,14,13,13, 14,14,14,13, 14,14,14,14,
  92. },
  93. {
  94. 4, 0, 0, 0,
  95. 6, 4, 0, 0, 6, 5, 4, 0, 6, 5, 5, 4, 7, 5, 5, 4,
  96. 7, 5, 5, 4, 7, 6, 6, 4, 7, 6, 6, 4, 8, 7, 7, 5,
  97. 8, 8, 7, 6, 9, 8, 8, 7, 9, 9, 8, 8, 9, 9, 9, 8,
  98. 10, 9, 9, 9, 10,10,10,10, 10,10,10,10, 10,10,10,10,
  99. },
  100. {
  101. 6, 0, 0, 0,
  102. 6, 6, 0, 0, 6, 6, 6, 0, 6, 6, 6, 6, 6, 6, 6, 6,
  103. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  104. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  105. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  106. }
  107. };
  108. static const uint8_t coeff_token_bits[4][4*17]={
  109. {
  110. 1, 0, 0, 0,
  111. 5, 1, 0, 0, 7, 4, 1, 0, 7, 6, 5, 3, 7, 6, 5, 3,
  112. 7, 6, 5, 4, 15, 6, 5, 4, 11,14, 5, 4, 8,10,13, 4,
  113. 15,14, 9, 4, 11,10,13,12, 15,14, 9,12, 11,10,13, 8,
  114. 15, 1, 9,12, 11,14,13, 8, 7,10, 9,12, 4, 6, 5, 8,
  115. },
  116. {
  117. 3, 0, 0, 0,
  118. 11, 2, 0, 0, 7, 7, 3, 0, 7,10, 9, 5, 7, 6, 5, 4,
  119. 4, 6, 5, 6, 7, 6, 5, 8, 15, 6, 5, 4, 11,14,13, 4,
  120. 15,10, 9, 4, 11,14,13,12, 8,10, 9, 8, 15,14,13,12,
  121. 11,10, 9,12, 7,11, 6, 8, 9, 8,10, 1, 7, 6, 5, 4,
  122. },
  123. {
  124. 15, 0, 0, 0,
  125. 15,14, 0, 0, 11,15,13, 0, 8,12,14,12, 15,10,11,11,
  126. 11, 8, 9,10, 9,14,13, 9, 8,10, 9, 8, 15,14,13,13,
  127. 11,14,10,12, 15,10,13,12, 11,14, 9,12, 8,10,13, 8,
  128. 13, 7, 9,12, 9,12,11,10, 5, 8, 7, 6, 1, 4, 3, 2,
  129. },
  130. {
  131. 3, 0, 0, 0,
  132. 0, 1, 0, 0, 4, 5, 6, 0, 8, 9,10,11, 12,13,14,15,
  133. 16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
  134. 32,33,34,35, 36,37,38,39, 40,41,42,43, 44,45,46,47,
  135. 48,49,50,51, 52,53,54,55, 56,57,58,59, 60,61,62,63,
  136. }
  137. };
  138. static const uint8_t total_zeros_len[16][16]= {
  139. {1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9},
  140. {3,3,3,3,3,4,4,4,4,5,5,6,6,6,6},
  141. {4,3,3,3,4,4,3,3,4,5,5,6,5,6},
  142. {5,3,4,4,3,3,3,4,3,4,5,5,5},
  143. {4,4,4,3,3,3,3,3,4,5,4,5},
  144. {6,5,3,3,3,3,3,3,4,3,6},
  145. {6,5,3,3,3,2,3,4,3,6},
  146. {6,4,5,3,2,2,3,3,6},
  147. {6,6,4,2,2,3,2,5},
  148. {5,5,3,2,2,2,4},
  149. {4,4,3,3,1,3},
  150. {4,4,2,1,3},
  151. {3,3,1,2},
  152. {2,2,1},
  153. {1,1},
  154. };
  155. static const uint8_t total_zeros_bits[16][16]= {
  156. {1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},
  157. {7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},
  158. {5,7,6,5,4,3,4,3,2,3,2,1,1,0},
  159. {3,7,5,4,6,5,4,3,3,2,2,1,0},
  160. {5,4,3,7,6,5,4,3,2,1,1,0},
  161. {1,1,7,6,5,4,3,2,1,1,0},
  162. {1,1,5,4,3,3,2,1,1,0},
  163. {1,1,1,3,3,2,2,1,0},
  164. {1,0,1,3,2,1,1,1},
  165. {1,0,1,3,2,1,1},
  166. {0,1,1,2,1,3},
  167. {0,1,1,1,1},
  168. {0,1,1,1},
  169. {0,1,1},
  170. {0,1},
  171. };
  172. static const uint8_t chroma_dc_total_zeros_len[3][4]= {
  173. { 1, 2, 3, 3,},
  174. { 1, 2, 2, 0,},
  175. { 1, 1, 0, 0,},
  176. };
  177. static const uint8_t chroma_dc_total_zeros_bits[3][4]= {
