You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

919 lines
28KB

  1. /*
  2. * Flash Screen Video Version 2 encoder
  3. * Copyright (C) 2009 Joshua Warner
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Flash Screen Video Version 2 encoder
  24. * @author Joshua Warner
  25. */
  26. /* Differences from version 1 stream:
  27. * NOTE: Currently, the only player that supports version 2 streams is Adobe Flash Player itself.
  28. * * Supports sending only a range of scanlines in a block,
  29. * indicating a difference from the corresponding block in the last keyframe.
  30. * * Supports initializing the zlib dictionary with data from the corresponding
  31. * block in the last keyframe, to improve compression.
  32. * * Supports a hybrid 15-bit rgb / 7-bit palette color space.
  33. */
  34. /* TODO:
  35. * Don't keep Block structures for both current frame and keyframe.
  36. * Make better heuristics for deciding stream parameters (optimum_* functions). Currently these return constants.
  37. * Figure out how to encode palette information in the stream, choose an optimum palette at each keyframe.
  38. * Figure out how the zlibPrimeCompressCurrent flag works, implement support.
  39. * Find other sample files (that weren't generated here), develop a decoder.
  40. */
  41. #include <stdio.h>
  42. #include <stdlib.h>
  43. #include <zlib.h>
  44. #include "libavutil/imgutils.h"
  45. #include "avcodec.h"
  46. #include "internal.h"
  47. #include "put_bits.h"
  48. #include "bytestream.h"
  49. #define HAS_IFRAME_IMAGE 0x02
  50. #define HAS_PALLET_INFO 0x01
  51. #define COLORSPACE_BGR 0x00
  52. #define COLORSPACE_15_7 0x10
  53. #define HAS_DIFF_BLOCKS 0x04
  54. #define ZLIB_PRIME_COMPRESS_CURRENT 0x02
  55. #define ZLIB_PRIME_COMPRESS_PREVIOUS 0x01
  56. // Disables experimental "smart" parameter-choosing code, as well as the statistics that it depends on.
  57. // At the moment, the "smart" code is a great example of how the parameters *shouldn't* be chosen.
  58. #define FLASHSV2_DUMB
  59. typedef struct Block {
  60. uint8_t *enc;
  61. uint8_t *sl_begin, *sl_end;
  62. int enc_size;
  63. uint8_t *data;
  64. unsigned long data_size;
  65. uint8_t start, len;
  66. uint8_t dirty;
  67. uint8_t col, row, width, height;
  68. uint8_t flags;
  69. } Block;
  70. typedef struct Palette {
  71. unsigned colors[128];
  72. uint8_t index[1 << 15];
  73. } Palette;
  74. typedef struct FlashSV2Context {
  75. AVCodecContext *avctx;
  76. uint8_t *current_frame;
  77. uint8_t *key_frame;
  78. AVFrame frame;
  79. uint8_t *encbuffer;
  80. uint8_t *keybuffer;
  81. uint8_t *databuffer;
  82. Block *frame_blocks;
  83. Block *key_blocks;
  84. int frame_size;
  85. int blocks_size;
  86. int use15_7, dist, comp;
  87. int rows, cols;
  88. int last_key_frame;
  89. int image_width, image_height;
  90. int block_width, block_height;
  91. uint8_t flags;
  92. uint8_t use_custom_palette;
  93. uint8_t palette_type; ///< 0=>default, 1=>custom - changed when palette regenerated.
  94. Palette palette;
  95. #ifndef FLASHSV2_DUMB
  96. double tot_blocks; ///< blocks encoded since last keyframe
  97. double diff_blocks; ///< blocks that were different since last keyframe
  98. double tot_lines; ///< total scanlines in image since last keyframe
  99. double diff_lines; ///< scanlines that were different since last keyframe
  100. double raw_size; ///< size of raw frames since last keyframe
  101. double comp_size; ///< size of compressed data since last keyframe
  102. double uncomp_size; ///< size of uncompressed data since last keyframe
  103. double total_bits; ///< total bits written to stream so far
  104. #endif
  105. } FlashSV2Context;
  106. static av_cold void cleanup(FlashSV2Context * s)
  107. {
  108. av_freep(&s->encbuffer);
  109. av_freep(&s->keybuffer);
  110. av_freep(&s->databuffer);
  111. av_freep(&s->current_frame);
  112. av_freep(&s->key_frame);
  113. av_freep(&s->frame_blocks);
  114. av_freep(&s->key_blocks);
  115. }
  116. static void init_blocks(FlashSV2Context * s, Block * blocks,
  117. uint8_t * encbuf, uint8_t * databuf)
  118. {
  119. int row, col;
  120. Block *b;
  121. for (col = 0; col < s->cols; col++) {
  122. for (row = 0; row < s->rows; row++) {
  123. b = blocks + (col + row * s->cols);
  124. b->width = (col < s->cols - 1) ?
