You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1928 lines
66KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "get_bits.h"
  30. #include "bytestream.h"
  31. #include "golomb.h"
  32. #include "dirac_arith.h"
  33. #include "mpeg12data.h"
  34. #include "dwt.h"
  35. #include "dirac.h"
  36. #include "diracdsp.h"
  37. /**
  38. * The spec limits the number of wavelet decompositions to 4 for both
  39. * level 1 (VC-2) and 128 (long-gop default).
  40. * 5 decompositions is the maximum before >16-bit buffers are needed.
  41. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  42. * the others to 4 decompositions (or 3 for the fidelity filter).
  43. *
  44. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  45. */
  46. #define MAX_DWT_LEVELS 5
  47. /**
  48. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  49. */
  50. #define MAX_REFERENCE_FRAMES 8
  51. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  52. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  53. #define MAX_QUANT 68 /* max quant for VC-2 */
  54. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  55. /**
  56. * DiracBlock->ref flags, if set then the block does MC from the given ref
  57. */
  58. #define DIRAC_REF_MASK_REF1 1
  59. #define DIRAC_REF_MASK_REF2 2
  60. #define DIRAC_REF_MASK_GLOBAL 4
  61. /**
  62. * Value of Picture.reference when Picture is not a reference picture, but
  63. * is held for delayed output.
  64. */
  65. #define DELAYED_PIC_REF 4
  66. #define ff_emulated_edge_mc ff_emulated_edge_mc_8 /* Fix: change the calls to this function regarding bit depth */
  67. #define CALC_PADDING(size, depth) \
  68. (((size + (1 << depth) - 1) >> depth) << depth)
  69. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  70. typedef struct {
  71. AVFrame avframe;
  72. int interpolated[3]; /* 1 if hpel[] is valid */
  73. uint8_t *hpel[3][4];
  74. uint8_t *hpel_base[3][4];
  75. } DiracFrame;
  76. typedef struct {
  77. union {
  78. int16_t mv[2][2];
  79. int16_t dc[3];
  80. } u; /* anonymous unions aren't in C99 :( */
  81. uint8_t ref;
  82. } DiracBlock;
  83. typedef struct SubBand {
  84. int level;
  85. int orientation;
  86. int stride;
  87. int width;
  88. int height;
  89. int quant;
  90. IDWTELEM *ibuf;
  91. struct SubBand *parent;
  92. /* for low delay */
  93. unsigned length;
  94. const uint8_t *coeff_data;
  95. } SubBand;
  96. typedef struct Plane {
  97. int width;
  98. int height;
  99. int stride;
  100. int idwt_width;
  101. int idwt_height;
  102. int idwt_stride;
  103. IDWTELEM *idwt_buf;
  104. IDWTELEM *idwt_buf_base;
  105. IDWTELEM *idwt_tmp;
  106. /* block length */
  107. uint8_t xblen;
  108. uint8_t yblen;
  109. /* block separation (block n+1 starts after this many pixels in block n) */
  110. uint8_t xbsep;
  111. uint8_t ybsep;
  112. /* amount of overspill on each edge (half of the overlap between blocks) */
  113. uint8_t xoffset;
  114. uint8_t yoffset;
  115. SubBand band[MAX_DWT_LEVELS][4];
  116. } Plane;
  117. typedef struct DiracContext {
  118. AVCodecContext *avctx;
  119. DSPContext dsp;
  120. DiracDSPContext diracdsp;
  121. GetBitContext gb;
  122. dirac_source_params source;
  123. int seen_sequence_header;
  124. int frame_number; /* number of the next frame to display */
  125. Plane plane[3];
  126. int chroma_x_shift;
  127. int chroma_y_shift;
  128. int zero_res; /* zero residue flag */
  129. int is_arith; /* whether coeffs use arith or golomb coding */
  130. int low_delay; /* use the low delay syntax */
  131. int globalmc_flag; /* use global motion compensation */
  132. int num_refs; /* number of reference pictures */
  133. /* wavelet decoding */
  134. unsigned wavelet_depth; /* depth of the IDWT */
  135. unsigned wavelet_idx;
  136. /**
  137. * schroedinger older than 1.0.8 doesn't store
  138. * quant delta if only one codebook exists in a band
  139. */
  140. unsigned old_delta_quant;
  141. unsigned codeblock_mode;
  142. struct {
  143. unsigned width;
  144. unsigned height;
  145. } codeblock[MAX_DWT_LEVELS+1];
  146. struct {
  147. unsigned num_x; /* number of horizontal slices */
  148. unsigned num_y; /* number of vertical slices */
  149. AVRational bytes; /* average bytes per slice */
  150. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  151. } lowdelay;
  152. struct {
  153. int pan_tilt[2]; /* pan/tilt vector */
  154. int zrs[2][2]; /* zoom/rotate/shear matrix */
  155. int perspective[2]; /* perspective vector */
  156. unsigned zrs_exp;
  157. unsigned perspective_exp;
  158. } globalmc[2];
  159. /* motion compensation */
  160. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  161. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  162. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  163. int blwidth; /* number of blocks (horizontally) */
  164. int blheight; /* number of blocks (vertically) */
  165. int sbwidth; /* number of superblocks (horizontally) */
  166. int sbheight; /* number of superblocks (vertically) */
  167. uint8_t *sbsplit;
  168. DiracBlock *blmotion;
  169. uint8_t *edge_emu_buffer[4];
  170. uint8_t *edge_emu_buffer_base;
  171. uint16_t *mctmp; /* buffer holding the MC data multipled by OBMC weights */
  172. uint8_t *mcscratch;
  173. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  174. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  175. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  176. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  177. dirac_weight_func weight_func;
  178. dirac_biweight_func biweight_func;
  179. DiracFrame *current_picture;
  180. DiracFrame *ref_pics[2];
  181. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  182. DiracFrame *delay_frames[MAX_DELAY+1];
  183. DiracFrame all_frames[MAX_FRAMES];
  184. } DiracContext;
  185. /**
  186. * Dirac Specification ->
  187. * Parse code values. 9.6.1 Table 9.1
  188. */
  189. enum dirac_parse_code {
  190. pc_seq_header = 0x00,
  191. pc_eos = 0x10,
  192. pc_aux_data = 0x20,
  193. pc_padding = 0x30,
  194. };
  195. enum dirac_subband {
  196. subband_ll = 0,
  197. subband_hl = 1,
  198. subband_lh = 2,
  199. subband_hh = 3
  200. };
  201. static const uint8_t default_qmat[][4][4] = {
  202. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  203. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  204. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  205. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  206. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  207. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  208. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  209. };
  210. static const int qscale_tab[MAX_QUANT+1] = {
  211. 4, 5, 6, 7, 8, 10, 11, 13,
  212. 16, 19, 23, 27, 32, 38, 45, 54,
  213. 64, 76, 91, 108, 128, 152, 181, 215,
  214. 256, 304, 362, 431, 512, 609, 724, 861,
  215. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  216. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  217. 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
  218. 65536, 77936
  219. };
  220. static const int qoffset_intra_tab[MAX_QUANT+1] = {
  221. 1, 2, 3, 4, 4, 5, 6, 7,
  222. 8, 10, 12, 14, 16, 19, 23, 27,
  223. 32, 38, 46, 54, 64, 76, 91, 108,
  224. 128, 152, 181, 216, 256, 305, 362, 431,
  225. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  226. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  227. 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
  228. 32768, 38968
  229. };
  230. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  231. 1, 2, 2, 3, 3, 4, 4, 5,
  232. 6, 7, 9, 10, 12, 14, 17, 20,
  233. 24, 29, 34, 41, 48, 57, 68, 81,
  234. 96, 114, 136, 162, 192, 228, 272, 323,
  235. 384, 457, 543, 646, 768, 913, 1086, 1292,
  236. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  237. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  238. 24576, 29226
  239. };
  240. /* magic number division by 3 from schroedinger */
  241. static inline int divide3(int x)
  242. {
  243. return ((x+1)*21845 + 10922) >> 16;
  244. }
  245. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  246. {