  178. { 1, 1, 1, 0,},
  179. { 1, 1, 0, 0,},
  180. { 1, 0, 0, 0,},
  181. };
  182. static const uint8_t chroma422_dc_total_zeros_len[7][8]= {
  183. { 1, 3, 3, 4, 4, 4, 5, 5 },
  184. { 3, 2, 3, 3, 3, 3, 3 },
  185. { 3, 3, 2, 2, 3, 3 },
  186. { 3, 2, 2, 2, 3 },
  187. { 2, 2, 2, 2 },
  188. { 2, 2, 1 },
  189. { 1, 1 },
  190. };
  191. static const uint8_t chroma422_dc_total_zeros_bits[7][8]= {
  192. { 1, 2, 3, 2, 3, 1, 1, 0 },
  193. { 0, 1, 1, 4, 5, 6, 7 },
  194. { 0, 1, 1, 2, 6, 7 },
  195. { 6, 0, 1, 2, 7 },
  196. { 0, 1, 2, 3 },
  197. { 0, 1, 1 },
  198. { 0, 1 },
  199. };
  200. static const uint8_t run_len[7][16]={
  201. {1,1},
  202. {1,2,2},
  203. {2,2,2,2},
  204. {2,2,2,3,3},
  205. {2,2,3,3,3,3},
  206. {2,3,3,3,3,3,3},
  207. {3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},
  208. };
  209. static const uint8_t run_bits[7][16]={
  210. {1,0},
  211. {1,1,0},
  212. {3,2,1,0},
  213. {3,2,1,1,0},
  214. {3,2,3,2,1,0},
  215. {3,0,1,3,2,5,4},
  216. {7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},
  217. };
  218. static VLC coeff_token_vlc[4];
  219. static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
  220. static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
  221. static VLC chroma_dc_coeff_token_vlc;
  222. static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
  223. static const int chroma_dc_coeff_token_vlc_table_size = 256;
  224. static VLC chroma422_dc_coeff_token_vlc;
  225. static VLC_TYPE chroma422_dc_coeff_token_vlc_table[8192][2];
  226. static const int chroma422_dc_coeff_token_vlc_table_size = 8192;
  227. static VLC total_zeros_vlc[15];
  228. static VLC_TYPE total_zeros_vlc_tables[15][512][2];
  229. static const int total_zeros_vlc_tables_size = 512;
  230. static VLC chroma_dc_total_zeros_vlc[3];
  231. static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
  232. static const int chroma_dc_total_zeros_vlc_tables_size = 8;
  233. static VLC chroma422_dc_total_zeros_vlc[7];
  234. static VLC_TYPE chroma422_dc_total_zeros_vlc_tables[7][32][2];
  235. static const int chroma422_dc_total_zeros_vlc_tables_size = 32;
  236. static VLC run_vlc[6];
  237. static VLC_TYPE run_vlc_tables[6][8][2];
  238. static const int run_vlc_tables_size = 8;
  239. static VLC run7_vlc;
  240. static VLC_TYPE run7_vlc_table[96][2];
  241. static const int run7_vlc_table_size = 96;
  242. #define LEVEL_TAB_BITS 8
  243. static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2];
  244. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  245. #define CHROMA422_DC_COEFF_TOKEN_VLC_BITS 13
  246. #define COEFF_TOKEN_VLC_BITS 8
  247. #define TOTAL_ZEROS_VLC_BITS 9
  248. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  249. #define CHROMA422_DC_TOTAL_ZEROS_VLC_BITS 5
  250. #define RUN_VLC_BITS 3
  251. #define RUN7_VLC_BITS 6
  252. /**
  253. * Get the predicted number of non-zero coefficients.