  125. s->block_width :
  126. s->image_width - col * s->block_width;
  127. b->height = (row < s->rows - 1) ?
  128. s->block_height :
  129. s->image_height - row * s->block_height;
  130. b->row = row;
  131. b->col = col;
  132. b->enc = encbuf;
  133. b->data = databuf;
  134. encbuf += b->width * b->height * 3;
  135. databuf += !databuf ? 0 : b->width * b->height * 6;
  136. }
  137. }
  138. }
  139. static void reset_stats(FlashSV2Context * s)
  140. {
  141. #ifndef FLASHSV2_DUMB
  142. s->diff_blocks = 0.1;
  143. s->tot_blocks = 1;
  144. s->diff_lines = 0.1;
  145. s->tot_lines = 1;
  146. s->raw_size = s->comp_size = s->uncomp_size = 10;
  147. #endif
  148. }
  149. static av_cold int flashsv2_encode_init(AVCodecContext * avctx)
  150. {
  151. FlashSV2Context *s = avctx->priv_data;
  152. s->avctx = avctx;
  153. s->comp = avctx->compression_level;
  154. if (s->comp == -1)
  155. s->comp = 9;
  156. if (s->comp < 0 || s->comp > 9) {
  157. av_log(avctx, AV_LOG_ERROR,
  158. "Compression level should be 0-9, not %d\n", s->comp);
  159. return -1;
  160. }
  161. if ((avctx->width > 4095) || (avctx->height > 4095)) {
  162. av_log(avctx, AV_LOG_ERROR,
  163. "Input dimensions too large, input must be max 4096x4096 !\n");
  164. return -1;
  165. }
  166. if ((avctx->width < 16) || (avctx->height < 16)) {
  167. av_log(avctx, AV_LOG_ERROR,
  168. "Input dimensions too small, input must be at least 16x16 !\n");
  169. return -1;
  170. }
  171. if (av_image_check_size(avctx->width, avctx->height, 0, avctx) < 0)
  172. return -1;
  173. s->last_key_frame = 0;
  174. s->image_width = avctx->width;
  175. s->image_height = avctx->height;
  176. s->block_width = (s->image_width / 12) & ~15;
  177. s->block_height = (s->image_height / 12) & ~15;
  178. if(!s->block_width)
  179. s->block_width = 1;
  180. if(!s->block_height)
  181. s->block_height = 1;
  182. s->rows = (s->image_height + s->block_height - 1) / s->block_height;
  183. s->cols = (s->image_width + s->block_width - 1) / s->block_width;
  184. s->frame_size = s->image_width * s->image_height * 3;
  185. s->blocks_size = s->rows * s->cols * sizeof(Block);
  186. s->encbuffer = av_mallocz(s->frame_size);
  187. s->keybuffer = av_mallocz(s->frame_size);
  188. s->databuffer = av_mallocz(s->frame_size * 6);
  189. s->current_frame = av_mallocz(s->frame_size);
  190. s->key_frame = av_mallocz(s->frame_size);
  191. s->frame_blocks = av_mallocz(s->blocks_size);
  192. s->key_blocks = av_mallocz(s->blocks_size);
  193. init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer);
  194. init_blocks(s, s->key_blocks, s->keybuffer, 0);
  195. reset_stats(s);
  196. #ifndef FLASHSV2_DUMB
  197. s->total_bits = 1;
  198. #endif
  199. s->use_custom_palette = 0;
  200. s->palette_type = -1; // so that the palette will be generated in reconfigure_at_keyframe
  201. if (!s->encbuffer || !s->keybuffer || !s->databuffer
  202. || !s->current_frame || !s->key_frame || !s->key_blocks
  203. || !s->frame_blocks) {
  204. av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  205. cleanup(s);
  206. return -1;
  207. }
  208. return 0;
  209. }
  210. static int new_key_frame(FlashSV2Context * s)
  211. {
  212. int i;
  213. memcpy(s->key_blocks, s->frame_blocks, s->blocks_size);
  214. memcpy(s->key_frame, s->current_frame, s->frame_size);
  215. for (i = 0; i < s->rows * s->cols; i++) {
  216. s->key_blocks[i].enc += (s->keybuffer - s->encbuffer);
  217. s->key_blocks[i].sl_begin = 0;
  218. s->key_blocks[i].sl_end = 0;
  219. s->key_blocks[i].data = 0;
  220. }
  221. FFSWAP(uint8_t * , s->keybuffer, s->encbuffer);
  222. return 0;
  223. }
  224. static int write_palette(FlashSV2Context * s, uint8_t * buf, int buf_size)
  225. {
  226. //this isn't implemented yet! Default palette only!