  247. DiracFrame *remove_pic = NULL;
  248. int i, remove_idx = -1;
  249. for (i = 0; framelist[i]; i++)
  250. if (framelist[i]->avframe.display_picture_number == picnum) {
  251. remove_pic = framelist[i];
  252. remove_idx = i;
  253. }
  254. if (remove_pic)
  255. for (i = remove_idx; framelist[i]; i++)
  256. framelist[i] = framelist[i+1];
  257. return remove_pic;
  258. }
  259. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  260. {
  261. int i;
  262. for (i = 0; i < maxframes; i++)
  263. if (!framelist[i]) {
  264. framelist[i] = frame;
  265. return 0;
  266. }
  267. return -1;
  268. }
  269. static int alloc_sequence_buffers(DiracContext *s)
  270. {
  271. int sbwidth = DIVRNDUP(s->source.width, 4);
  272. int sbheight = DIVRNDUP(s->source.height, 4);
  273. int i, w, h, top_padding;
  274. /* todo: think more about this / use or set Plane here */
  275. for (i = 0; i < 3; i++) {
  276. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  277. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  278. w = s->source.width >> (i ? s->chroma_x_shift : 0);
  279. h = s->source.height >> (i ? s->chroma_y_shift : 0);
  280. /* we allocate the max we support here since num decompositions can
  281. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  282. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  283. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  284. * on each side */
  285. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  286. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  287. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  288. s->plane[i].idwt_buf_base = av_mallocz((w+max_xblen)*h * sizeof(IDWTELEM));
  289. s->plane[i].idwt_tmp = av_malloc((w+16) * sizeof(IDWTELEM));
  290. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
  291. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  292. return AVERROR(ENOMEM);
  293. }
  294. w = s->source.width;
  295. h = s->source.height;
  296. /* fixme: allocate using real stride here */
  297. s->sbsplit = av_malloc(sbwidth * sbheight);
  298. s->blmotion = av_malloc(sbwidth * sbheight * 4 * sizeof(*s->blmotion));
  299. s->edge_emu_buffer_base = av_malloc((w+64)*MAX_BLOCKSIZE);
  300. s->mctmp = av_malloc((w+64+MAX_BLOCKSIZE) * (h*MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  301. s->mcscratch = av_malloc((w+64)*MAX_BLOCKSIZE);
  302. if (!s->sbsplit || !s->blmotion)
  303. return AVERROR(ENOMEM);
  304. return 0;
  305. }
  306. static void free_sequence_buffers(DiracContext *s)
  307. {
  308. int i, j, k;
  309. for (i = 0; i < MAX_FRAMES; i++) {
  310. if (s->all_frames[i].avframe.data[0]) {
  311. s->avctx->release_buffer(s->avctx, &s->all_frames[i].avframe);
  312. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  313. }
  314. for (j = 0; j < 3; j++)
  315. for (k = 1; k < 4; k++)
  316. av_freep(&s->all_frames[i].hpel_base[j][k]);
  317. }
  318. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  319. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  320. for (i = 0; i < 3; i++) {
  321. av_freep(&s->plane[i].idwt_buf_base);
  322. av_freep(&s->plane[i].idwt_tmp);
  323. }
  324. av_freep(&s->sbsplit);
  325. av_freep(&s->blmotion);
  326. av_freep(&s->edge_emu_buffer_base);
  327. av_freep(&s->mctmp);
  328. av_freep(&s->mcscratch);
  329. }
  330. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  331. {
  332. DiracContext *s = avctx->priv_data;
  333. s->avctx = avctx;
  334. s->frame_number = -1;
  335. if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
  336. av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported!\n");
  337. return AVERROR_PATCHWELCOME;
  338. }
  339. ff_dsputil_init(&s->dsp, avctx);
  340. ff_diracdsp_init(&s->diracdsp);
  341. return 0;
  342. }
  343. static void dirac_decode_flush(AVCodecContext *avctx)
  344. {
  345. DiracContext *s = avctx->priv_data;
  346. free_sequence_buffers(s);
  347. s->seen_sequence_header = 0;
  348. s->frame_number = -1;
  349. }
  350. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  351. {
  352. dirac_decode_flush(avctx);
  353. return 0;
  354. }
  355. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  356. static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
  357. SubBand *b, IDWTELEM *buf, int x, int y)
  358. {
  359. int coeff, sign;
  360. int sign_pred = 0;
  361. int pred_ctx = CTX_ZPZN_F1;
  362. /* Check if the parent subband has a 0 in the corresponding position */
  363. if (b->parent)
  364. pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
  365. if (b->orientation == subband_hl)
  366. sign_pred = buf[-b->stride];
  367. /* Determine if the pixel has only zeros in its neighbourhood */
  368. if (x) {
  369. pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
  370. if (b->orientation == subband_lh)
  371. sign_pred = buf[-1];
  372. } else {
  373. pred_ctx += !buf[-b->stride];
  374. }
  375. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
  376. if (coeff) {
  377. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  378. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
  379. coeff = (coeff ^ -sign) + sign;
  380. }
  381. *buf = coeff;
  382. }
  383. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  384. {
  385. int sign, coeff;
  386. coeff = svq3_get_ue_golomb(gb);
  387. if (coeff) {
  388. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  389. sign = get_bits1(gb);
  390. coeff = (coeff ^ -sign) + sign;
  391. }
  392. return coeff;
  393. }
  394. /**
  395. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  396. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  397. */
  398. static inline void codeblock(DiracContext *s, SubBand *b,
  399. GetBitContext *gb, DiracArith *c,
  400. int left, int right, int top, int bottom,
  401. int blockcnt_one, int is_arith)
  402. {
  403. int x, y, zero_block;
  404. int qoffset, qfactor;
  405. IDWTELEM *buf;
  406. /* check for any coded coefficients in this codeblock */
  407. if (!blockcnt_one) {
  408. if (is_arith)
  409. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  410. else
  411. zero_block = get_bits1(gb);
  412. if (zero_block)
  413. return;
  414. }
  415. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  416. int quant = b->quant;
  417. if (is_arith)
  418. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  419. else
  420. quant += dirac_get_se_golomb(gb);
  421. if (quant < 0) {
  422. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  423. return;
  424. }
  425. b->quant = quant;
  426. }
  427. b->quant = FFMIN(b->quant, MAX_QUANT);
  428. qfactor = qscale_tab[b->quant];
  429. /* TODO: context pointer? */
  430. if (!s->num_refs)
  431. qoffset = qoffset_intra_tab[b->quant];
  432. else
  433. qoffset = qoffset_inter_tab[b->quant];
  434. buf = b->ibuf + top * b->stride;
  435. for (y = top; y < bottom; y++) {
  436. for (x = left; x < right; x++) {
  437. /* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
  438. if (is_arith)
  439. coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
  440. else
  441. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  442. }
  443. buf += b->stride;
  444. }
  445. }
  446. /**
  447. * Dirac Specification ->
  448. * 13.3 intra_dc_prediction(band)
  449. */
  450. static inline void intra_dc_prediction(SubBand *b)
  451. {
  452. IDWTELEM *buf = b->ibuf;
  453. int x, y;
  454. for (x = 1; x < b->width; x++)
  455. buf[x] += buf[x-1];
  456. buf += b->stride;
  457. for (y = 1; y < b->height; y++) {
  458. buf[0] += buf[-b->stride];
  459. for (x = 1; x < b->width; x++) {
  460. int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
  461. buf[x] += divide3(pred);
  462. }
  463. buf += b->stride;
  464. }
  465. }
  466. /**
  467. * Dirac Specification ->
  468. * 13.4.2 Non-skipped subbands. subband_coeffs()
  469. */
  470. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  471. {
  472. int cb_x, cb_y, left, right, top, bottom;
  473. DiracArith c;
  474. GetBitContext gb;
