You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1023 lines
35KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. //#define DEBUG
  26. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  27. #include "libavutil/opt.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #include "internal.h"
  31. #include "mpegvideo.h"
  32. #include "dnxhdenc.h"
  33. #include "internal.h"
  34. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  35. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  36. static const AVOption options[]={
  37. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE},
  38. {NULL}
  39. };
  40. static const AVClass class = {
  41. .class_name = "dnxhd",
  42. .item_name = av_default_item_name,
  43. .option = options,
  44. .version = LIBAVUTIL_VERSION_INT,
  45. };
  46. #define LAMBDA_FRAC_BITS 10
  47. static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  48. {
  49. int i;
  50. for (i = 0; i < 4; i++) {
  51. block[0] = pixels[0]; block[1] = pixels[1];
  52. block[2] = pixels[2]; block[3] = pixels[3];
  53. block[4] = pixels[4]; block[5] = pixels[5];
  54. block[6] = pixels[6]; block[7] = pixels[7];
  55. pixels += line_size;
  56. block += 8;
  57. }
  58. memcpy(block, block - 8, sizeof(*block) * 8);
  59. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  60. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  61. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  62. }
  63. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  64. {
  65. int i;
  66. block += 32;
  67. for (i = 0; i < 4; i++) {
  68. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  69. memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  70. }
  71. }
  72. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
  73. int n, int qscale, int *overflow)
  74. {
  75. const uint8_t *scantable= ctx->intra_scantable.scantable;
  76. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  77. int last_non_zero = 0;
  78. int i;
  79. ctx->dsp.fdct(block);
  80. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  81. block[0] = (block[0] + 2) >> 2;
  82. for (i = 1; i < 64; ++i) {
  83. int j = scantable[i];
  84. int sign = block[j] >> 31;
  85. int level = (block[j] ^ sign) - sign;
  86. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  87. block[j] = (level ^ sign) - sign;
  88. if (level)
  89. last_non_zero = i;
  90. }
  91. return last_non_zero;
  92. }
  93. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  94. {
  95. int i, j, level, run;
  96. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  97. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  98. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  99. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  100. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  101. ctx->vlc_codes += max_level*2;
  102. ctx->vlc_bits += max_level*2;
  103. for (level = -max_level; level < max_level; level++) {
  104. for (run = 0; run < 2; run++) {
  105. int index = (level<<1)|run;
  106. int sign, offset = 0, alevel = level;
  107. MASK_ABS(sign, alevel);
  108. if (alevel > 64) {
  109. offset = (alevel-1)>>6;
  110. alevel -= offset<<6;
  111. }
  112. for (j = 0; j < 257; j++) {
  113. if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
  114. (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
  115. (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
  116. av_assert1(!ctx->vlc_codes[index]);
  117. if (alevel) {
  118. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  119. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  120. } else {
  121. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  122. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  123. }
  124. break;
  125. }
  126. }
  127. av_assert0(!alevel || j < 257);
  128. if (offset) {
  129. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  130. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  131. }
  132. }
  133. }
  134. for (i = 0; i < 62; i++) {
  135. int run = ctx->cid_table->run[i];
  136. av_assert0(run < 63);
  137. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  138. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  139. }
  140. return 0;
  141. fail:
  142. return -1;
  143. }
  144. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  145. {
  146. // init first elem to 1 to avoid div by 0 in convert_matrix
  147. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  148. int qscale, i;
  149. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  150. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  151. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  152. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  153. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  154. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  155. if (ctx->cid_table->bit_depth == 8) {
  156. for (i = 1; i < 64; i++) {
  157. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  158. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  159. }
  160. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  161. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  162. for (i = 1; i < 64; i++) {
  163. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  164. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  165. }