  227. return -1;
  228. }
  229. static int write_header(FlashSV2Context * s, uint8_t * buf, int buf_size)
  230. {
  231. PutBitContext pb;
  232. int buf_pos, len;
  233. if (buf_size < 5)
  234. return -1;
  235. init_put_bits(&pb, buf, buf_size * 8);
  236. put_bits(&pb, 4, (s->block_width >> 4) - 1);
  237. put_bits(&pb, 12, s->image_width);
  238. put_bits(&pb, 4, (s->block_height >> 4) - 1);
  239. put_bits(&pb, 12, s->image_height);
  240. flush_put_bits(&pb);
  241. buf_pos = 4;
  242. buf[buf_pos++] = s->flags;
  243. if (s->flags & HAS_PALLET_INFO) {
  244. len = write_palette(s, buf + buf_pos, buf_size - buf_pos);
  245. if (len < 0)
  246. return -1;
  247. buf_pos += len;
  248. }
  249. return buf_pos;
  250. }
  251. static int write_block(Block * b, uint8_t * buf, int buf_size)
  252. {
  253. int buf_pos = 0;
  254. unsigned block_size = b->data_size;
  255. if (b->flags & HAS_DIFF_BLOCKS)
  256. block_size += 2;
  257. if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT)
  258. block_size += 2;
  259. if (block_size > 0)
  260. block_size += 1;
  261. if (buf_size < block_size + 2)
  262. return -1;
  263. buf[buf_pos++] = block_size >> 8;
  264. buf[buf_pos++] = block_size;
  265. if (block_size == 0)
  266. return buf_pos;
  267. buf[buf_pos++] = b->flags;
  268. if (b->flags & HAS_DIFF_BLOCKS) {
  269. buf[buf_pos++] = (b->start);
  270. buf[buf_pos++] = (b->len);
  271. }
  272. if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT) {
  273. //This feature of the format is poorly understood, and as of now, unused.
  274. buf[buf_pos++] = (b->col);
  275. buf[buf_pos++] = (b->row);
  276. }
  277. memcpy(buf + buf_pos, b->data, b->data_size);
  278. buf_pos += b->data_size;
  279. return buf_pos;
  280. }
  281. static int encode_zlib(Block * b, uint8_t * buf, unsigned long *buf_size, int comp)
  282. {
  283. int res = compress2(buf, buf_size, b->sl_begin, b->sl_end - b->sl_begin, comp);
  284. return res == Z_OK ? 0 : -1;
  285. }
  286. static int encode_zlibprime(Block * b, Block * prime, uint8_t * buf,
  287. int *buf_size, int comp)
  288. {
  289. z_stream s;
  290. int res;
  291. s.zalloc = NULL;
  292. s.zfree = NULL;
  293. s.opaque = NULL;
  294. res = deflateInit(&s, comp);
  295. if (res < 0)
  296. return -1;
  297. s.next_in = prime->enc;
  298. s.avail_in = prime->enc_size;
  299. while (s.avail_in > 0) {
  300. s.next_out = buf;
  301. s.avail_out = *buf_size;
  302. res = deflate(&s, Z_SYNC_FLUSH);
  303. if (res < 0)
  304. return -1;
  305. }
  306. s.next_in = b->sl_begin;
  307. s.avail_in = b->sl_end - b->sl_begin;
  308. s.next_out = buf;
  309. s.avail_out = *buf_size;
  310. res = deflate(&s, Z_FINISH);
  311. deflateEnd(&s);
  312. *buf_size -= s.avail_out;
  313. if (res != Z_STREAM_END)
  314. return -1;
  315. return 0;
  316. }
  317. static int encode_bgr(Block * b, const uint8_t * src, int stride)
  318. {
  319. int i;
  320. uint8_t *ptr = b->enc;
  321. for (i = 0; i < b->start; i++)
  322. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  323. b->sl_begin = ptr + i * b->width * 3;
  324. for (; i < b->start + b->len; i++)
  325. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  326. b->sl_end = ptr + i * b->width * 3;
  327. for (; i < b->height; i++)
  328. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  329. b->enc_size = ptr + i * b->width * 3 - b->enc;