  475. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  476. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  477. int blockcnt_one = (cb_width + cb_height) == 2;
  478. if (!b->length)
  479. return;
  480. init_get_bits(&gb, b->coeff_data, b->length*8);
  481. if (is_arith)
  482. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  483. top = 0;
  484. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  485. bottom = (b->height * (cb_y+1)) / cb_height;
  486. left = 0;
  487. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  488. right = (b->width * (cb_x+1)) / cb_width;
  489. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  490. left = right;
  491. }
  492. top = bottom;
  493. }
  494. if (b->orientation == subband_ll && s->num_refs == 0)
  495. intra_dc_prediction(b);
  496. }
  497. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  498. {
  499. DiracContext *s = avctx->priv_data;
  500. decode_subband_internal(s, b, 1);
  501. return 0;
  502. }
  503. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  504. {
  505. DiracContext *s = avctx->priv_data;
  506. SubBand **b = arg;
  507. decode_subband_internal(s, *b, 0);
  508. return 0;
  509. }
  510. /**
  511. * Dirac Specification ->
  512. * [DIRAC_STD] 13.4.1 core_transform_data()
  513. */
  514. static void decode_component(DiracContext *s, int comp)
  515. {
  516. AVCodecContext *avctx = s->avctx;
  517. SubBand *bands[3*MAX_DWT_LEVELS+1];
  518. enum dirac_subband orientation;
  519. int level, num_bands = 0;
  520. /* Unpack all subbands at all levels. */
  521. for (level = 0; level < s->wavelet_depth; level++) {
  522. for (orientation = !!level; orientation < 4; orientation++) {
  523. SubBand *b = &s->plane[comp].band[level][orientation];
  524. bands[num_bands++] = b;
  525. align_get_bits(&s->gb);
  526. /* [DIRAC_STD] 13.4.2 subband() */
  527. b->length = svq3_get_ue_golomb(&s->gb);
  528. if (b->length) {
  529. b->quant = svq3_get_ue_golomb(&s->gb);
  530. align_get_bits(&s->gb);
  531. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  532. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  533. skip_bits_long(&s->gb, b->length*8);
  534. }
  535. }
  536. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  537. if (s->is_arith)
  538. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  539. NULL, 4-!!level, sizeof(SubBand));
  540. }
  541. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  542. if (!s->is_arith)
  543. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  544. }
  545. /* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
  546. /* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
  547. static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
  548. int slice_x, int slice_y, int bits_end,
  549. SubBand *b1, SubBand *b2)
  550. {
  551. int left = b1->width * slice_x / s->lowdelay.num_x;
  552. int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
  553. int top = b1->height * slice_y / s->lowdelay.num_y;
  554. int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
  555. int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
  556. int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
  557. IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
  558. IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
  559. int x, y;
  560. /* we have to constantly check for overread since the spec explictly
  561. requires this, with the meaning that all remaining coeffs are set to 0 */
  562. if (get_bits_count(gb) >= bits_end)
  563. return;
  564. for (y = top; y < bottom; y++) {
  565. for (x = left; x < right; x++) {
  566. buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  567. if (get_bits_count(gb) >= bits_end)
  568. return;
  569. if (buf2) {
  570. buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  571. if (get_bits_count(gb) >= bits_end)
  572. return;
  573. }
  574. }
  575. buf1 += b1->stride;
  576. if (buf2)
  577. buf2 += b2->stride;
  578. }
  579. }
  580. struct lowdelay_slice {
  581. GetBitContext gb;
  582. int slice_x;
  583. int slice_y;
  584. int bytes;
  585. };
  586. /**
  587. * Dirac Specification ->
  588. * 13.5.2 Slices. slice(sx,sy)
  589. */
  590. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  591. {
  592. DiracContext *s = avctx->priv_data;
  593. struct lowdelay_slice *slice = arg;
  594. GetBitContext *gb = &slice->gb;
  595. enum dirac_subband orientation;
  596. int level, quant, chroma_bits, chroma_end;
  597. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  598. int length_bits = av_log2(8 * slice->bytes)+1;
  599. int luma_bits = get_bits_long(gb, length_bits);
  600. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  601. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  602. for (level = 0; level < s->wavelet_depth; level++)
  603. for (orientation = !!level; orientation < 4; orientation++) {
  604. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  605. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  606. &s->plane[0].band[level][orientation], NULL);
  607. }
  608. /* consume any unused bits from luma */
  609. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  610. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  611. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  612. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  613. for (level = 0; level < s->wavelet_depth; level++)
  614. for (orientation = !!level; orientation < 4; orientation++) {
  615. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  616. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  617. &s->plane[1].band[level][orientation],
  618. &s->plane[2].band[level][orientation]);
  619. }
  620. return 0;
  621. }
  622. /**
  623. * Dirac Specification ->
  624. * 13.5.1 low_delay_transform_data()
  625. */
  626. static void decode_lowdelay(DiracContext *s)
  627. {
  628. AVCodecContext *avctx = s->avctx;
  629. int slice_x, slice_y, bytes, bufsize;
  630. const uint8_t *buf;
  631. struct lowdelay_slice *slices;
  632. int slice_num = 0;
  633. slices = av_mallocz(s->lowdelay.num_x * s->lowdelay.num_y * sizeof(struct lowdelay_slice));
  634. align_get_bits(&s->gb);
  635. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  636. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  637. bufsize = get_bits_left(&s->gb);
  638. for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
  639. for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
  640. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  641. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  642. slices[slice_num].bytes = bytes;
  643. slices[slice_num].slice_x = slice_x;
  644. slices[slice_num].slice_y = slice_y;
  645. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  646. slice_num++;
  647. buf += bytes;
  648. bufsize -= bytes*8;
  649. }
  650. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  651. sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
  652. intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  653. intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  654. intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  655. av_free(slices);
  656. }
  657. static void init_planes(DiracContext *s)
  658. {
  659. int i, w, h, level, orientation;
  660. for (i = 0; i < 3; i++) {
  661. Plane *p = &s->plane[i];
  662. p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
  663. p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
  664. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  665. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  666. p->idwt_stride = FFALIGN(p->idwt_width, 8);
  667. for (level = s->wavelet_depth-1; level >= 0; level--) {
  668. w = w>>1;
  669. h = h>>1;
  670. for (orientation = !!level; orientation < 4; orientation++) {
  671. SubBand *b = &p->band[level][orientation];
  672. b->ibuf = p->idwt_buf;
  673. b->level = level;
  674. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  675. b->width = w;
  676. b->height = h;
  677. b->orientation = orientation;
  678. if (orientation & 1)
  679. b->ibuf += w;
  680. if (orientation > 1)
  681. b->ibuf += b->stride>>1;
  682. if (level)