  254. * @param n block index
  255. */
  256. static inline int pred_non_zero_count(H264Context *h, int n){
  257. const int index8= scan8[n];
  258. const int left= h->non_zero_count_cache[index8 - 1];
  259. const int top = h->non_zero_count_cache[index8 - 8];
  260. int i= left + top;
  261. if(i<64) i= (i+1)>>1;
  262. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  263. return i&31;
  264. }
  265. static av_cold void init_cavlc_level_tab(void){
  266. int suffix_length;
  267. unsigned int i;
  268. for(suffix_length=0; suffix_length<7; suffix_length++){
  269. for(i=0; i<(1<<LEVEL_TAB_BITS); i++){
  270. int prefix= LEVEL_TAB_BITS - av_log2(2*i);
  271. if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){
  272. int level_code = (prefix << suffix_length) +
  273. (i >> (av_log2(i) - suffix_length)) - (1 << suffix_length);
  274. int mask = -(level_code&1);
  275. level_code = (((2 + level_code) >> 1) ^ mask) - mask;
  276. cavlc_level_tab[suffix_length][i][0]= level_code;
  277. cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length;
  278. }else if(prefix + 1 <= LEVEL_TAB_BITS){
  279. cavlc_level_tab[suffix_length][i][0]= prefix+100;
  280. cavlc_level_tab[suffix_length][i][1]= prefix + 1;
  281. }else{
  282. cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100;
  283. cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS;
  284. }
  285. }
  286. }
  287. }
  288. av_cold void ff_h264_decode_init_vlc(void){
  289. static int done = 0;
  290. if (!done) {
  291. int i;
  292. int offset;
  293. done = 1;
  294. chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
  295. chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
  296. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  297. &chroma_dc_coeff_token_len [0], 1, 1,
  298. &chroma_dc_coeff_token_bits[0], 1, 1,
  299. INIT_VLC_USE_NEW_STATIC);
  300. chroma422_dc_coeff_token_vlc.table = chroma422_dc_coeff_token_vlc_table;
  301. chroma422_dc_coeff_token_vlc.table_allocated = chroma422_dc_coeff_token_vlc_table_size;
  302. init_vlc(&chroma422_dc_coeff_token_vlc, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 4*9,
  303. &chroma422_dc_coeff_token_len [0], 1, 1,
  304. &chroma422_dc_coeff_token_bits[0], 1, 1,
  305. INIT_VLC_USE_NEW_STATIC);
  306. offset = 0;
  307. for(i=0; i<4; i++){
  308. coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
  309. coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
  310. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  311. &coeff_token_len [i][0], 1, 1,
  312. &coeff_token_bits[i][0], 1, 1,
  313. INIT_VLC_USE_NEW_STATIC);
  314. offset += coeff_token_vlc_tables_size[i];
  315. }
  316. /*
  317. * This is a one time safety check to make sure that
  318. * the packed static coeff_token_vlc table sizes
  319. * were initialized correctly.
  320. */
  321. av_assert0(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables));
  322. for(i=0; i<3; i++){
  323. chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
  324. chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
  325. init_vlc(&chroma_dc_total_zeros_vlc[i],
  326. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  327. &chroma_dc_total_zeros_len [i][0], 1, 1,
  328. &chroma_dc_total_zeros_bits[i][0], 1, 1,
  329. INIT_VLC_USE_NEW_STATIC);
  330. }
  331. for(i=0; i<7; i++){
  332. chroma422_dc_total_zeros_vlc[i].table = chroma422_dc_total_zeros_vlc_tables[i];
  333. chroma422_dc_total_zeros_vlc[i].table_allocated = chroma422_dc_total_zeros_vlc_tables_size;
  334. init_vlc(&chroma422_dc_total_zeros_vlc[i],
  335. CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 8,
  336. &chroma422_dc_total_zeros_len [i][0], 1, 1,
  337. &chroma422_dc_total_zeros_bits[i][0], 1, 1,
  338. INIT_VLC_USE_NEW_STATIC);
  339. }
  340. for(i=0; i<15; i++){
  341. total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
  342. total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
  343. init_vlc(&total_zeros_vlc[i],
  344. TOTAL_ZEROS_VLC_BITS, 16,
  345. &total_zeros_len [i][0], 1, 1,
  346. &total_zeros_bits[i][0], 1, 1,
  347. INIT_VLC_USE_NEW_STATIC);
  348. }
  349. for(i=0; i<6; i++){
  350. run_vlc[i].table = run_vlc_tables[i];
  351. run_vlc[i].table_allocated = run_vlc_tables_size;
  352. init_vlc(&run_vlc[i],
  353. RUN_VLC_BITS, 7,
  354. &run_len [i][0], 1, 1,
  355. &run_bits[i][0], 1, 1,
  356. INIT_VLC_USE_NEW_STATIC);
  357. }
  358. run7_vlc.table = run7_vlc_table,
  359. run7_vlc.table_allocated = run7_vlc_table_size;
  360. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  361. &run_len [6][0], 1, 1,
  362. &run_bits[6][0], 1, 1,
  363. INIT_VLC_USE_NEW_STATIC);
  364. init_cavlc_level_tab();
  365. }
  366. }
  367. /**
  368. *
  369. */
  370. static inline int get_level_prefix(GetBitContext *gb){
  371. unsigned int buf;
  372. int log;
  373. OPEN_READER(re, gb);
  374. UPDATE_CACHE(re, gb);
  375. buf=GET_CACHE(re, gb);
  376. log= 32 - av_log2(buf);
  377. #ifdef TRACE
  378. print_bin(buf>>(32-log), log);
  379. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  380. #endif
  381. LAST_SKIP_BITS(re, gb, log);
  382. CLOSE_READER(re, gb);
  383. return log-1;
  384. }
  385. /**
  386. * Decode a residual block.
  387. * @param n block index
  388. * @param scantable scantable
  389. * @param max_coeff number of coefficients in the block
  390. * @return <0 if an error occurred
  391. */
  392. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  393. MpegEncContext * const s = &h->s;
  394. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  395. int level[16];
  396. int zeros_left, coeff_token, total_coeff, i, trailing_ones, run_before;
  397. //FIXME put trailing_onex into the context
  398. if(max_coeff <= 8){
  399. if (max_coeff == 4)
  400. coeff_token = get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  401. else
  402. coeff_token = get_vlc2(gb, chroma422_dc_coeff_token_vlc.table, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 1);
  403. total_coeff= coeff_token>>2;
  404. }else{
  405. if(n >= LUMA_DC_BLOCK_INDEX){
  406. total_coeff= pred_non_zero_count(h, (n - LUMA_DC_BLOCK_INDEX)*16);
  407. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  408. total_coeff= coeff_token>>2;
  409. }else{
  410. total_coeff= pred_non_zero_count(h, n);
  411. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  412. total_coeff= coeff_token>>2;
  413. }
  414. }
  415. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  416. //FIXME set last_non_zero?