  330. return b->enc_size;
  331. }
  332. static inline unsigned pixel_color15(const uint8_t * src)
  333. {
  334. return (src[0] >> 3) | ((src[1] & 0xf8) << 2) | ((src[2] & 0xf8) << 7);
  335. }
  336. static inline unsigned int chroma_diff(unsigned int c1, unsigned int c2)
  337. {
  338. unsigned int t1 = (c1 & 0x000000ff) + ((c1 & 0x0000ff00) >> 8) + ((c1 & 0x00ff0000) >> 16);
  339. unsigned int t2 = (c2 & 0x000000ff) + ((c2 & 0x0000ff00) >> 8) + ((c2 & 0x00ff0000) >> 16);
  340. return abs(t1 - t2) + abs((c1 & 0x000000ff) - (c2 & 0x000000ff)) +
  341. abs(((c1 & 0x0000ff00) >> 8) - ((c2 & 0x0000ff00) >> 8)) +
  342. abs(((c1 & 0x00ff0000) >> 16) - ((c2 & 0x00ff0000) >> 16));
  343. }
  344. static inline int pixel_color7_fast(Palette * palette, unsigned c15)
  345. {
  346. return palette->index[c15];
  347. }
  348. static int pixel_color7_slow(Palette * palette, unsigned color)
  349. {
  350. int i, min = 0x7fffffff;
  351. int minc = -1;
  352. for (i = 0; i < 128; i++) {
  353. int c1 = palette->colors[i];
  354. int diff = chroma_diff(c1, color);
  355. if (diff < min) {
  356. min = diff;
  357. minc = i;
  358. }
  359. }
  360. return minc;
  361. }
  362. static inline unsigned pixel_bgr(const uint8_t * src)
  363. {
  364. return (src[0]) | (src[1] << 8) | (src[2] << 16);
  365. }
  366. static int write_pixel_15_7(Palette * palette, uint8_t * dest, const uint8_t * src,
  367. int dist)
  368. {
  369. unsigned c15 = pixel_color15(src);
  370. unsigned color = pixel_bgr(src);
  371. int d15 = chroma_diff(color, color & 0x00f8f8f8);
  372. int c7 = pixel_color7_fast(palette, c15);
  373. int d7 = chroma_diff(color, palette->colors[c7]);
  374. if (dist + d15 >= d7) {
  375. dest[0] = c7;
  376. return 1;
  377. } else {
  378. dest[0] = 0x80 | (c15 >> 8);
  379. dest[1] = c15 & 0xff;
  380. return 2;
  381. }
  382. }
  383. static int update_palette_index(Palette * palette)
  384. {
  385. int r, g, b;
  386. unsigned int bgr, c15, index;
  387. for (r = 4; r < 256; r += 8) {
  388. for (g = 4; g < 256; g += 8) {
  389. for (b = 4; b < 256; b += 8) {
  390. bgr = b | (g << 8) | (r << 16);
  391. c15 = (b >> 3) | ((g & 0xf8) << 2) | ((r & 0xf8) << 7);
  392. index = pixel_color7_slow(palette, bgr);
  393. palette->index[c15] = index;
  394. }
  395. }
  396. }
  397. return 0;
  398. }
  399. static const unsigned int default_screen_video_v2_palette[128] = {
  400. 0x00000000, 0x00333333, 0x00666666, 0x00999999, 0x00CCCCCC, 0x00FFFFFF,
  401. 0x00330000, 0x00660000, 0x00990000, 0x00CC0000, 0x00FF0000, 0x00003300,
  402. 0x00006600, 0x00009900, 0x0000CC00, 0x0000FF00, 0x00000033, 0x00000066,
  403. 0x00000099, 0x000000CC, 0x000000FF, 0x00333300, 0x00666600, 0x00999900,
  404. 0x00CCCC00, 0x00FFFF00, 0x00003333, 0x00006666, 0x00009999, 0x0000CCCC,
  405. 0x0000FFFF, 0x00330033, 0x00660066, 0x00990099, 0x00CC00CC, 0x00FF00FF,
  406. 0x00FFFF33, 0x00FFFF66, 0x00FFFF99, 0x00FFFFCC, 0x00FF33FF, 0x00FF66FF,
  407. 0x00FF99FF, 0x00FFCCFF, 0x0033FFFF, 0x0066FFFF, 0x0099FFFF, 0x00CCFFFF,
  408. 0x00CCCC33, 0x00CCCC66, 0x00CCCC99, 0x00CCCCFF, 0x00CC33CC, 0x00CC66CC,
  409. 0x00CC99CC, 0x00CCFFCC, 0x0033CCCC, 0x0066CCCC, 0x0099CCCC, 0x00FFCCCC,
  410. 0x00999933, 0x00999966, 0x009999CC, 0x009999FF, 0x00993399, 0x00996699,
  411. 0x0099CC99, 0x0099FF99, 0x00339999, 0x00669999, 0x00CC9999, 0x00FF9999,