  683. b->parent = &p->band[level-1][orientation];
  684. }
  685. }
  686. if (i > 0) {
  687. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  688. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  689. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  690. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  691. }
  692. p->xoffset = (p->xblen - p->xbsep)/2;
  693. p->yoffset = (p->yblen - p->ybsep)/2;
  694. }
  695. }
  696. /**
  697. * Unpack the motion compensation parameters
  698. * Dirac Specification ->
  699. * 11.2 Picture prediction data. picture_prediction()
  700. */
  701. static int dirac_unpack_prediction_parameters(DiracContext *s)
  702. {
  703. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  704. static const uint8_t default_bsep[] = { 4, 8, 12, 16 };
  705. GetBitContext *gb = &s->gb;
  706. unsigned idx, ref;
  707. align_get_bits(gb);
  708. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  709. /* Luma and Chroma are equal. 11.2.3 */
  710. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  711. if (idx > 4) {
  712. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  713. return -1;
  714. }
  715. if (idx == 0) {
  716. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  717. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  718. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  719. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  720. } else {
  721. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  722. s->plane[0].xblen = default_blen[idx-1];
  723. s->plane[0].yblen = default_blen[idx-1];
  724. s->plane[0].xbsep = default_bsep[idx-1];
  725. s->plane[0].ybsep = default_bsep[idx-1];
  726. }
  727. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  728. Calculated in function dirac_unpack_block_motion_data */
  729. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  730. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  731. return -1;
  732. }
  733. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  734. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  735. return -1;
  736. }
  737. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  738. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  739. return -1;
  740. }
  741. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  742. Read motion vector precision */
  743. s->mv_precision = svq3_get_ue_golomb(gb);
  744. if (s->mv_precision > 3) {
  745. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  746. return -1;
  747. }
  748. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  749. Read the global motion compensation parameters */
  750. s->globalmc_flag = get_bits1(gb);
  751. if (s->globalmc_flag) {
  752. memset(s->globalmc, 0, sizeof(s->globalmc));
  753. /* [DIRAC_STD] pan_tilt(gparams) */
  754. for (ref = 0; ref < s->num_refs; ref++) {
  755. if (get_bits1(gb)) {
  756. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  757. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  758. }
  759. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  760. zoom/rotation/shear parameters */
  761. if (get_bits1(gb)) {
  762. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  763. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  764. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  765. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  766. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  767. } else {
  768. s->globalmc[ref].zrs[0][0] = 1;
  769. s->globalmc[ref].zrs[1][1] = 1;
  770. }
  771. /* [DIRAC_STD] perspective(gparams) */
  772. if (get_bits1(gb)) {
  773. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  774. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  775. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  776. }
  777. }
  778. }
  779. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  780. Picture prediction mode, not currently used. */
  781. if (svq3_get_ue_golomb(gb)) {
  782. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  783. return -1;
  784. }
  785. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  786. just data read, weight calculation will be done later on. */
  787. s->weight_log2denom = 1;
  788. s->weight[0] = 1;
  789. s->weight[1] = 1;
  790. if (get_bits1(gb)) {
  791. s->weight_log2denom = svq3_get_ue_golomb(gb);
  792. s->weight[0] = dirac_get_se_golomb(gb);
  793. if (s->num_refs == 2)
  794. s->weight[1] = dirac_get_se_golomb(gb);
  795. }
  796. return 0;
  797. }
  798. /**
  799. * Dirac Specification ->
  800. * 11.3 Wavelet transform data. wavelet_transform()
  801. */
  802. static int dirac_unpack_idwt_params(DiracContext *s)
  803. {
  804. GetBitContext *gb = &s->gb;
  805. int i, level;
  806. unsigned tmp;
  807. #define CHECKEDREAD(dst, cond, errmsg) \
  808. tmp = svq3_get_ue_golomb(gb); \
  809. if (cond) { \
  810. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  811. return -1; \
  812. }\
  813. dst = tmp;
  814. align_get_bits(gb);
  815. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  816. if (s->zero_res)
  817. return 0;
  818. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  819. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  820. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  821. if (!s->low_delay) {
  822. /* Codeblock parameters (core syntax only) */
  823. if (get_bits1(gb)) {
  824. for (i = 0; i <= s->wavelet_depth; i++) {
  825. CHECKEDREAD(s->codeblock[i].width , tmp < 1, "codeblock width invalid\n")
  826. CHECKEDREAD(s->codeblock[i].height, tmp < 1, "codeblock height invalid\n")
  827. }
  828. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  829. } else
  830. for (i = 0; i <= s->wavelet_depth; i++)
  831. s->codeblock[i].width = s->codeblock[i].height = 1;
  832. } else {
  833. /* Slice parameters + quantization matrix*/
  834. /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
  835. s->lowdelay.num_x = svq3_get_ue_golomb(gb);
  836. s->lowdelay.num_y = svq3_get_ue_golomb(gb);
  837. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  838. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  839. if (s->lowdelay.bytes.den <= 0) {
  840. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  841. return AVERROR_INVALIDDATA;
  842. }
  843. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  844. if (get_bits1(gb)) {
  845. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  846. /* custom quantization matrix */
  847. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  848. for (level = 0; level < s->wavelet_depth; level++) {
  849. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  850. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  851. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  852. }
  853. } else {
  854. /* default quantization matrix */
  855. for (level = 0; level < s->wavelet_depth; level++)
  856. for (i = 0; i < 4; i++) {
  857. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  858. /* haar with no shift differs for different depths */
  859. if (s->wavelet_idx == 3)
  860. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  861. }
  862. }
  863. }
  864. return 0;
  865. }
  866. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  867. {
  868. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  869. if (!(x|y))
  870. return 0;
  871. else if (!y)
  872. return sbsplit[-1];
  873. else if (!x)
  874. return sbsplit[-stride];
  875. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  876. }
  877. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  878. {
  879. int pred;
  880. if (!(x|y))
  881. return 0;
  882. else if (!y)
  883. return block[-1].ref & refmask;
  884. else if (!x)
  885. return block[-stride].ref & refmask;
  886. /* return the majority */
  887. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  888. return (pred >> 1) & refmask;
  889. }
  890. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  891. {
  892. int i, n = 0;
  893. memset(block->u.dc, 0, sizeof(block->u.dc));
  894. if (x && !(block[-1].ref & 3)) {
  895. for (i = 0; i < 3; i++)
  896. block->u.dc[i] += block[-1].u.dc[i];
  897. n++;
  898. }