  417. if(total_coeff==0)
  418. return 0;
  419. if(total_coeff > (unsigned)max_coeff) {
  420. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  421. return -1;
  422. }
  423. trailing_ones= coeff_token&3;
  424. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  425. av_assert2(total_coeff<=16);
  426. i = show_bits(gb, 3);
  427. skip_bits(gb, trailing_ones);
  428. level[0] = 1-((i&4)>>1);
  429. level[1] = 1-((i&2) );
  430. level[2] = 1-((i&1)<<1);
  431. if(trailing_ones<total_coeff) {
  432. int mask, prefix;
  433. int suffix_length = total_coeff > 10 & trailing_ones < 3;
  434. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  435. int level_code= cavlc_level_tab[suffix_length][bitsi][0];
  436. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  437. if(level_code >= 100){
  438. prefix= level_code - 100;
  439. if(prefix == LEVEL_TAB_BITS)
  440. prefix += get_level_prefix(gb);
  441. //first coefficient has suffix_length equal to 0 or 1
  442. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  443. if(suffix_length)
  444. level_code= (prefix<<1) + get_bits1(gb); //part
  445. else
  446. level_code= prefix; //part
  447. }else if(prefix==14){
  448. if(suffix_length)
  449. level_code= (prefix<<1) + get_bits1(gb); //part
  450. else
  451. level_code= prefix + get_bits(gb, 4); //part
  452. }else{
  453. level_code= 30;
  454. if(prefix>=16){
  455. if(prefix > 25+3){
  456. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid level prefix\n");
  457. return -1;
  458. }
  459. level_code += (1<<(prefix-3))-4096;
  460. }
  461. level_code += get_bits(gb, prefix-3); //part
  462. }
  463. if(trailing_ones < 3) level_code += 2;
  464. suffix_length = 2;
  465. mask= -(level_code&1);
  466. level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask;
  467. }else{
  468. level_code += ((level_code>>31)|1) & -(trailing_ones < 3);
  469. suffix_length = 1 + (level_code + 3U > 6U);
  470. level[trailing_ones]= level_code;
  471. }
  472. //remaining coefficients have suffix_length > 0
  473. for(i=trailing_ones+1;i<total_coeff;i++) {
  474. static const unsigned int suffix_limit[7] = {0,3,6,12,24,48,INT_MAX };
  475. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  476. level_code= cavlc_level_tab[suffix_length][bitsi][0];
  477. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  478. if(level_code >= 100){
  479. prefix= level_code - 100;
  480. if(prefix == LEVEL_TAB_BITS){
  481. prefix += get_level_prefix(gb);
  482. }
  483. if(prefix<15){
  484. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  485. }else{
  486. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  487. if(prefix>=16)
  488. level_code += (1<<(prefix-3))-4096;
  489. }
  490. mask= -(level_code&1);
  491. level_code= (((2+level_code)>>1) ^ mask) - mask;
  492. }
  493. level[i]= level_code;
  494. suffix_length+= suffix_limit[suffix_length] + level_code > 2U*suffix_limit[suffix_length];
  495. }
  496. }
  497. if(total_coeff == max_coeff)
  498. zeros_left=0;
  499. else{
  500. if (max_coeff <= 8) {
  501. if (max_coeff == 4)
  502. zeros_left = get_vlc2(gb, (chroma_dc_total_zeros_vlc-1)[total_coeff].table,
  503. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  504. else
  505. zeros_left = get_vlc2(gb, (chroma422_dc_total_zeros_vlc-1)[total_coeff].table,
  506. CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 1);
  507. } else {
  508. zeros_left= get_vlc2(gb, (total_zeros_vlc-1)[ total_coeff ].table, TOTAL_ZEROS_VLC_BITS, 1);
  509. }
  510. }
  511. #define STORE_BLOCK(type) \
  512. scantable += zeros_left + total_coeff - 1; \
  513. if(n >= LUMA_DC_BLOCK_INDEX){ \
  514. ((type*)block)[*scantable] = level[0]; \
  515. for(i=1;i<total_coeff && zeros_left > 0;i++) { \
  516. if(zeros_left < 7) \
  517. run_before= get_vlc2(gb, (run_vlc-1)[zeros_left].table, RUN_VLC_BITS, 1); \
  518. else \
  519. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \
  520. zeros_left -= run_before; \
  521. scantable -= 1 + run_before; \
  522. ((type*)block)[*scantable]= level[i]; \
  523. } \
  524. for(;i<total_coeff;i++) { \
  525. scantable--; \
  526. ((type*)block)[*scantable]= level[i]; \
  527. } \
  528. }else{ \
  529. ((type*)block)[*scantable] = ((int)(level[0] * qmul[*scantable] + 32))>>6; \