  412. 0x00666633, 0x00666699, 0x006666CC, 0x006666FF, 0x00663366, 0x00669966,
  413. 0x0066CC66, 0x0066FF66, 0x00336666, 0x00996666, 0x00CC6666, 0x00FF6666,
  414. 0x00333366, 0x00333399, 0x003333CC, 0x003333FF, 0x00336633, 0x00339933,
  415. 0x0033CC33, 0x0033FF33, 0x00663333, 0x00993333, 0x00CC3333, 0x00FF3333,
  416. 0x00003366, 0x00336600, 0x00660033, 0x00006633, 0x00330066, 0x00663300,
  417. 0x00336699, 0x00669933, 0x00993366, 0x00339966, 0x00663399, 0x00996633,
  418. 0x006699CC, 0x0099CC66, 0x00CC6699, 0x0066CC99, 0x009966CC, 0x00CC9966,
  419. 0x0099CCFF, 0x00CCFF99, 0x00FF99CC, 0x0099FFCC, 0x00CC99FF, 0x00FFCC99,
  420. 0x00111111, 0x00222222, 0x00444444, 0x00555555, 0x00AAAAAA, 0x00BBBBBB,
  421. 0x00DDDDDD, 0x00EEEEEE
  422. };
  423. static int generate_default_palette(Palette * palette)
  424. {
  425. memcpy(palette->colors, default_screen_video_v2_palette,
  426. sizeof(default_screen_video_v2_palette));
  427. return update_palette_index(palette);
  428. }
  429. static int generate_optimum_palette(Palette * palette, const uint8_t * image,
  430. int width, int height, int stride)
  431. {
  432. //this isn't implemented yet! Default palette only!
  433. return -1;
  434. }
  435. static inline int encode_15_7_sl(Palette * palette, uint8_t * dest,
  436. const uint8_t * src, int width, int dist)
  437. {
  438. int len = 0, x;
  439. for (x = 0; x < width; x++) {
  440. len += write_pixel_15_7(palette, dest + len, src + 3 * x, dist);
  441. }
  442. return len;
  443. }
  444. static int encode_15_7(Palette * palette, Block * b, const uint8_t * src,
  445. int stride, int dist)
  446. {
  447. int i;
  448. uint8_t *ptr = b->enc;
  449. for (i = 0; i < b->start; i++)
  450. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  451. b->sl_begin = ptr;
  452. for (; i < b->start + b->len; i++)
  453. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  454. b->sl_end = ptr;
  455. for (; i < b->height; i++)
  456. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  457. b->enc_size = ptr - b->enc;
  458. return b->enc_size;
  459. }
  460. static int encode_block(Palette * palette, Block * b, Block * prev,
  461. const uint8_t * src, int stride, int comp, int dist,
  462. int keyframe)
  463. {
  464. unsigned buf_size = b->width * b->height * 6;
  465. uint8_t buf[buf_size];
  466. int res;
  467. if (b->flags & COLORSPACE_15_7) {
  468. encode_15_7(palette, b, src, stride, dist);
  469. } else {
  470. encode_bgr(b, src, stride);
  471. }
  472. if (b->len > 0) {
  473. b->data_size = buf_size;
  474. res = encode_zlib(b, b->data, &b->data_size, comp);
  475. if (res)
  476. return res;
  477. if (!keyframe) {
  478. res = encode_zlibprime(b, prev, buf, &buf_size, comp);
  479. if (res)
  480. return res;
  481. if (buf_size < b->data_size) {
  482. b->data_size = buf_size;
  483. memcpy(b->data, buf, buf_size);
  484. b->flags |= ZLIB_PRIME_COMPRESS_PREVIOUS;
  485. }
  486. }
  487. } else {
  488. b->data_size = 0;
  489. }
  490. return 0;
  491. }
  492. static int compare_sl(FlashSV2Context * s, Block * b, const uint8_t * src,
  493. uint8_t * frame, uint8_t * key, int y, int keyframe)
  494. {
  495. if (memcmp(src, frame, b->width * 3) != 0) {
  496. b->dirty = 1;
  497. memcpy(frame, src, b->width * 3);
  498. #ifndef FLASHSV2_DUMB
  499. s->diff_lines++;
  500. #endif
  501. }
