You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

414 lines
13KB

  1. /*
  2. * Atrac 1 compatible decoder
  3. * Copyright (c) 2009 Maxim Poliakovski
  4. * Copyright (c) 2009 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Atrac 1 compatible decoder.
  25. * This decoder handles raw ATRAC1 data and probably SDDS data.
  26. */
  27. /* Many thanks to Tim Craig for all the help! */
  28. #include <math.h>
  29. #include <stddef.h>
  30. #include <stdio.h>
  31. #include "avcodec.h"
  32. #include "get_bits.h"
  33. #include "dsputil.h"
  34. #include "fft.h"
  35. #include "fmtconvert.h"
  36. #include "sinewin.h"
  37. #include "atrac.h"
  38. #include "atrac1data.h"
  39. #define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit
  40. #define AT1_SU_SIZE 212 ///< number of bytes in a sound unit
  41. #define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit
  42. #define AT1_FRAME_SIZE AT1_SU_SIZE * 2
  43. #define AT1_SU_MAX_BITS AT1_SU_SIZE * 8
  44. #define AT1_MAX_CHANNELS 2
  45. #define AT1_QMF_BANDS 3
  46. #define IDX_LOW_BAND 0
  47. #define IDX_MID_BAND 1
  48. #define IDX_HIGH_BAND 2
  49. /**
  50. * Sound unit struct, one unit is used per channel
  51. */
  52. typedef struct {
  53. int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band
  54. int num_bfus; ///< number of Block Floating Units
  55. float* spectrum[2];
  56. DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES]; ///< mdct buffer
  57. DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES]; ///< mdct buffer
  58. DECLARE_ALIGNED(32, float, fst_qmf_delay)[46]; ///< delay line for the 1st stacked QMF filter
  59. DECLARE_ALIGNED(32, float, snd_qmf_delay)[46]; ///< delay line for the 2nd stacked QMF filter
  60. DECLARE_ALIGNED(32, float, last_qmf_delay)[256+23]; ///< delay line for the last stacked QMF filter
  61. } AT1SUCtx;
  62. /**
  63. * The atrac1 context, holds all needed parameters for decoding
  64. */
  65. typedef struct {
  66. AVFrame frame;
  67. AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit
  68. DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES]; ///< the mdct spectrum buffer
  69. DECLARE_ALIGNED(32, float, low)[256];
  70. DECLARE_ALIGNED(32, float, mid)[256];
  71. DECLARE_ALIGNED(32, float, high)[512];
  72. float* bands[3];
  73. float *out_samples[AT1_MAX_CHANNELS];
  74. FFTContext mdct_ctx[3];
  75. int channels;
  76. DSPContext dsp;
  77. FmtConvertContext fmt_conv;
  78. } AT1Ctx;
  79. /** size of the transform in samples in the long mode for each QMF band */
  80. static const uint16_t samples_per_band[3] = {128, 128, 256};
  81. static const uint8_t mdct_long_nbits[3] = {7, 7, 8};
  82. static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
  83. int rev_spec)
  84. {
  85. FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
  86. int transf_size = 1 << nbits;
  87. if (rev_spec) {
  88. int i;
  89. for (i = 0; i < transf_size / 2; i++)
  90. FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
  91. }
  92. mdct_context->imdct_half(mdct_context, out, spec);
  93. }
  94. static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
  95. {
  96. int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
  97. unsigned int start_pos, ref_pos = 0, pos = 0;
  98. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  99. float *prev_buf;
  100. int j;
  101. band_samples = samples_per_band[band_num];
  102. log2_block_count = su->log2_block_count[band_num];
  103. /* number of mdct blocks in the current QMF band: 1 - for long mode */
  104. /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
  105. num_blocks = 1 << log2_block_count;
  106. if (num_blocks == 1) {
  107. /* mdct block size in samples: 128 (long mode, low & mid bands), */
  108. /* 256 (long mode, high band) and 32 (short mode, all bands) */
  109. block_size = band_samples >> log2_block_count;
  110. /* calc transform size in bits according to the block_size_mode */
  111. nbits = mdct_long_nbits[band_num] - log2_block_count;
  112. if (nbits != 5 && nbits != 7 && nbits != 8)
  113. return AVERROR_INVALIDDATA;
  114. } else {