  899. if (y && !(block[-stride].ref & 3)) {
  900. for (i = 0; i < 3; i++)
  901. block->u.dc[i] += block[-stride].u.dc[i];
  902. n++;
  903. }
  904. if (x && y && !(block[-1-stride].ref & 3)) {
  905. for (i = 0; i < 3; i++)
  906. block->u.dc[i] += block[-1-stride].u.dc[i];
  907. n++;
  908. }
  909. if (n == 2) {
  910. for (i = 0; i < 3; i++)
  911. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  912. } else if (n == 3) {
  913. for (i = 0; i < 3; i++)
  914. block->u.dc[i] = divide3(block->u.dc[i]);
  915. }
  916. }
  917. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  918. {
  919. int16_t *pred[3];
  920. int refmask = ref+1;
  921. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  922. int n = 0;
  923. if (x && (block[-1].ref & mask) == refmask)
  924. pred[n++] = block[-1].u.mv[ref];
  925. if (y && (block[-stride].ref & mask) == refmask)
  926. pred[n++] = block[-stride].u.mv[ref];
  927. if (x && y && (block[-stride-1].ref & mask) == refmask)
  928. pred[n++] = block[-stride-1].u.mv[ref];
  929. switch (n) {
  930. case 0:
  931. block->u.mv[ref][0] = 0;
  932. block->u.mv[ref][1] = 0;
  933. break;
  934. case 1:
  935. block->u.mv[ref][0] = pred[0][0];
  936. block->u.mv[ref][1] = pred[0][1];
  937. break;
  938. case 2:
  939. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  940. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  941. break;
  942. case 3:
  943. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  944. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  945. break;
  946. }
  947. }
  948. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  949. {
  950. int ez = s->globalmc[ref].zrs_exp;
  951. int ep = s->globalmc[ref].perspective_exp;
  952. int (*A)[2] = s->globalmc[ref].zrs;
  953. int *b = s->globalmc[ref].pan_tilt;
  954. int *c = s->globalmc[ref].perspective;
  955. int m = (1<<ep) - (c[0]*x + c[1]*y);
  956. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  957. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  958. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  959. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  960. }
  961. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  962. int stride, int x, int y)
  963. {
  964. int i;
  965. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  966. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  967. if (s->num_refs == 2) {
  968. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  969. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  970. }
  971. if (!block->ref) {
  972. pred_block_dc(block, stride, x, y);
  973. for (i = 0; i < 3; i++)
  974. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  975. return;
  976. }
  977. if (s->globalmc_flag) {
  978. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  979. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  980. }
  981. for (i = 0; i < s->num_refs; i++)
  982. if (block->ref & (i+1)) {
  983. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  984. global_mv(s, block, x, y, i);
  985. } else {
  986. pred_mv(block, stride, x, y, i);
  987. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  988. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  989. }
  990. }
  991. }
  992. /**
  993. * Copies the current block to the other blocks covered by the current superblock split mode
  994. */
  995. static void propagate_block_data(DiracBlock *block, int stride, int size)
  996. {
  997. int x, y;
  998. DiracBlock *dst = block;
  999. for (x = 1; x < size; x++)
  1000. dst[x] = *block;
  1001. for (y = 1; y < size; y++) {
  1002. dst += stride;
  1003. for (x = 0; x < size; x++)
  1004. dst[x] = *block;
  1005. }
  1006. }
  1007. /**
  1008. * Dirac Specification ->
  1009. * 12. Block motion data syntax
  1010. */
  1011. static int dirac_unpack_block_motion_data(DiracContext *s)
  1012. {
  1013. GetBitContext *gb = &s->gb;
  1014. uint8_t *sbsplit = s->sbsplit;
  1015. int i, x, y, q, p;
  1016. DiracArith arith[8];
  1017. align_get_bits(gb);
  1018. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1019. s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
  1020. s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
  1021. s->blwidth = 4 * s->sbwidth;
  1022. s->blheight = 4 * s->sbheight;
  1023. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1024. decode superblock split modes */
  1025. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1026. for (y = 0; y < s->sbheight; y++) {
  1027. for (x = 0; x < s->sbwidth; x++) {
  1028. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1029. if (split > 2)
  1030. return -1;
  1031. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1032. }
  1033. sbsplit += s->sbwidth;
  1034. }
  1035. /* setup arith decoding */
  1036. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1037. for (i = 0; i < s->num_refs; i++) {
  1038. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1039. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1040. }
  1041. for (i = 0; i < 3; i++)
  1042. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1043. for (y = 0; y < s->sbheight; y++)
  1044. for (x = 0; x < s->sbwidth; x++) {
  1045. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1046. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1047. for (q = 0; q < blkcnt; q++)
  1048. for (p = 0; p < blkcnt; p++) {
  1049. int bx = 4 * x + p*step;
  1050. int by = 4 * y + q*step;
  1051. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1052. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1053. propagate_block_data(block, s->blwidth, step);
  1054. }
  1055. }
  1056. return 0;
  1057. }
  1058. static int weight(int i, int blen, int offset)
  1059. {
  1060. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1061. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1062. if (i < 2*offset)
  1063. return ROLLOFF(i);
  1064. else if (i > blen-1 - 2*offset)
  1065. return ROLLOFF(blen-1 - i);
  1066. return 8;
  1067. }
  1068. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1069. int left, int right, int wy)
  1070. {
  1071. int x;
  1072. for (x = 0; left && x < p->xblen >> 1; x++)
  1073. obmc_weight[x] = wy*8;
  1074. for (; x < p->xblen >> right; x++)
  1075. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1076. for (; x < p->xblen; x++)
  1077. obmc_weight[x] = wy*8;
  1078. for (; x < stride; x++)
  1079. obmc_weight[x] = 0;
  1080. }
  1081. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1082. int left, int right, int top, int bottom)
  1083. {
  1084. int y;
  1085. for (y = 0; top && y < p->yblen >> 1; y++) {
  1086. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1087. obmc_weight += stride;
  1088. }
  1089. for (; y < p->yblen >> bottom; y++) {
  1090. int wy = weight(y, p->yblen, p->yoffset);
  1091. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1092. obmc_weight += stride;
  1093. }
  1094. for (; y < p->yblen; y++) {
  1095. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1096. obmc_weight += stride;
  1097. }
  1098. }
  1099. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1100. {
  1101. int top = !by;
  1102. int bottom = by == s->blheight-1;
  1103. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1104. if (top || bottom || by == 1) {
  1105. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1106. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1107. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1108. }
  1109. }
  1110. static const uint8_t epel_weights[4][4][4] = {
  1111. {{ 16, 0, 0, 0 },
  1112. { 12, 4, 0, 0 },
  1113. { 8, 8, 0, 0 },
  1114. { 4, 12, 0, 0 }},
  1115. {{ 12, 0, 4, 0 },
  1116. { 9, 3, 3, 1 },
  1117. { 6, 6, 2, 2 },
  1118. { 3, 9, 1, 3 }},
  1119. {{ 8, 0, 8, 0 },
  1120. { 6, 2, 6, 2 },
  1121. { 4, 4, 4, 4 },
  1122. { 2, 6, 2, 6 }},
  1123. {{ 4, 0, 12, 0 },
  1124. { 3, 1, 9, 3 },
  1125. { 2, 2, 6, 6 },
  1126. { 1, 3, 3, 9 }}
  1127. };
  1128. /**
  1129. * For block x,y, determine which of the hpel planes to do bilinear
  1130. * interpolation from and set src[] to the location in each hpel plane
  1131. * to MC from.