  502. if (memcmp(src, key, b->width * 3) != 0) {
  503. if (b->len == 0)
  504. b->start = y;
  505. b->len = y + 1 - b->start;
  506. }
  507. return 0;
  508. }
  509. static int mark_all_blocks(FlashSV2Context * s, const uint8_t * src, int stride,
  510. int keyframe)
  511. {
  512. int sl, rsl, col, pos, possl;
  513. Block *b;
  514. for (sl = s->image_height - 1; sl >= 0; sl--) {
  515. for (col = 0; col < s->cols; col++) {
  516. rsl = s->image_height - sl - 1;
  517. b = s->frame_blocks + col + rsl / s->block_height * s->cols;
  518. possl = stride * sl + col * s->block_width * 3;
  519. pos = s->image_width * rsl * 3 + col * s->block_width * 3;
  520. compare_sl(s, b, src + possl, s->current_frame + pos,
  521. s->key_frame + pos, rsl % s->block_height, keyframe);
  522. }
  523. }
  524. #ifndef FLASHSV2_DUMB
  525. s->tot_lines += s->image_height * s->cols;
  526. #endif
  527. return 0;
  528. }
  529. static int encode_all_blocks(FlashSV2Context * s, int keyframe)
  530. {
  531. int row, col, res;
  532. uint8_t *data;
  533. Block *b, *prev;
  534. for (row = 0; row < s->rows; row++) {
  535. for (col = 0; col < s->cols; col++) {
  536. b = s->frame_blocks + (row * s->cols + col);
  537. prev = s->key_blocks + (row * s->cols + col);
  538. if (keyframe) {
  539. b->start = 0;
  540. b->len = b->height;
  541. b->flags = s->use15_7 ? COLORSPACE_15_7 : 0;
  542. } else if (!b->dirty) {
  543. b->start = 0;
  544. b->len = 0;
  545. b->data_size = 0;
  546. b->flags = s->use15_7 ? COLORSPACE_15_7 : 0;
  547. continue;
  548. } else {
  549. b->flags = s->use15_7 ? COLORSPACE_15_7 | HAS_DIFF_BLOCKS : HAS_DIFF_BLOCKS;
  550. }
  551. data = s->current_frame + s->image_width * 3 * s->block_height * row + s->block_width * col * 3;
  552. res = encode_block(&s->palette, b, prev, data, s->image_width * 3, s->comp, s->dist, keyframe);
  553. #ifndef FLASHSV2_DUMB
  554. if (b->dirty)
  555. s->diff_blocks++;
  556. s->comp_size += b->data_size;
  557. s->uncomp_size += b->enc_size;
  558. #endif
  559. if (res)
  560. return res;
  561. }
  562. }
  563. #ifndef FLASHSV2_DUMB
  564. s->raw_size += s->image_width * s->image_height * 3;
  565. s->tot_blocks += s->rows * s->cols;
  566. #endif
  567. return 0;
  568. }
  569. static int write_all_blocks(FlashSV2Context * s, uint8_t * buf,
  570. int buf_size)
  571. {
  572. int row, col, buf_pos = 0, len;
  573. Block *b;
  574. for (row = 0; row < s->rows; row++) {
  575. for (col = 0; col < s->cols; col++) {
  576. b = s->frame_blocks + row * s->cols + col;
  577. len = write_block(b, buf + buf_pos, buf_size - buf_pos);
  578. b->start = b->len = b->dirty = 0;
  579. if (len < 0)
  580. return len;
  581. buf_pos += len;
  582. }
  583. }
  584. return buf_pos;
  585. }
  586. static int write_bitstream(FlashSV2Context * s, const uint8_t * src, int stride,
  587. uint8_t * buf, int buf_size, int keyframe)
  588. {
  589. int buf_pos, res;
  590. res = mark_all_blocks(s, src, stride, keyframe);
  591. if (res)
  592. return res;
  593. res = encode_all_blocks(s, keyframe);
  594. if (res)
  595. return res;
  596. res = write_header(s, buf, buf_size);
  597. if (res < 0) {
  598. return res;
  599. } else {
  600. buf_pos = res;
  601. }
  602. res = write_all_blocks(s, buf + buf_pos, buf_size - buf_pos);
  603. if (res < 0)
  604. return res;
  605. buf_pos += res;