  530. for(i=1;i<total_coeff && zeros_left > 0;i++) { \
  531. if(zeros_left < 7) \
  532. run_before= get_vlc2(gb, (run_vlc-1)[zeros_left].table, RUN_VLC_BITS, 1); \
  533. else \
  534. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \
  535. zeros_left -= run_before; \
  536. scantable -= 1 + run_before; \
  537. ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
  538. } \
  539. for(;i<total_coeff;i++) { \
  540. scantable--; \
  541. ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
  542. } \
  543. }
  544. if (h->pixel_shift) {
  545. STORE_BLOCK(int32_t)
  546. } else {
  547. STORE_BLOCK(int16_t)
  548. }
  549. if(zeros_left<0){
  550. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  551. return -1;
  552. }
  553. return 0;
  554. }
  555. static av_always_inline int decode_luma_residual(H264Context *h, GetBitContext *gb, const uint8_t *scan, const uint8_t *scan8x8, int pixel_shift, int mb_type, int cbp, int p){
  556. int i4x4, i8x8;
  557. MpegEncContext * const s = &h->s;
  558. int qscale = p == 0 ? s->qscale : h->chroma_qp[p-1];
  559. if(IS_INTRA16x16(mb_type)){
  560. AV_ZERO128(h->mb_luma_dc[p]+0);
  561. AV_ZERO128(h->mb_luma_dc[p]+8);
  562. AV_ZERO128(h->mb_luma_dc[p]+16);
  563. AV_ZERO128(h->mb_luma_dc[p]+24);
  564. if( decode_residual(h, h->intra_gb_ptr, h->mb_luma_dc[p], LUMA_DC_BLOCK_INDEX+p, scan, NULL, 16) < 0){
  565. return -1; //FIXME continue if partitioned and other return -1 too
  566. }
  567. av_assert2((cbp&15) == 0 || (cbp&15) == 15);
  568. if(cbp&15){
  569. for(i8x8=0; i8x8<4; i8x8++){
  570. for(i4x4=0; i4x4<4; i4x4++){
  571. const int index= i4x4 + 4*i8x8 + p*16;
  572. if( decode_residual(h, h->intra_gb_ptr, h->mb + (16*index << pixel_shift),
  573. index, scan + 1, h->dequant4_coeff[p][qscale], 15) < 0 ){
  574. return -1;
  575. }
  576. }
  577. }
  578. return 0xf;
  579. }else{
  580. fill_rectangle(&h->non_zero_count_cache[scan8[p*16]], 4, 4, 8, 0, 1);
  581. return 0;
  582. }
  583. }else{
  584. int cqm = (IS_INTRA( mb_type ) ? 0:3)+p;
  585. /* For CAVLC 4:4:4, we need to keep track of the luma 8x8 CBP for deblocking nnz purposes. */
  586. int new_cbp = 0;
  587. for(i8x8=0; i8x8<4; i8x8++){
  588. if(cbp & (1<<i8x8)){
  589. if(IS_8x8DCT(mb_type)){
  590. DCTELEM *buf = &h->mb[64*i8x8+256*p << pixel_shift];
  591. uint8_t *nnz;
  592. for(i4x4=0; i4x4<4; i4x4++){
  593. const int index= i4x4 + 4*i8x8 + p*16;
  594. if( decode_residual(h, gb, buf, index, scan8x8+16*i4x4,
  595. h->dequant8_coeff[cqm][qscale], 16) < 0 )
  596. return -1;
  597. }
  598. nnz= &h->non_zero_count_cache[ scan8[4*i8x8+p*16] ];
  599. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  600. new_cbp |= !!nnz[0] << i8x8;
  601. }else{
  602. for(i4x4=0; i4x4<4; i4x4++){
  603. const int index= i4x4 + 4*i8x8 + p*16;
  604. if( decode_residual(h, gb, h->mb + (16*index << pixel_shift), index,
  605. scan, h->dequant4_coeff[cqm][qscale], 16) < 0 ){
  606. return -1;
  607. }
  608. new_cbp |= h->non_zero_count_cache[ scan8[index] ] << i8x8;
  609. }
  610. }
  611. }else{
  612. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8+p*16] ];
  613. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  614. }
  615. }
  616. return new_cbp;
  617. }
  618. }
  619. int ff_h264_decode_mb_cavlc(H264Context *h){
  620. MpegEncContext * const s = &h->s;
  621. int mb_xy;
  622. int partition_count;
  623. unsigned int mb_type, cbp;
  624. int dct8x8_allowed= h->pps.transform_8x8_mode;
  625. int decode_chroma = h->sps.chroma_format_idc == 1 || h->sps.chroma_format_idc == 2;
  626. const int pixel_shift = h->pixel_shift;
  627. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  628. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  629. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  630. down the code */
  631. if(h->slice_type_nos != AV_PICTURE_TYPE_I){
  632. if(s->mb_skip_run==-1)
  633. s->mb_skip_run= get_ue_golomb(&s->gb);
  634. if (s->mb_skip_run--) {
  635. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  636. if(s->mb_skip_run==0)
  637. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  638. }
  639. decode_mb_skip(h);
  640. return 0;
  641. }
  642. }
  643. if(FRAME_MBAFF){
  644. if( (s->mb_y&1) == 0 )