  166. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  167. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  168. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  169. for (i = 0; i < 64; i++) {
  170. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  171. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  172. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  173. }
  174. }
  175. } else {
  176. // 10-bit
  177. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  178. for (i = 1; i < 64; i++) {
  179. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  180. // The quantization formula from the VC-3 standard is:
  181. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  182. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  183. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  184. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  185. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  186. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  187. // For 10-bit samples, p / s == 2
  188. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  189. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  190. }
  191. }
  192. }
  193. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  194. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  195. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  196. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  197. return 0;
  198. fail:
  199. return -1;
  200. }
  201. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  202. {
  203. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  204. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  205. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  206. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  207. ctx->qscale = 1;
  208. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  209. return 0;
  210. fail:
  211. return -1;
  212. }
  213. static int dnxhd_encode_init(AVCodecContext *avctx)
  214. {
  215. DNXHDEncContext *ctx = avctx->priv_data;
  216. int i, index, bit_depth;
  217. switch (avctx->pix_fmt) {
  218. case PIX_FMT_YUV422P:
  219. bit_depth = 8;
  220. break;
  221. case PIX_FMT_YUV422P10:
  222. bit_depth = 10;
  223. break;
  224. default:
  225. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  226. return -1;
  227. }
  228. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  229. if (!ctx->cid) {
  230. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  231. return -1;
  232. }
  233. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  234. index = ff_dnxhd_get_cid_table(ctx->cid);
  235. ctx->cid_table = &ff_dnxhd_cid_table[index];
  236. ctx->m.avctx = avctx;
  237. ctx->m.mb_intra = 1;
  238. ctx->m.h263_aic = 1;
  239. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  240. ff_dsputil_init(&ctx->m.dsp, avctx);
  241. ff_dct_common_init(&ctx->m);
  242. if (!ctx->m.dct_quantize)
  243. ctx->m.dct_quantize = ff_dct_quantize_c;
  244. if (ctx->cid_table->bit_depth == 10) {
  245. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  246. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  247. ctx->block_width_l2 = 4;
  248. } else {
  249. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  250. ctx->block_width_l2 = 3;
  251. }
  252. #if HAVE_MMX
  253. ff_dnxhd_init_mmx(ctx);
  254. #endif
  255. ctx->m.mb_height = (avctx->height + 15) / 16;
  256. ctx->m.mb_width = (avctx->width + 15) / 16;
  257. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  258. ctx->interlaced = 1;
  259. ctx->m.mb_height /= 2;
  260. }
  261. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  262. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  263. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  264. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  265. return -1;
  266. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  267. if (ctx->nitris_compat)
  268. ctx->min_padding = 1600;
  269. if (dnxhd_init_vlc(ctx) < 0)
  270. return -1;
  271. if (dnxhd_init_rc(ctx) < 0)
  272. return -1;
  273. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  274. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  275. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  276. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  277. ctx->frame.key_frame = 1;
  278. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  279. ctx->m.avctx->coded_frame = &ctx->frame;
  280. if (avctx->thread_count > MAX_THREADS) {
  281. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  282. return -1;
  283. }
  284. ctx->thread[0] = ctx;
  285. for (i = 1; i < avctx->thread_count; i++) {
  286. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  287. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  288. }
  289. return 0;
  290. fail: //for FF_ALLOCZ_OR_GOTO
  291. return -1;
  292. }
  293. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  294. {
  295. DNXHDEncContext *ctx = avctx->priv_data;
  296. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  297. memset(buf, 0, 640);
  298. memcpy(buf, header_prefix, 5);
  299. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  300. buf[6] = 0x80; // crc flag off
  301. buf[7] = 0xa0; // reserved
  302. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  303. AV_WB16(buf + 0x1a, avctx->width); // SPL