  1132. *
  1133. * @return the index of the put_dirac_pixels_tab function to use
  1134. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1135. */
  1136. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1137. int x, int y, int ref, int plane)
  1138. {
  1139. Plane *p = &s->plane[plane];
  1140. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1141. int motion_x = block->u.mv[ref][0];
  1142. int motion_y = block->u.mv[ref][1];
  1143. int mx, my, i, epel, nplanes = 0;
  1144. if (plane) {
  1145. motion_x >>= s->chroma_x_shift;
  1146. motion_y >>= s->chroma_y_shift;
  1147. }
  1148. mx = motion_x & ~(-1 << s->mv_precision);
  1149. my = motion_y & ~(-1 << s->mv_precision);
  1150. motion_x >>= s->mv_precision;
  1151. motion_y >>= s->mv_precision;
  1152. /* normalize subpel coordinates to epel */
  1153. /* TODO: template this function? */
  1154. mx <<= 3 - s->mv_precision;
  1155. my <<= 3 - s->mv_precision;
  1156. x += motion_x;
  1157. y += motion_y;
  1158. epel = (mx|my)&1;
  1159. /* hpel position */
  1160. if (!((mx|my)&3)) {
  1161. nplanes = 1;
  1162. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1163. } else {
  1164. /* qpel or epel */
  1165. nplanes = 4;
  1166. for (i = 0; i < 4; i++)
  1167. src[i] = ref_hpel[i] + y*p->stride + x;
  1168. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1169. we increment x/y because the edge changes for half of the pixels */
  1170. if (mx > 4) {
  1171. src[0] += 1;
  1172. src[2] += 1;
  1173. x++;
  1174. }
  1175. if (my > 4) {
  1176. src[0] += p->stride;
  1177. src[1] += p->stride;
  1178. y++;
  1179. }
  1180. /* hpel planes are:
  1181. [0]: F [1]: H
  1182. [2]: V [3]: C */
  1183. if (!epel) {
  1184. /* check if we really only need 2 planes since either mx or my is
  1185. a hpel position. (epel weights of 0 handle this there) */
  1186. if (!(mx&3)) {
  1187. /* mx == 0: average [0] and [2]
  1188. mx == 4: average [1] and [3] */
  1189. src[!mx] = src[2 + !!mx];
  1190. nplanes = 2;
  1191. } else if (!(my&3)) {
  1192. src[0] = src[(my>>1) ];
  1193. src[1] = src[(my>>1)+1];
  1194. nplanes = 2;
  1195. }
  1196. } else {
  1197. /* adjust the ordering if needed so the weights work */
  1198. if (mx > 4) {
  1199. FFSWAP(const uint8_t *, src[0], src[1]);
  1200. FFSWAP(const uint8_t *, src[2], src[3]);
  1201. }
  1202. if (my > 4) {
  1203. FFSWAP(const uint8_t *, src[0], src[2]);
  1204. FFSWAP(const uint8_t *, src[1], src[3]);
  1205. }
  1206. src[4] = epel_weights[my&3][mx&3];
  1207. }
  1208. }
  1209. /* fixme: v/h _edge_pos */
  1210. if ((unsigned)x > p->width +EDGE_WIDTH/2 - p->xblen ||
  1211. (unsigned)y > p->height+EDGE_WIDTH/2 - p->yblen) {
  1212. for (i = 0; i < nplanes; i++) {
  1213. ff_emulated_edge_mc(s->edge_emu_buffer[i], src[i], p->stride,
  1214. p->xblen, p->yblen, x, y,
  1215. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1216. src[i] = s->edge_emu_buffer[i];
  1217. }
  1218. }
  1219. return (nplanes>>1) + epel;
  1220. }
  1221. static void add_dc(uint16_t *dst, int dc, int stride,
  1222. uint8_t *obmc_weight, int xblen, int yblen)
  1223. {
  1224. int x, y;
  1225. dc += 128;
  1226. for (y = 0; y < yblen; y++) {
  1227. for (x = 0; x < xblen; x += 2) {
  1228. dst[x ] += dc * obmc_weight[x ];
  1229. dst[x+1] += dc * obmc_weight[x+1];
  1230. }
  1231. dst += stride;
  1232. obmc_weight += MAX_BLOCKSIZE;
  1233. }
  1234. }
  1235. static void block_mc(DiracContext *s, DiracBlock *block,
  1236. uint16_t *mctmp, uint8_t *obmc_weight,
  1237. int plane, int dstx, int dsty)
  1238. {
  1239. Plane *p = &s->plane[plane];
  1240. const uint8_t *src[5];
  1241. int idx;
  1242. switch (block->ref&3) {
  1243. case 0: /* DC */
  1244. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1245. return;
  1246. case 1:
  1247. case 2:
  1248. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1249. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1250. if (s->weight_func)
  1251. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1252. s->weight[0] + s->weight[1], p->yblen);
  1253. break;
  1254. case 3:
  1255. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1256. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1257. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1258. if (s->biweight_func) {
  1259. /* fixme: +32 is a quick hack */
  1260. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1261. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1262. s->weight[0], s->weight[1], p->yblen);
  1263. } else
  1264. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1265. break;
  1266. }
  1267. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1268. }
  1269. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1270. {
  1271. Plane *p = &s->plane[plane];
  1272. int x, dstx = p->xbsep - p->xoffset;
  1273. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1274. mctmp += p->xbsep;
  1275. for (x = 1; x < s->blwidth-1; x++) {
  1276. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1277. dstx += p->xbsep;
  1278. mctmp += p->xbsep;
  1279. }
  1280. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1281. }
  1282. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1283. {
  1284. int idx = 0;
  1285. if (xblen > 8)
  1286. idx = 1;
  1287. if (xblen > 16)
  1288. idx = 2;
  1289. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1290. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1291. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1292. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1293. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1294. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1295. } else {
  1296. s->weight_func = NULL;
  1297. s->biweight_func = NULL;
  1298. }
  1299. }
  1300. static void interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1301. {
  1302. /* chroma allocates an edge of 8 when subsampled
  1303. which for 4:2:2 means an h edge of 16 and v edge of 8
  1304. just use 8 for everything for the moment */
  1305. int i, edge = EDGE_WIDTH/2;
  1306. ref->hpel[plane][0] = ref->avframe.data[plane];
  1307. s->dsp.draw_edges(ref->hpel[plane][0], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1308. /* no need for hpel if we only have fpel vectors */
  1309. if (!s->mv_precision)
  1310. return;
  1311. for (i = 1; i < 4; i++) {
  1312. if (!ref->hpel_base[plane][i])
  1313. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe.linesize[plane] + 32);
  1314. /* we need to be 16-byte aligned even for chroma */
  1315. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe.linesize[plane] + 16;
  1316. }
  1317. if (!ref->interpolated[plane]) {
  1318. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1319. ref->hpel[plane][3], ref->hpel[plane][0],