  115. block_size = 32;
  116. nbits = 5;
  117. }
  118. start_pos = 0;
  119. prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
  120. for (j=0; j < num_blocks; j++) {
  121. at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
  122. /* overlap and window */
  123. q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
  124. &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
  125. prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
  126. start_pos += block_size;
  127. pos += block_size;
  128. }
  129. if (num_blocks == 1)
  130. memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
  131. ref_pos += band_samples;
  132. }
  133. /* Swap buffers so the mdct overlap works */
  134. FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
  135. return 0;
  136. }
  137. /**
  138. * Parse the block size mode byte
  139. */
  140. static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
  141. {
  142. int log2_block_count_tmp, i;
  143. for (i = 0; i < 2; i++) {
  144. /* low and mid band */
  145. log2_block_count_tmp = get_bits(gb, 2);
  146. if (log2_block_count_tmp & 1)
  147. return AVERROR_INVALIDDATA;
  148. log2_block_cnt[i] = 2 - log2_block_count_tmp;
  149. }
  150. /* high band */
  151. log2_block_count_tmp = get_bits(gb, 2);
  152. if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
  153. return AVERROR_INVALIDDATA;
  154. log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
  155. skip_bits(gb, 2);
  156. return 0;
  157. }
  158. static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
  159. float spec[AT1_SU_SAMPLES])
  160. {
  161. int bits_used, band_num, bfu_num, i;
  162. uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU
  163. uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU
  164. /* parse the info byte (2nd byte) telling how much BFUs were coded */
  165. su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
  166. /* calc number of consumed bits:
  167. num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
  168. + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
  169. bits_used = su->num_bfus * 10 + 32 +
  170. bfu_amount_tab2[get_bits(gb, 2)] +
  171. (bfu_amount_tab3[get_bits(gb, 3)] << 1);
  172. /* get word length index (idwl) for each BFU */
  173. for (i = 0; i < su->num_bfus; i++)
  174. idwls[i] = get_bits(gb, 4);
  175. /* get scalefactor index (idsf) for each BFU */
  176. for (i = 0; i < su->num_bfus; i++)
  177. idsfs[i] = get_bits(gb, 6);
  178. /* zero idwl/idsf for empty BFUs */
  179. for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
  180. idwls[i] = idsfs[i] = 0;
  181. /* read in the spectral data and reconstruct MDCT spectrum of this channel */
  182. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  183. for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
  184. int pos;
  185. int num_specs = specs_per_bfu[bfu_num];
  186. int word_len = !!idwls[bfu_num] + idwls[bfu_num];
  187. float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
  188. bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
  189. /* check for bitstream overflow */
  190. if (bits_used > AT1_SU_MAX_BITS)
  191. return AVERROR_INVALIDDATA;
  192. /* get the position of the 1st spec according to the block size mode */
  193. pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
  194. if (word_len) {
  195. float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
  196. for (i = 0; i < num_specs; i++) {
  197. /* read in a quantized spec and convert it to
  198. * signed int and then inverse quantization
  199. */
  200. spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
  201. }
  202. } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */
  203. memset(&spec[pos], 0, num_specs * sizeof(float));
  204. }
  205. }
  206. }
  207. return 0;
  208. }
  209. static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
  210. {
  211. float temp[256];
  212. float iqmf_temp[512 + 46];
  213. /* combine low and middle bands */
  214. ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
  215. /* delay the signal of the high band by 23 samples */