  304. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  305. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  306. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  307. AV_WB32(buf + 0x28, ctx->cid); // CID
  308. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  309. buf[0x5f] = 0x01; // UDL
  310. buf[0x167] = 0x02; // reserved
  311. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  312. buf[0x16d] = ctx->m.mb_height; // Ns
  313. buf[0x16f] = 0x10; // reserved
  314. ctx->msip = buf + 0x170;
  315. return 0;
  316. }
  317. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  318. {
  319. int nbits;
  320. if (diff < 0) {
  321. nbits = av_log2_16bit(-2*diff);
  322. diff--;
  323. } else {
  324. nbits = av_log2_16bit(2*diff);
  325. }
  326. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  327. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  328. }
  329. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  330. {
  331. int last_non_zero = 0;
  332. int slevel, i, j;
  333. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  334. ctx->m.last_dc[n] = block[0];
  335. for (i = 1; i <= last_index; i++) {
  336. j = ctx->m.intra_scantable.permutated[i];
  337. slevel = block[j];
  338. if (slevel) {
  339. int run_level = i - last_non_zero - 1;
  340. int rlevel = (slevel<<1)|!!run_level;
  341. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  342. if (run_level)
  343. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  344. last_non_zero = i;
  345. }
  346. }
  347. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  348. }
  349. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  350. {
  351. const uint8_t *weight_matrix;
  352. int level;
  353. int i;
  354. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  355. for (i = 1; i <= last_index; i++) {
  356. int j = ctx->m.intra_scantable.permutated[i];
  357. level = block[j];
  358. if (level) {
  359. if (level < 0) {
  360. level = (1-2*level) * qscale * weight_matrix[i];
  361. if (ctx->cid_table->bit_depth == 10) {
  362. if (weight_matrix[i] != 8)
  363. level += 8;
  364. level >>= 4;
  365. } else {
  366. if (weight_matrix[i] != 32)
  367. level += 32;
  368. level >>= 6;
  369. }
  370. level = -level;
  371. } else {
  372. level = (2*level+1) * qscale * weight_matrix[i];
  373. if (ctx->cid_table->bit_depth == 10) {
  374. if (weight_matrix[i] != 8)
  375. level += 8;
  376. level >>= 4;
  377. } else {
  378. if (weight_matrix[i] != 32)
  379. level += 32;
  380. level >>= 6;
  381. }
  382. }
  383. block[j] = level;
  384. }
  385. }
  386. }
  387. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  388. {
  389. int score = 0;
  390. int i;
  391. for (i = 0; i < 64; i++)
  392. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  393. return score;
  394. }
  395. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  396. {
  397. int last_non_zero = 0;
  398. int bits = 0;
  399. int i, j, level;
  400. for (i = 1; i <= last_index; i++) {
  401. j = ctx->m.intra_scantable.permutated[i];
  402. level = block[j];
  403. if (level) {
  404. int run_level = i - last_non_zero - 1;
  405. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  406. last_non_zero = i;
  407. }
  408. }
  409. return bits;
  410. }
  411. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  412. {
  413. const int bs = ctx->block_width_l2;
  414. const int bw = 1 << bs;
  415. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  416. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  417. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  418. DSPContext *dsp = &ctx->m.dsp;
  419. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  420. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  421. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  422. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  423. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  424. if (ctx->interlaced) {
  425. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  426. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  427. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  428. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  429. } else {
  430. dsp->clear_block(ctx->blocks[4]);
  431. dsp->clear_block(ctx->blocks[5]);
  432. dsp->clear_block(ctx->blocks[6]);
  433. dsp->clear_block(ctx->blocks[7]);
  434. }
  435. } else {
  436. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  437. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  438. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  439. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  440. }
  441. }
  442. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  443. {
  444. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  445. return component[i];
  446. }
  447. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  448. {
  449. DNXHDEncContext *ctx = avctx->priv_data;
  450. int mb_y = jobnr, mb_x;
  451. int qscale = ctx->qscale;
  452. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  453. ctx = ctx->thread[threadnr];
  454. ctx->m.last_dc[0] =
  455. ctx->m.last_dc[1] =
  456. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  457. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  458. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  459. int ssd = 0;