  1320. ref->avframe.linesize[plane], width, height);
  1321. s->dsp.draw_edges(ref->hpel[plane][1], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1322. s->dsp.draw_edges(ref->hpel[plane][2], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1323. s->dsp.draw_edges(ref->hpel[plane][3], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1324. }
  1325. ref->interpolated[plane] = 1;
  1326. }
  1327. /**
  1328. * Dirac Specification ->
  1329. * 13.0 Transform data syntax. transform_data()
  1330. */
  1331. static int dirac_decode_frame_internal(DiracContext *s)
  1332. {
  1333. DWTContext d;
  1334. int y, i, comp, dsty;
  1335. if (s->low_delay) {
  1336. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1337. for (comp = 0; comp < 3; comp++) {
  1338. Plane *p = &s->plane[comp];
  1339. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1340. }
  1341. if (!s->zero_res)
  1342. decode_lowdelay(s);
  1343. }
  1344. for (comp = 0; comp < 3; comp++) {
  1345. Plane *p = &s->plane[comp];
  1346. uint8_t *frame = s->current_picture->avframe.data[comp];
  1347. /* FIXME: small resolutions */
  1348. for (i = 0; i < 4; i++)
  1349. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1350. if (!s->zero_res && !s->low_delay)
  1351. {
  1352. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1353. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1354. }
  1355. if (ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1356. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp))
  1357. return -1;
  1358. if (!s->num_refs) { /* intra */
  1359. for (y = 0; y < p->height; y += 16) {
  1360. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1361. s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
  1362. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1363. }
  1364. } else { /* inter */
  1365. int rowheight = p->ybsep*p->stride;
  1366. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1367. for (i = 0; i < s->num_refs; i++)
  1368. interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1369. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1370. dsty = -p->yoffset;
  1371. for (y = 0; y < s->blheight; y++) {
  1372. int h = 0,
  1373. start = FFMAX(dsty, 0);
  1374. uint16_t *mctmp = s->mctmp + y*rowheight;
  1375. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1376. init_obmc_weights(s, p, y);
  1377. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1378. h = p->height - start;
  1379. else
  1380. h = p->ybsep - (start - dsty);
  1381. if (h < 0)
  1382. break;
  1383. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1384. mc_row(s, blocks, mctmp, comp, dsty);
  1385. mctmp += (start - dsty)*p->stride + p->xoffset;
  1386. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1387. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1388. p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
  1389. dsty += p->ybsep;
  1390. }
  1391. }
  1392. }
  1393. return 0;
  1394. }
  1395. /**
  1396. * Dirac Specification ->
  1397. * 11.1.1 Picture Header. picture_header()
  1398. */
  1399. static int dirac_decode_picture_header(DiracContext *s)
  1400. {
  1401. int retire, picnum;
  1402. int i, j, refnum, refdist;
  1403. GetBitContext *gb = &s->gb;
  1404. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1405. picnum = s->current_picture->avframe.display_picture_number = get_bits_long(gb, 32);
  1406. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1407. /* if this is the first keyframe after a sequence header, start our
  1408. reordering from here */
  1409. if (s->frame_number < 0)
  1410. s->frame_number = picnum;
  1411. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1412. for (i = 0; i < s->num_refs; i++) {
  1413. refnum = picnum + dirac_get_se_golomb(gb);
  1414. refdist = INT_MAX;
  1415. /* find the closest reference to the one we want */
  1416. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1417. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1418. if (s->ref_frames[j]
  1419. && FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum) < refdist) {
  1420. s->ref_pics[i] = s->ref_frames[j];
  1421. refdist = FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum);
  1422. }
  1423. if (!s->ref_pics[i] || refdist)
  1424. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1425. /* if there were no references at all, allocate one */
  1426. if (!s->ref_pics[i])
  1427. for (j = 0; j < MAX_FRAMES; j++)
  1428. if (!s->all_frames[j].avframe.data[0]) {
  1429. s->ref_pics[i] = &s->all_frames[j];
  1430. s->avctx->get_buffer(s->avctx, &s->ref_pics[i]->avframe);
  1431. }
  1432. }
  1433. /* retire the reference frames that are not used anymore */
  1434. if (s->current_picture->avframe.reference) {
  1435. retire = picnum + dirac_get_se_golomb(gb);
  1436. if (retire != picnum) {
  1437. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1438. if (retire_pic)
  1439. retire_pic->avframe.reference &= DELAYED_PIC_REF;
  1440. else
  1441. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1442. }
  1443. /* if reference array is full, remove the oldest as per the spec */
  1444. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1445. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1446. remove_frame(s->ref_frames, s->ref_frames[0]->avframe.display_picture_number)->avframe.reference &= DELAYED_PIC_REF;
  1447. }
  1448. }
  1449. if (s->num_refs) {
  1450. if (dirac_unpack_prediction_parameters(s)) /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1451. return -1;
  1452. if (dirac_unpack_block_motion_data(s)) /* [DIRAC_STD] 12. Block motion data syntax */
  1453. return -1;
  1454. }
  1455. if (dirac_unpack_idwt_params(s)) /* [DIRAC_STD] 11.3 Wavelet transform data */
  1456. return -1;
  1457. init_planes(s);
  1458. return 0;
  1459. }
  1460. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *data_size)
  1461. {
  1462. DiracFrame *out = s->delay_frames[0];
  1463. int i, out_idx = 0;
  1464. /* find frame with lowest picture number */
  1465. for (i = 1; s->delay_frames[i]; i++)
  1466. if (s->delay_frames[i]->avframe.display_picture_number < out->avframe.display_picture_number) {
  1467. out = s->delay_frames[i];
  1468. out_idx = i;
  1469. }
  1470. for (i = out_idx; s->delay_frames[i]; i++)
  1471. s->delay_frames[i] = s->delay_frames[i+1];
  1472. if (out) {
  1473. out->avframe.reference ^= DELAYED_PIC_REF;
  1474. *data_size = sizeof(AVFrame);
  1475. *(AVFrame *)picture = out->avframe;
  1476. }
  1477. return 0;
  1478. }
  1479. /**
  1480. * Dirac Specification ->
  1481. * 9.6 Parse Info Header Syntax. parse_info()
  1482. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1483. */
  1484. #define DATA_UNIT_HEADER_SIZE 13
  1485. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1486. inside the function parse_sequence() */