  645. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  646. }
  647. h->prev_mb_skipped= 0;
  648. mb_type= get_ue_golomb(&s->gb);
  649. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  650. if(mb_type < 23){
  651. partition_count= b_mb_type_info[mb_type].partition_count;
  652. mb_type= b_mb_type_info[mb_type].type;
  653. }else{
  654. mb_type -= 23;
  655. goto decode_intra_mb;
  656. }
  657. }else if(h->slice_type_nos == AV_PICTURE_TYPE_P){
  658. if(mb_type < 5){
  659. partition_count= p_mb_type_info[mb_type].partition_count;
  660. mb_type= p_mb_type_info[mb_type].type;
  661. }else{
  662. mb_type -= 5;
  663. goto decode_intra_mb;
  664. }
  665. }else{
  666. av_assert2(h->slice_type_nos == AV_PICTURE_TYPE_I);
  667. if(h->slice_type == AV_PICTURE_TYPE_SI && mb_type)
  668. mb_type--;
  669. decode_intra_mb:
  670. if(mb_type > 25){
  671. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_picture_type_char(h->slice_type), s->mb_x, s->mb_y);
  672. return -1;
  673. }
  674. partition_count=0;
  675. cbp= i_mb_type_info[mb_type].cbp;
  676. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  677. mb_type= i_mb_type_info[mb_type].type;
  678. }
  679. if(MB_FIELD)
  680. mb_type |= MB_TYPE_INTERLACED;
  681. h->slice_table[ mb_xy ]= h->slice_num;
  682. if(IS_INTRA_PCM(mb_type)){
  683. unsigned int x;
  684. const int mb_size = ff_h264_mb_sizes[h->sps.chroma_format_idc] *
  685. h->sps.bit_depth_luma >> 3;
  686. // We assume these blocks are very rare so we do not optimize it.
  687. align_get_bits(&s->gb);
  688. // The pixels are stored in the same order as levels in h->mb array.
  689. for(x=0; x < mb_size; x++){
  690. ((uint8_t*)h->mb)[x]= get_bits(&s->gb, 8);
  691. }
  692. // In deblocking, the quantizer is 0
  693. s->current_picture.f.qscale_table[mb_xy] = 0;
  694. // All coeffs are present
  695. memset(h->non_zero_count[mb_xy], 16, 48);
  696. s->current_picture.f.mb_type[mb_xy] = mb_type;
  697. return 0;
  698. }
  699. if(MB_MBAFF){
  700. h->ref_count[0] <<= 1;
  701. h->ref_count[1] <<= 1;
  702. }
  703. fill_decode_neighbors(h, mb_type);
  704. fill_decode_caches(h, mb_type);
  705. //mb_pred
  706. if(IS_INTRA(mb_type)){
  707. int pred_mode;
  708. // init_top_left_availability(h);
  709. if(IS_INTRA4x4(mb_type)){
  710. int i;
  711. int di = 1;
  712. if(dct8x8_allowed && get_bits1(&s->gb)){
  713. mb_type |= MB_TYPE_8x8DCT;
  714. di = 4;
  715. }
  716. // fill_intra4x4_pred_table(h);
  717. for(i=0; i<16; i+=di){
  718. int mode= pred_intra_mode(h, i);
  719. if(!get_bits1(&s->gb)){
  720. const int rem_mode= get_bits(&s->gb, 3);
  721. mode = rem_mode + (rem_mode >= mode);
  722. }
  723. if(di==4)
  724. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  725. else
  726. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  727. }
  728. write_back_intra_pred_mode(h);
  729. if( ff_h264_check_intra4x4_pred_mode(h) < 0)
  730. return -1;
  731. }else{
  732. h->intra16x16_pred_mode= ff_h264_check_intra_pred_mode(h, h->intra16x16_pred_mode, 0);
  733. if(h->intra16x16_pred_mode < 0)
  734. return -1;
  735. }
  736. if(decode_chroma){
  737. pred_mode= ff_h264_check_intra_pred_mode(h, get_ue_golomb_31(&s->gb), 1);
  738. if(pred_mode < 0)
  739. return -1;
  740. h->chroma_pred_mode= pred_mode;
  741. } else {
  742. h->chroma_pred_mode = DC_128_PRED8x8;
  743. }
  744. }else if(partition_count==4){
  745. int i, j, sub_partition_count[4], list, ref[2][4];
  746. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  747. for(i=0; i<4; i++){
  748. h->sub_mb_type[i]= get_ue_golomb_31(&s->gb);
  749. if(h->sub_mb_type[i] >=13){
  750. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  751. return -1;
  752. }
  753. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  754. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  755. }
  756. if( IS_DIRECT(h->sub_mb_type[0]|h->sub_mb_type[1]|h->sub_mb_type[2]|h->sub_mb_type[3])) {
  757. ff_h264_pred_direct_motion(h, &mb_type);
  758. h->ref_cache[0][scan8[4]] =
  759. h->ref_cache[1][scan8[4]] =
  760. h->ref_cache[0][scan8[12]] =
  761. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  762. }
  763. }else{
  764. av_assert2(h->slice_type_nos == AV_PICTURE_TYPE_P); //FIXME SP correct ?