  606. #ifndef FLASHSV2_DUMB
  607. s->total_bits += ((double) buf_pos) * 8.0;
  608. #endif
  609. return buf_pos;
  610. }
  611. static void recommend_keyframe(FlashSV2Context * s, int *keyframe)
  612. {
  613. #ifndef FLASHSV2_DUMB
  614. double block_ratio, line_ratio, enc_ratio, comp_ratio, data_ratio;
  615. if (s->avctx->gop_size > 0) {
  616. block_ratio = s->diff_blocks / s->tot_blocks;
  617. line_ratio = s->diff_lines / s->tot_lines;
  618. enc_ratio = s->uncomp_size / s->raw_size;
  619. comp_ratio = s->comp_size / s->uncomp_size;
  620. data_ratio = s->comp_size / s->raw_size;
  621. if ((block_ratio >= 0.5 && line_ratio / block_ratio <= 0.5) || line_ratio >= 0.95) {
  622. *keyframe = 1;
  623. return;
  624. }
  625. }
  626. #else
  627. return;
  628. #endif
  629. }
  630. static const double block_size_fraction = 1.0 / 300;
  631. static int optimum_block_width(FlashSV2Context * s)
  632. {
  633. #ifndef FLASHSV2_DUMB
  634. double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks;
  635. double width = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_width;
  636. int pwidth = ((int) width);
  637. return FFCLIP(pwidth & ~15, 256, 16);
  638. #else
  639. return 64;
  640. #endif
  641. }
  642. static int optimum_block_height(FlashSV2Context * s)
  643. {
  644. #ifndef FLASHSV2_DUMB
  645. double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks;
  646. double height = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_height;
  647. int pheight = ((int) height);
  648. return FFCLIP(pheight & ~15, 256, 16);
  649. #else
  650. return 64;
  651. #endif
  652. }
  653. static const double use15_7_threshold = 8192;
  654. static int optimum_use15_7(FlashSV2Context * s)
  655. {
  656. #ifndef FLASHSV2_DUMB
  657. double ideal = ((double)(s->avctx->bit_rate * s->avctx->time_base.den * s->avctx->ticks_per_frame)) /
  658. ((double) s->avctx->time_base.num) * s->avctx->frame_number;
  659. if (ideal + use15_7_threshold < s->total_bits) {
  660. return 1;
  661. } else {
  662. return 0;
  663. }
  664. #else
  665. return s->avctx->global_quality == 0;
  666. #endif
  667. }
  668. static const double color15_7_factor = 100;
  669. static int optimum_dist(FlashSV2Context * s)
  670. {
  671. #ifndef FLASHSV2_DUMB
  672. double ideal =
  673. s->avctx->bit_rate * s->avctx->time_base.den *
  674. s->avctx->ticks_per_frame;
  675. int dist = pow((s->total_bits / ideal) * color15_7_factor, 3);
  676. av_log(s->avctx, AV_LOG_DEBUG, "dist: %d\n", dist);
  677. return dist;
  678. #else
  679. return 15;
  680. #endif
  681. }
  682. static int reconfigure_at_keyframe(FlashSV2Context * s, const uint8_t * image,
  683. int stride)
  684. {
  685. int update_palette = 0;
  686. int res;
  687. s->block_width = optimum_block_width(s);
  688. s->block_height = optimum_block_height(s);
  689. s->rows = (s->image_height + s->block_height - 1) / s->block_height;
  690. s->cols = (s->image_width + s->block_width - 1) / s->block_width;
  691. if (s->rows * s->cols != s->blocks_size / sizeof(Block)) {
  692. if (s->rows * s->cols > s->blocks_size / sizeof(Block)) {
  693. s->frame_blocks = av_realloc(s->frame_blocks, s->rows * s->cols * sizeof(Block));
  694. s->key_blocks = av_realloc(s->key_blocks, s->cols * s->rows * sizeof(Block));
  695. if (!s->frame_blocks || !s->key_blocks) {