  1487. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1488. {
  1489. DiracContext *s = avctx->priv_data;
  1490. DiracFrame *pic = NULL;
  1491. int i, parse_code = buf[4];
  1492. unsigned tmp;
  1493. if (size < DATA_UNIT_HEADER_SIZE)
  1494. return -1;
  1495. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1496. if (parse_code == pc_seq_header) {
  1497. if (s->seen_sequence_header)
  1498. return 0;
  1499. /* [DIRAC_STD] 10. Sequence header */
  1500. if (avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source))
  1501. return -1;
  1502. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1503. if (alloc_sequence_buffers(s))
  1504. return -1;
  1505. s->seen_sequence_header = 1;
  1506. } else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
  1507. free_sequence_buffers(s);
  1508. s->seen_sequence_header = 0;
  1509. } else if (parse_code == pc_aux_data) {
  1510. if (buf[13] == 1) { /* encoder implementation/version */
  1511. int ver[3];
  1512. /* versions older than 1.0.8 don't store quant delta for
  1513. subbands with only one codeblock */
  1514. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1515. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1516. s->old_delta_quant = 1;
  1517. }
  1518. } else if (parse_code & 0x8) { /* picture data unit */
  1519. if (!s->seen_sequence_header) {
  1520. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1521. return -1;
  1522. }
  1523. /* find an unused frame */
  1524. for (i = 0; i < MAX_FRAMES; i++)
  1525. if (s->all_frames[i].avframe.data[0] == NULL)
  1526. pic = &s->all_frames[i];
  1527. if (!pic) {
  1528. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1529. return -1;
  1530. }
  1531. avcodec_get_frame_defaults(&pic->avframe);
  1532. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1533. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1534. if (tmp > 2) {
  1535. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1536. return -1;
  1537. }
  1538. s->num_refs = tmp;
  1539. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1540. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1541. pic->avframe.reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1542. pic->avframe.key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1543. pic->avframe.pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1544. if (avctx->get_buffer(avctx, &pic->avframe) < 0) {
  1545. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1546. return -1;
  1547. }
  1548. s->current_picture = pic;
  1549. s->plane[0].stride = pic->avframe.linesize[0];
  1550. s->plane[1].stride = pic->avframe.linesize[1];
  1551. s->plane[2].stride = pic->avframe.linesize[2];
  1552. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1553. if (dirac_decode_picture_header(s))
  1554. return -1;
  1555. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1556. if (dirac_decode_frame_internal(s))
  1557. return -1;
  1558. }
  1559. return 0;
  1560. }
  1561. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *pkt)
  1562. {
  1563. DiracContext *s = avctx->priv_data;
  1564. DiracFrame *picture = data;
  1565. uint8_t *buf = pkt->data;
  1566. int buf_size = pkt->size;
  1567. int i, data_unit_size, buf_idx = 0;
  1568. /* release unused frames */
  1569. for (i = 0; i < MAX_FRAMES; i++)
  1570. if (s->all_frames[i].avframe.data[0] && !s->all_frames[i].avframe.reference) {
  1571. avctx->release_buffer(avctx, &s->all_frames[i].avframe);
  1572. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1573. }
  1574. s->current_picture = NULL;
  1575. *data_size = 0;
  1576. /* end of stream, so flush delayed pics */
  1577. if (buf_size == 0)
  1578. return get_delayed_pic(s, (AVFrame *)data, data_size);
  1579. for (;;) {
  1580. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1581. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1582. BBCD start code search */
  1583. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1584. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1585. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1586. break;
  1587. }
  1588. /* BBCD found or end of data */
  1589. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1590. break;
  1591. data_unit_size = AV_RB32(buf+buf_idx+5);
  1592. if (buf_idx + data_unit_size > buf_size || !data_unit_size) {
  1593. if(buf_idx + data_unit_size > buf_size)
  1594. av_log(s->avctx, AV_LOG_ERROR,
  1595. "Data unit with size %d is larger than input buffer, discarding\n",
  1596. data_unit_size);
  1597. buf_idx += 4;
  1598. continue;
  1599. }
  1600. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1601. if (dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size))
  1602. {
  1603. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1604. return -1;
  1605. }
  1606. buf_idx += data_unit_size;
  1607. }
  1608. if (!s->current_picture)
  1609. return buf_size;
  1610. if (s->current_picture->avframe.display_picture_number > s->frame_number) {
  1611. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1612. s->current_picture->avframe.reference |= DELAYED_PIC_REF;
  1613. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1614. int min_num = s->delay_frames[0]->avframe.display_picture_number;
  1615. /* Too many delayed frames, so we display the frame with the lowest pts */
  1616. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1617. delayed_frame = s->delay_frames[0];
  1618. for (i = 1; s->delay_frames[i]; i++)
  1619. if (s->delay_frames[i]->avframe.display_picture_number < min_num)
  1620. min_num = s->delay_frames[i]->avframe.display_picture_number;
  1621. delayed_frame = remove_frame(s->delay_frames, min_num);
  1622. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1623. }
  1624. if (delayed_frame) {
  1625. delayed_frame->avframe.reference ^= DELAYED_PIC_REF;
  1626. *(AVFrame*)data = delayed_frame->avframe;
  1627. *data_size = sizeof(AVFrame);
  1628. }
  1629. } else if (s->current_picture->avframe.display_picture_number == s->frame_number) {
  1630. /* The right frame at the right time :-) */
  1631. *(AVFrame*)data = s->current_picture->avframe;
  1632. *data_size = sizeof(AVFrame);
  1633. }
  1634. if (*data_size)
  1635. s->frame_number = picture->avframe.display_picture_number + 1;
  1636. return buf_idx;
  1637. }
  1638. AVCodec ff_dirac_decoder = {
  1639. .name = "dirac",
  1640. .type = AVMEDIA_TYPE_VIDEO,
  1641. .id = AV_CODEC_ID_DIRAC,
  1642. .priv_data_size = sizeof(DiracContext),
  1643. .init = dirac_decode_init,
  1644. .close = dirac_decode_end,
  1645. .decode = dirac_decode_frame,
  1646. .capabilities = CODEC_CAP_DELAY,
  1647. .flush = dirac_decode_flush,
  1648. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1649. };