  460. int ac_bits = 0;
  461. int dc_bits = 0;
  462. int i;
  463. dnxhd_get_blocks(ctx, mb_x, mb_y);
  464. for (i = 0; i < 8; i++) {
  465. DCTELEM *src_block = ctx->blocks[i];
  466. int overflow, nbits, diff, last_index;
  467. int n = dnxhd_switch_matrix(ctx, i);
  468. memcpy(block, src_block, 64*sizeof(*block));
  469. last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  470. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  471. diff = block[0] - ctx->m.last_dc[n];
  472. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  473. else nbits = av_log2_16bit( 2*diff);
  474. av_assert1(nbits < ctx->cid_table->bit_depth + 4);
  475. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  476. ctx->m.last_dc[n] = block[0];
  477. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  478. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  479. ctx->m.dsp.idct(block);
  480. ssd += dnxhd_ssd_block(block, src_block);
  481. }
  482. }
  483. ctx->mb_rc[qscale][mb].ssd = ssd;
  484. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  485. }
  486. return 0;
  487. }
  488. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  489. {
  490. DNXHDEncContext *ctx = avctx->priv_data;
  491. int mb_y = jobnr, mb_x;
  492. ctx = ctx->thread[threadnr];
  493. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  494. ctx->m.last_dc[0] =
  495. ctx->m.last_dc[1] =
  496. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  497. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  498. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  499. int qscale = ctx->mb_qscale[mb];
  500. int i;
  501. put_bits(&ctx->m.pb, 12, qscale<<1);
  502. dnxhd_get_blocks(ctx, mb_x, mb_y);
  503. for (i = 0; i < 8; i++) {
  504. DCTELEM *block = ctx->blocks[i];
  505. int overflow, n = dnxhd_switch_matrix(ctx, i);
  506. int last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  507. //START_TIMER;
  508. dnxhd_encode_block(ctx, block, last_index, n);
  509. //STOP_TIMER("encode_block");
  510. }
  511. }
  512. if (put_bits_count(&ctx->m.pb)&31)
  513. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  514. flush_put_bits(&ctx->m.pb);
  515. return 0;
  516. }
  517. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  518. {
  519. int mb_y, mb_x;
  520. int offset = 0;
  521. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  522. int thread_size;
  523. ctx->slice_offs[mb_y] = offset;
  524. ctx->slice_size[mb_y] = 0;
  525. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  526. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  527. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  528. }
  529. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  530. ctx->slice_size[mb_y] >>= 3;
  531. thread_size = ctx->slice_size[mb_y];
  532. offset += thread_size;
  533. }
  534. }
  535. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  536. {
  537. DNXHDEncContext *ctx = avctx->priv_data;
  538. int mb_y = jobnr, mb_x;
  539. ctx = ctx->thread[threadnr];
  540. if (ctx->cid_table->bit_depth == 8) {
  541. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  542. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  543. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  544. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  545. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8;
  546. ctx->mb_cmp[mb].value = varc;
  547. ctx->mb_cmp[mb].mb = mb;
  548. }
  549. } else { // 10-bit
  550. int const linesize = ctx->m.linesize >> 1;
  551. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  552. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  553. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  554. int sum = 0;
  555. int sqsum = 0;
  556. int mean, sqmean;
  557. int i, j;
  558. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  559. for (i = 0; i < 16; ++i) {
  560. for (j = 0; j < 16; ++j) {
  561. // Turn 16-bit pixels into 10-bit ones.
  562. int const sample = (unsigned)pix[j] >> 6;
  563. sum += sample;
  564. sqsum += sample * sample;
  565. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  566. }
  567. pix += linesize;
  568. }
  569. mean = sum >> 8; // 16*16 == 2^8
  570. sqmean = sqsum >> 8;
  571. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  572. ctx->mb_cmp[mb].mb = mb;
  573. }
  574. }
  575. return 0;
  576. }
  577. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  578. {
  579. int lambda, up_step, down_step;
  580. int last_lower = INT_MAX, last_higher = 0;
  581. int x, y, q;
  582. for (q = 1; q < avctx->qmax; q++) {
  583. ctx->qscale = q;
  584. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  585. }
  586. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  587. lambda = ctx->lambda;
  588. for (;;) {
  589. int bits = 0;
  590. int end = 0;
  591. if (lambda == last_higher) {
  592. lambda++;
  593. end = 1; // need to set final qscales/bits
  594. }
  595. for (y = 0; y < ctx->m.mb_height; y++) {
  596. for (x = 0; x < ctx->m.mb_width; x++) {
  597. unsigned min = UINT_MAX;
  598. int qscale = 1;
  599. int mb = y*ctx->m.mb_width+x;
  600. for (q = 1; q < avctx->qmax; q++) {
  601. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  602. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  603. if (score < min) {