  765. for(i=0; i<4; i++){
  766. h->sub_mb_type[i]= get_ue_golomb_31(&s->gb);
  767. if(h->sub_mb_type[i] >=4){
  768. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  769. return -1;
  770. }
  771. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  772. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  773. }
  774. }
  775. for(list=0; list<h->list_count; list++){
  776. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  777. for(i=0; i<4; i++){
  778. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  779. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  780. unsigned int tmp;
  781. if(ref_count == 1){
  782. tmp= 0;
  783. }else if(ref_count == 2){
  784. tmp= get_bits1(&s->gb)^1;
  785. }else{
  786. tmp= get_ue_golomb_31(&s->gb);
  787. if(tmp>=ref_count){
  788. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  789. return -1;
  790. }
  791. }
  792. ref[list][i]= tmp;
  793. }else{
  794. //FIXME
  795. ref[list][i] = -1;
  796. }
  797. }
  798. }
  799. if(dct8x8_allowed)
  800. dct8x8_allowed = get_dct8x8_allowed(h);
  801. for(list=0; list<h->list_count; list++){
  802. for(i=0; i<4; i++){
  803. if(IS_DIRECT(h->sub_mb_type[i])) {
  804. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  805. continue;
  806. }
  807. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  808. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  809. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  810. const int sub_mb_type= h->sub_mb_type[i];
  811. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  812. for(j=0; j<sub_partition_count[i]; j++){
  813. int mx, my;
  814. const int index= 4*i + block_width*j;
  815. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  816. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  817. mx += get_se_golomb(&s->gb);
  818. my += get_se_golomb(&s->gb);
  819. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  820. if(IS_SUB_8X8(sub_mb_type)){
  821. mv_cache[ 1 ][0]=
  822. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  823. mv_cache[ 1 ][1]=
  824. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  825. }else if(IS_SUB_8X4(sub_mb_type)){
  826. mv_cache[ 1 ][0]= mx;
  827. mv_cache[ 1 ][1]= my;
  828. }else if(IS_SUB_4X8(sub_mb_type)){
  829. mv_cache[ 8 ][0]= mx;
  830. mv_cache[ 8 ][1]= my;
  831. }
  832. mv_cache[ 0 ][0]= mx;
  833. mv_cache[ 0 ][1]= my;
  834. }
  835. }else{
  836. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  837. p[0] = p[1]=
  838. p[8] = p[9]= 0;
  839. }
  840. }
  841. }
  842. }else if(IS_DIRECT(mb_type)){
  843. ff_h264_pred_direct_motion(h, &mb_type);
  844. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  845. }else{
  846. int list, mx, my, i;
  847. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  848. if(IS_16X16(mb_type)){
  849. for(list=0; list<h->list_count; list++){
  850. unsigned int val;
  851. if(IS_DIR(mb_type, 0, list)){
  852. if(h->ref_count[list]==1){
  853. val= 0;
  854. }else if(h->ref_count[list]==2){
  855. val= get_bits1(&s->gb)^1;
  856. }else{
  857. val= get_ue_golomb_31(&s->gb);
  858. if(val >= h->ref_count[list]){
  859. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  860. return -1;
  861. }
  862. }
  863. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  864. }
  865. }
  866. for(list=0; list<h->list_count; list++){
  867. if(IS_DIR(mb_type, 0, list)){
  868. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  869. mx += get_se_golomb(&s->gb);
  870. my += get_se_golomb(&s->gb);
  871. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  872. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  873. }
  874. }
  875. }
  876. else if(IS_16X8(mb_type)){
  877. for(list=0; list<h->list_count; list++){
  878. for(i=0; i<2; i++){
  879. unsigned int val;
  880. if(IS_DIR(mb_type, i, list)){
  881. if(h->ref_count[list] == 1){
  882. val= 0;
  883. }else if(h->ref_count[list] == 2){
  884. val= get_bits1(&s->gb)^1;
  885. }else{
  886. val= get_ue_golomb_31(&s->gb);
  887. if(val >= h->ref_count[list]){
  888. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  889. return -1;
  890. }
  891. }
  892. }else
  893. val= LIST_NOT_USED&0xFF;
  894. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  895. }
  896. }
  897. for(list=0; list<h->list_count; list++){
  898. for(i=0; i<2; i++){
  899. unsigned int val;
  900. if(IS_DIR(mb_type, i, list)){
  901. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  902. mx += get_se_golomb(&s->gb);
  903. my += get_se_golomb(&s->gb);
  904. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  905. val= pack16to32(mx,my);
  906. }else
  907. val=0;
  908. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  909. }
  910. }
  911. }else{
  912. av_assert2(IS_8X16(mb_type));
  913. for(list=0; list<h->list_count; list++){