  216. memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23);
  217. memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256);
  218. /* combine (low + middle) and high bands */
  219. ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
  220. }
  221. static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
  222. int *got_frame_ptr, AVPacket *avpkt)
  223. {
  224. const uint8_t *buf = avpkt->data;
  225. int buf_size = avpkt->size;
  226. AT1Ctx *q = avctx->priv_data;
  227. int ch, ret;
  228. GetBitContext gb;
  229. float *samples;
  230. if (buf_size < 212 * q->channels) {
  231. av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
  232. return AVERROR_INVALIDDATA;
  233. }
  234. /* get output buffer */
  235. q->frame.nb_samples = AT1_SU_SAMPLES;
  236. if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
  237. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  238. return ret;
  239. }
  240. samples = (float *)q->frame.data[0];
  241. for (ch = 0; ch < q->channels; ch++) {
  242. AT1SUCtx* su = &q->SUs[ch];
  243. init_get_bits(&gb, &buf[212 * ch], 212 * 8);
  244. /* parse block_size_mode, 1st byte */
  245. ret = at1_parse_bsm(&gb, su->log2_block_count);
  246. if (ret < 0)
  247. return ret;
  248. ret = at1_unpack_dequant(&gb, su, q->spec);
  249. if (ret < 0)
  250. return ret;
  251. ret = at1_imdct_block(su, q);
  252. if (ret < 0)
  253. return ret;
  254. at1_subband_synthesis(q, su, q->channels == 1 ? samples : q->out_samples[ch]);
  255. }
  256. /* interleave */
  257. if (q->channels == 2) {
  258. q->fmt_conv.float_interleave(samples, (const float **)q->out_samples,
  259. AT1_SU_SAMPLES, 2);
  260. }
  261. *got_frame_ptr = 1;
  262. *(AVFrame *)data = q->frame;
  263. return avctx->block_align;
  264. }
  265. static av_cold int atrac1_decode_end(AVCodecContext * avctx)
  266. {
  267. AT1Ctx *q = avctx->priv_data;
  268. av_freep(&q->out_samples[0]);
  269. ff_mdct_end(&q->mdct_ctx[0]);
  270. ff_mdct_end(&q->mdct_ctx[1]);
  271. ff_mdct_end(&q->mdct_ctx[2]);
  272. return 0;
  273. }
  274. static av_cold int atrac1_decode_init(AVCodecContext *avctx)
  275. {
  276. AT1Ctx *q = avctx->priv_data;
  277. int ret;
  278. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  279. if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) {
  280. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
  281. avctx->channels);
  282. return AVERROR(EINVAL);
  283. }
  284. q->channels = avctx->channels;
  285. if (avctx->channels == 2) {
  286. q->out_samples[0] = av_malloc(2 * AT1_SU_SAMPLES * sizeof(*q->out_samples[0]));
  287. q->out_samples[1] = q->out_samples[0] + AT1_SU_SAMPLES;
  288. if (!q->out_samples[0]) {
  289. av_freep(&q->out_samples[0]);
  290. return AVERROR(ENOMEM);
  291. }
  292. }
  293. /* Init the mdct transforms */
  294. if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) ||
  295. (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) ||
  296. (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) {
  297. av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
  298. atrac1_decode_end(avctx);
  299. return ret;
  300. }
  301. ff_init_ff_sine_windows(5);
  302. ff_atrac_generate_tables();
  303. ff_dsputil_init(&q->dsp, avctx);
  304. ff_fmt_convert_init(&q->fmt_conv, avctx);
  305. q->bands[0] = q->low;
  306. q->bands[1] = q->mid;
  307. q->bands[2] = q->high;
  308. /* Prepare the mdct overlap buffers */
  309. q->SUs[0].spectrum[0] = q->SUs[0].spec1;
  310. q->SUs[0].spectrum[1] = q->SUs[0].spec2;
  311. q->SUs[1].spectrum[0] = q->SUs[1].spec1;
  312. q->SUs[1].spectrum[1] = q->SUs[1].spec2;
  313. avcodec_get_frame_defaults(&q->frame);
  314. avctx->coded_frame = &q->frame;
  315. return 0;
  316. }
  317. AVCodec ff_atrac1_decoder = {
  318. .name = "atrac1",
  319. .type = AVMEDIA_TYPE_AUDIO,
  320. .id = AV_CODEC_ID_ATRAC1,
  321. .priv_data_size = sizeof(AT1Ctx),
  322. .init = atrac1_decode_init,
  323. .close = atrac1_decode_end,
  324. .decode = atrac1_decode_frame,
  325. .capabilities = CODEC_CAP_DR1,
  326. .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
  327. };