  604. min = score;
  605. qscale = q;
  606. }
  607. }
  608. bits += ctx->mb_rc[qscale][mb].bits;
  609. ctx->mb_qscale[mb] = qscale;
  610. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  611. }
  612. bits = (bits+31)&~31; // padding
  613. if (bits > ctx->frame_bits)
  614. break;
  615. }
  616. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  617. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  618. if (end) {
  619. if (bits > ctx->frame_bits)
  620. return -1;
  621. break;
  622. }
  623. if (bits < ctx->frame_bits) {
  624. last_lower = FFMIN(lambda, last_lower);
  625. if (last_higher != 0)
  626. lambda = (lambda+last_higher)>>1;
  627. else
  628. lambda -= down_step;
  629. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  630. up_step = 1<<LAMBDA_FRAC_BITS;
  631. lambda = FFMAX(1, lambda);
  632. if (lambda == last_lower)
  633. break;
  634. } else {
  635. last_higher = FFMAX(lambda, last_higher);
  636. if (last_lower != INT_MAX)
  637. lambda = (lambda+last_lower)>>1;
  638. else if ((int64_t)lambda + up_step > INT_MAX)
  639. return -1;
  640. else
  641. lambda += up_step;
  642. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  643. down_step = 1<<LAMBDA_FRAC_BITS;
  644. }
  645. }
  646. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  647. ctx->lambda = lambda;
  648. return 0;
  649. }
  650. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  651. {
  652. int bits = 0;
  653. int up_step = 1;
  654. int down_step = 1;
  655. int last_higher = 0;
  656. int last_lower = INT_MAX;
  657. int qscale;
  658. int x, y;
  659. qscale = ctx->qscale;
  660. for (;;) {
  661. bits = 0;
  662. ctx->qscale = qscale;
  663. // XXX avoid recalculating bits
  664. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  665. for (y = 0; y < ctx->m.mb_height; y++) {
  666. for (x = 0; x < ctx->m.mb_width; x++)
  667. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  668. bits = (bits+31)&~31; // padding
  669. if (bits > ctx->frame_bits)
  670. break;
  671. }
  672. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  673. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  674. if (bits < ctx->frame_bits) {
  675. if (qscale == 1)
  676. return 1;
  677. if (last_higher == qscale - 1) {
  678. qscale = last_higher;
  679. break;
  680. }
  681. last_lower = FFMIN(qscale, last_lower);
  682. if (last_higher != 0)
  683. qscale = (qscale+last_higher)>>1;
  684. else
  685. qscale -= down_step++;
  686. if (qscale < 1)
  687. qscale = 1;
  688. up_step = 1;
  689. } else {
  690. if (last_lower == qscale + 1)
  691. break;
  692. last_higher = FFMAX(qscale, last_higher);
  693. if (last_lower != INT_MAX)
  694. qscale = (qscale+last_lower)>>1;
  695. else
  696. qscale += up_step++;
  697. down_step = 1;
  698. if (qscale >= ctx->m.avctx->qmax)
  699. return -1;
  700. }
  701. }
  702. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  703. ctx->qscale = qscale;
  704. return 0;
  705. }
  706. #define BUCKET_BITS 8
  707. #define RADIX_PASSES 4
  708. #define NBUCKETS (1 << BUCKET_BITS)
  709. static inline int get_bucket(int value, int shift)
  710. {
  711. value >>= shift;
  712. value &= NBUCKETS - 1;
  713. return NBUCKETS - 1 - value;
  714. }
  715. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  716. {
  717. int i, j;
  718. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  719. for (i = 0; i < size; i++) {
  720. int v = data[i].value;
  721. for (j = 0; j < RADIX_PASSES; j++) {
  722. buckets[j][get_bucket(v, 0)]++;
  723. v >>= BUCKET_BITS;
  724. }
  725. av_assert1(!v);
  726. }
  727. for (j = 0; j < RADIX_PASSES; j++) {
  728. int offset = size;
  729. for (i = NBUCKETS - 1; i >= 0; i--)
  730. buckets[j][i] = offset -= buckets[j][i];
  731. av_assert1(!buckets[j][0]);
  732. }
  733. }
  734. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  735. {
  736. int shift = pass * BUCKET_BITS;
  737. int i;
  738. for (i = 0; i < size; i++) {
  739. int v = get_bucket(data[i].value, shift);
  740. int pos = buckets[v]++;
  741. dst[pos] = data[i];
  742. }
  743. }
  744. static void radix_sort(RCCMPEntry *data, int size)
  745. {
  746. int buckets[RADIX_PASSES][NBUCKETS];
  747. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  748. radix_count(data, size, buckets);
  749. radix_sort_pass(tmp, data, size, buckets[0], 0);
  750. radix_sort_pass(data, tmp, size, buckets[1], 1);
  751. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  752. radix_sort_pass(tmp, data, size, buckets[2], 2);
  753. radix_sort_pass(data, tmp, size, buckets[3], 3);
  754. }
  755. av_free(tmp);
  756. }
  757. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  758. {
  759. int max_bits = 0;
  760. int ret, x, y;
  761. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  762. return -1;
  763. for (y = 0; y < ctx->m.mb_height; y++) {
  764. for (x = 0; x < ctx->m.mb_width; x++) {
  765. int mb = y*ctx->m.mb_width+x;
  766. int delta_bits;
  767. ctx->mb_qscale[mb] = ctx->qscale;
  768. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  769. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  770. if (!RC_VARIANCE) {
  771. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  772. ctx->mb_cmp[mb].mb = mb;
  773. ctx->mb_cmp[mb].value = delta_bits ?