  914. for(i=0; i<2; i++){
  915. unsigned int val;
  916. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  917. if(h->ref_count[list]==1){
  918. val= 0;
  919. }else if(h->ref_count[list]==2){
  920. val= get_bits1(&s->gb)^1;
  921. }else{
  922. val= get_ue_golomb_31(&s->gb);
  923. if(val >= h->ref_count[list]){
  924. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  925. return -1;
  926. }
  927. }
  928. }else
  929. val= LIST_NOT_USED&0xFF;
  930. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  931. }
  932. }
  933. for(list=0; list<h->list_count; list++){
  934. for(i=0; i<2; i++){
  935. unsigned int val;
  936. if(IS_DIR(mb_type, i, list)){
  937. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  938. mx += get_se_golomb(&s->gb);
  939. my += get_se_golomb(&s->gb);
  940. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  941. val= pack16to32(mx,my);
  942. }else
  943. val=0;
  944. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  945. }
  946. }
  947. }
  948. }
  949. if(IS_INTER(mb_type))
  950. write_back_motion(h, mb_type);
  951. if(!IS_INTRA16x16(mb_type)){
  952. cbp= get_ue_golomb(&s->gb);
  953. if(decode_chroma){
  954. if(cbp > 47){
  955. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  956. return -1;
  957. }
  958. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp];
  959. else cbp= golomb_to_inter_cbp [cbp];
  960. }else{
  961. if(cbp > 15){
  962. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  963. return -1;
  964. }
  965. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp_gray[cbp];
  966. else cbp= golomb_to_inter_cbp_gray[cbp];
  967. }
  968. }
  969. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  970. mb_type |= MB_TYPE_8x8DCT*get_bits1(&s->gb);
  971. }
  972. h->cbp=
  973. h->cbp_table[mb_xy]= cbp;
  974. s->current_picture.f.mb_type[mb_xy] = mb_type;
  975. if(cbp || IS_INTRA16x16(mb_type)){
  976. int i4x4, i8x8, chroma_idx;
  977. int dquant;
  978. int ret;
  979. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  980. const uint8_t *scan, *scan8x8;
  981. const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
  982. if(IS_INTERLACED(mb_type)){
  983. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  984. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  985. }else{
  986. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  987. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  988. }
  989. dquant= get_se_golomb(&s->gb);
  990. s->qscale += dquant;
  991. if(((unsigned)s->qscale) > max_qp){
  992. if(s->qscale<0) s->qscale+= max_qp+1;
  993. else s->qscale-= max_qp+1;
  994. if(((unsigned)s->qscale) > max_qp){
  995. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  996. return -1;
  997. }
  998. }
  999. h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
  1000. h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
  1001. if( (ret = decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 0)) < 0 ){
  1002. return -1;
  1003. }
  1004. h->cbp_table[mb_xy] |= ret << 12;
  1005. if(CHROMA444){
  1006. if( decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 1) < 0 ){
  1007. return -1;
  1008. }
  1009. if( decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 2) < 0 ){
  1010. return -1;
  1011. }
  1012. } else {
  1013. const int num_c8x8 = h->sps.chroma_format_idc;
  1014. if(cbp&0x30){
  1015. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  1016. if (decode_residual(h, gb, h->mb + ((256 + 16*16*chroma_idx) << pixel_shift),
  1017. CHROMA_DC_BLOCK_INDEX+chroma_idx,
  1018. CHROMA422 ? chroma422_dc_scan : chroma_dc_scan,
  1019. NULL, 4*num_c8x8) < 0) {
  1020. return -1;
  1021. }
  1022. }
  1023. if(cbp&0x20){
  1024. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  1025. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  1026. DCTELEM *mb = h->mb + (16*(16 + 16*chroma_idx) << pixel_shift);
  1027. for (i8x8=0; i8x8<num_c8x8; i8x8++) {
  1028. for (i4x4=0; i4x4<4; i4x4++) {
  1029. const int index= 16 + 16*chroma_idx + 8*i8x8 + i4x4;
  1030. if (decode_residual(h, gb, mb, index, scan + 1, qmul, 15) < 0)
  1031. return -1;
  1032. mb += 16<<pixel_shift;
  1033. }
  1034. }
  1035. }
  1036. }else{
  1037. fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1038. fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1039. }
  1040. }
  1041. }else{
  1042. fill_rectangle(&h->non_zero_count_cache[scan8[ 0]], 4, 4, 8, 0, 1);
  1043. fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1044. fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1045. }
  1046. s->current_picture.f.qscale_table[mb_xy] = s->qscale;
  1047. write_back_non_zero_count(h);
  1048. if(MB_MBAFF){
  1049. h->ref_count[0] >>= 1;
  1050. h->ref_count[1] >>= 1;
  1051. }
  1052. return 0;
  1053. }