  696. av_log(s->avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  697. return -1;
  698. }
  699. s->blocks_size = s->rows * s->cols * sizeof(Block);
  700. }
  701. init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer);
  702. init_blocks(s, s->key_blocks, s->keybuffer, 0);
  703. }
  704. s->use15_7 = optimum_use15_7(s);
  705. if (s->use15_7) {
  706. if ((s->use_custom_palette && s->palette_type != 1) || update_palette) {
  707. res = generate_optimum_palette(&s->palette, image, s->image_width, s->image_height, stride);
  708. if (res)
  709. return res;
  710. s->palette_type = 1;
  711. av_log(s->avctx, AV_LOG_DEBUG, "Generated optimum palette\n");
  712. } else if (!s->use_custom_palette && s->palette_type != 0) {
  713. res = generate_default_palette(&s->palette);
  714. if (res)
  715. return res;
  716. s->palette_type = 0;
  717. av_log(s->avctx, AV_LOG_DEBUG, "Generated default palette\n");
  718. }
  719. }
  720. reset_stats(s);
  721. return 0;
  722. }
  723. static int flashsv2_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  724. const AVFrame *pict, int *got_packet)
  725. {
  726. FlashSV2Context *const s = avctx->priv_data;
  727. AVFrame *const p = &s->frame;
  728. int res;
  729. int keyframe = 0;
  730. *p = *pict;
  731. if ((res = ff_alloc_packet2(avctx, pkt, s->frame_size + FF_MIN_BUFFER_SIZE)) < 0)
  732. return res;
  733. /* First frame needs to be a keyframe */
  734. if (avctx->frame_number == 0)
  735. keyframe = 1;
  736. /* Check the placement of keyframes */
  737. if (avctx->gop_size > 0) {
  738. if (avctx->frame_number >= s->last_key_frame + avctx->gop_size)
  739. keyframe = 1;
  740. }
  741. if (!keyframe
  742. && avctx->frame_number > s->last_key_frame + avctx->keyint_min) {
  743. recommend_keyframe(s, &keyframe);
  744. if (keyframe)
  745. av_log(avctx, AV_LOG_DEBUG, "Recommending key frame at frame %d\n", avctx->frame_number);
  746. }
  747. if (keyframe) {
  748. res = reconfigure_at_keyframe(s, p->data[0], p->linesize[0]);
  749. if (res)
  750. return res;
  751. }
  752. if (s->use15_7)
  753. s->dist = optimum_dist(s);
  754. res = write_bitstream(s, p->data[0], p->linesize[0], pkt->data, pkt->size, keyframe);
  755. if (keyframe) {
  756. new_key_frame(s);
  757. p->pict_type = AV_PICTURE_TYPE_I;
  758. p->key_frame = 1;
  759. s->last_key_frame = avctx->frame_number;
  760. pkt->flags |= AV_PKT_FLAG_KEY;
  761. av_log(avctx, AV_LOG_DEBUG, "Inserting key frame at frame %d\n", avctx->frame_number);
  762. } else {
  763. p->pict_type = AV_PICTURE_TYPE_P;
  764. p->key_frame = 0;
  765. }
  766. avctx->coded_frame = p;
  767. pkt->size = res;
  768. *got_packet = 1;
  769. return 0;
  770. }
  771. static av_cold int flashsv2_encode_end(AVCodecContext * avctx)
  772. {
  773. FlashSV2Context *s = avctx->priv_data;
  774. cleanup(s);
  775. return 0;
  776. }
  777. AVCodec ff_flashsv2_encoder = {
  778. .name = "flashsv2",
  779. .type = AVMEDIA_TYPE_VIDEO,
  780. .id = AV_CODEC_ID_FLASHSV2,
  781. .priv_data_size = sizeof(FlashSV2Context),
  782. .init = flashsv2_encode_init,
  783. .encode2 = flashsv2_encode_frame,
  784. .close = flashsv2_encode_end,
  785. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_BGR24, PIX_FMT_NONE },
  786. .long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video Version 2"),
  787. .capabilities = CODEC_CAP_EXPERIMENTAL,
  788. };