  774. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  775. : INT_MIN; //avoid increasing qscale
  776. }
  777. }
  778. max_bits += 31; //worst padding
  779. }
  780. if (!ret) {
  781. if (RC_VARIANCE)
  782. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  783. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  784. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  785. int mb = ctx->mb_cmp[x].mb;
  786. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  787. ctx->mb_qscale[mb] = ctx->qscale+1;
  788. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  789. }
  790. }
  791. return 0;
  792. }
  793. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  794. {
  795. int i;
  796. for (i = 0; i < 3; i++) {
  797. ctx->frame.data[i] = frame->data[i];
  798. ctx->frame.linesize[i] = frame->linesize[i];
  799. }
  800. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  801. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  802. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  803. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  804. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  805. }
  806. ctx->frame.interlaced_frame = frame->interlaced_frame;
  807. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  808. }
  809. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  810. const AVFrame *frame, int *got_packet)
  811. {
  812. DNXHDEncContext *ctx = avctx->priv_data;
  813. int first_field = 1;
  814. int offset, i, ret;
  815. uint8_t *buf;
  816. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
  817. return ret;
  818. buf = pkt->data;
  819. dnxhd_load_picture(ctx, frame);
  820. encode_coding_unit:
  821. for (i = 0; i < 3; i++) {
  822. ctx->src[i] = ctx->frame.data[i];
  823. if (ctx->interlaced && ctx->cur_field)
  824. ctx->src[i] += ctx->frame.linesize[i];
  825. }
  826. dnxhd_write_header(avctx, buf);
  827. if (avctx->mb_decision == FF_MB_DECISION_RD)
  828. ret = dnxhd_encode_rdo(avctx, ctx);
  829. else
  830. ret = dnxhd_encode_fast(avctx, ctx);
  831. if (ret < 0) {
  832. av_log(avctx, AV_LOG_ERROR,
  833. "picture could not fit ratecontrol constraints, increase qmax\n");
  834. return -1;
  835. }
  836. dnxhd_setup_threads_slices(ctx);
  837. offset = 0;
  838. for (i = 0; i < ctx->m.mb_height; i++) {
  839. AV_WB32(ctx->msip + i * 4, offset);
  840. offset += ctx->slice_size[i];
  841. av_assert1(!(ctx->slice_size[i] & 3));
  842. }
  843. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  844. av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  845. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  846. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  847. if (ctx->interlaced && first_field) {
  848. first_field = 0;
  849. ctx->cur_field ^= 1;
  850. buf += ctx->cid_table->coding_unit_size;
  851. goto encode_coding_unit;
  852. }
  853. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  854. pkt->flags |= AV_PKT_FLAG_KEY;
  855. *got_packet = 1;
  856. return 0;
  857. }
  858. static int dnxhd_encode_end(AVCodecContext *avctx)
  859. {
  860. DNXHDEncContext *ctx = avctx->priv_data;
  861. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  862. int i;
  863. av_free(ctx->vlc_codes-max_level*2);
  864. av_free(ctx->vlc_bits -max_level*2);
  865. av_freep(&ctx->run_codes);
  866. av_freep(&ctx->run_bits);
  867. av_freep(&ctx->mb_bits);
  868. av_freep(&ctx->mb_qscale);
  869. av_freep(&ctx->mb_rc);
  870. av_freep(&ctx->mb_cmp);
  871. av_freep(&ctx->slice_size);
  872. av_freep(&ctx->slice_offs);
  873. av_freep(&ctx->qmatrix_c);
  874. av_freep(&ctx->qmatrix_l);
  875. av_freep(&ctx->qmatrix_c16);
  876. av_freep(&ctx->qmatrix_l16);
  877. for (i = 1; i < avctx->thread_count; i++)
  878. av_freep(&ctx->thread[i]);
  879. return 0;
  880. }
  881. static const AVCodecDefault dnxhd_defaults[] = {
  882. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  883. { NULL },
  884. };
  885. AVCodec ff_dnxhd_encoder = {
  886. .name = "dnxhd",
  887. .type = AVMEDIA_TYPE_VIDEO,
  888. .id = AV_CODEC_ID_DNXHD,
  889. .priv_data_size = sizeof(DNXHDEncContext),
  890. .init = dnxhd_encode_init,
  891. .encode2 = dnxhd_encode_picture,
  892. .close = dnxhd_encode_end,
  893. .capabilities = CODEC_CAP_SLICE_THREADS,
  894. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV422P,
  895. PIX_FMT_YUV422P10,
  896. PIX_FMT_NONE },
  897. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  898. .priv_class = &class,
  899. .defaults = dnxhd_defaults,
  900. };