You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1270 lines
46KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/common.h"
  26. #include "libavutil/lfg.h"
  27. #include "avcodec.h"
  28. #include "lsp.h"
  29. #include "celp_math.h"
  30. #include "celp_filters.h"
  31. #include "acelp_filters.h"
  32. #include "acelp_vectors.h"
  33. #include "acelp_pitch_delay.h"
  34. #define AMR_USE_16BIT_TABLES
  35. #include "amr.h"
  36. #include "amrwbdata.h"
  37. #include "mips/amrwbdec_mips.h"
  38. typedef struct {
  39. AVFrame avframe; ///< AVFrame for decoded samples
  40. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  41. enum Mode fr_cur_mode; ///< mode index of current frame
  42. uint8_t fr_quality; ///< frame quality index (FQI)
  43. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  44. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  45. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  46. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  47. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  48. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  49. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  50. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  51. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  52. float *excitation; ///< points to current excitation in excitation_buf[]
  53. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  54. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  55. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  56. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  57. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  58. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  59. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  60. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  61. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  62. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  63. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  64. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  65. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  66. float demph_mem[1]; ///< previous value in the de-emphasis filter
  67. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  68. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  69. AVLFG prng; ///< random number generator for white noise excitation
  70. uint8_t first_frame; ///< flag active during decoding of the first frame
  71. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  72. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  73. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  74. CELPMContext celpm_ctx; ///< context for fixed point math operations
  75. } AMRWBContext;
  76. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  77. {
  78. AMRWBContext *ctx = avctx->priv_data;
  79. int i;
  80. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  81. av_lfg_init(&ctx->prng, 1);
  82. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  83. ctx->first_frame = 1;
  84. for (i = 0; i < LP_ORDER; i++)
  85. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  86. for (i = 0; i < 4; i++)
  87. ctx->prediction_error[i] = MIN_ENERGY;
  88. avcodec_get_frame_defaults(&ctx->avframe);
  89. avctx->coded_frame = &ctx->avframe;
  90. ff_acelp_filter_init(&ctx->acelpf_ctx);
  91. ff_acelp_vectors_init(&ctx->acelpv_ctx);
  92. ff_celp_filter_init(&ctx->celpf_ctx);
  93. ff_celp_math_init(&ctx->celpm_ctx);
  94. return 0;
  95. }
  96. /**
  97. * Decode the frame header in the "MIME/storage" format. This format
  98. * is simpler and does not carry the auxiliary frame information.
  99. *
  100. * @param[in] ctx The Context
  101. * @param[in] buf Pointer to the input buffer
  102. *
  103. * @return The decoded header length in bytes
  104. */
  105. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  106. {
  107. /* Decode frame header (1st octet) */
  108. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  109. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  110. return 1;
  111. }
  112. /**
  113. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  114. *
  115. * @param[in] ind Array of 5 indexes
  116. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  117. *
  118. */
  119. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  120. {
  121. int i;
  122. for (i = 0; i < 9; i++)
  123. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  124. for (i = 0; i < 7; i++)
  125. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  126. for (i = 0; i < 5; i++)
  127. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  128. for (i = 0; i < 4; i++)
  129. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  130. for (i = 0; i < 7; i++)
  131. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  132. }
  133. /**
  134. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  135. *
  136. * @param[in] ind Array of 7 indexes
  137. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  138. *
  139. */
  140. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  141. {
  142. int i;
  143. for (i = 0; i < 9; i++)
  144. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  145. for (i = 0; i < 7; i++)
  146. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  147. for (i = 0; i < 3; i++)
  148. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  149. for (i = 0; i < 3; i++)
  150. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  151. for (i = 0; i < 3; i++)
  152. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  153. for (i = 0; i < 3; i++)
  154. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  155. for (i = 0; i < 4; i++)
  156. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  157. }
  158. /**
  159. * Apply mean and past ISF values using the prediction factor.
  160. * Updates past ISF vector.
  161. *
  162. * @param[in,out] isf_q Current quantized ISF
  163. * @param[in,out] isf_past Past quantized ISF
  164. *
  165. */
  166. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  167. {
  168. int i;
  169. float tmp;
  170. for (i = 0; i < LP_ORDER; i++) {
  171. tmp = isf_q[i];
  172. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  173. isf_q[i] += PRED_FACTOR * isf_past[i];
  174. isf_past[i] = tmp;
  175. }
  176. }
  177. /**
  178. * Interpolate the fourth ISP vector from current and past frames
  179. * to obtain an ISP vector for each subframe.
  180. *
  181. * @param[in,out] isp_q ISPs for each subframe
  182. * @param[in] isp4_past Past ISP for subframe 4
  183. */
  184. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  185. {
  186. int i, k;
  187. for (k = 0; k < 3; k++) {
  188. float c = isfp_inter[k];
  189. for (i = 0; i < LP_ORDER; i++)
  190. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  191. }
  192. }
  193. /**
  194. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  195. * Calculate integer lag and fractional lag always using 1/4 resolution.
  196. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  197. *
  198. * @param[out] lag_int Decoded integer pitch lag
  199. * @param[out] lag_frac Decoded fractional pitch lag
  200. * @param[in] pitch_index Adaptive codebook pitch index
  201. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  202. * @param[in] subframe Current subframe index (0 to 3)
  203. */
  204. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  205. uint8_t *base_lag_int, int subframe)
  206. {
  207. if (subframe == 0 || subframe == 2) {
  208. if (pitch_index < 376) {
  209. *lag_int = (pitch_index + 137) >> 2;
  210. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  211. } else if (pitch_index < 440) {
  212. *lag_int = (pitch_index + 257 - 376) >> 1;
  213. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  214. /* the actual resolution is 1/2 but expressed as 1/4 */
  215. } else {
  216. *lag_int = pitch_index - 280;
  217. *lag_frac = 0;
  218. }
  219. /* minimum lag for next subframe */
  220. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  221. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  222. // XXX: the spec states clearly that *base_lag_int should be
  223. // the nearest integer to *lag_int (minus 8), but the ref code
  224. // actually always uses its floor, I'm following the latter
  225. } else {
  226. *lag_int = (pitch_index + 1) >> 2;
  227. *lag_frac = pitch_index - (*lag_int << 2);
  228. *lag_int += *base_lag_int;
  229. }
  230. }
  231. /**
  232. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  233. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  234. * relative index is used for all subframes except the first.
  235. */
  236. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  237. uint8_t *base_lag_int, int subframe, enum Mode mode)
  238. {
  239. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  240. if (pitch_index < 116) {
  241. *lag_int = (pitch_index + 69) >> 1;
  242. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  243. } else {
  244. *lag_int = pitch_index - 24;
  245. *lag_frac = 0;
  246. }
  247. // XXX: same problem as before
  248. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  249. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  250. } else {
  251. *lag_int = (pitch_index + 1) >> 1;
  252. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  253. *lag_int += *base_lag_int;
  254. }
  255. }
  256. /**
  257. * Find the pitch vector by interpolating the past excitation at the
  258. * pitch delay, which is obtained in this function.
  259. *
  260. * @param[in,out] ctx The context
  261. * @param[in] amr_subframe Current subframe data
  262. * @param[in] subframe Current subframe index (0 to 3)
  263. */
  264. static void decode_pitch_vector(AMRWBContext *ctx,
  265. const AMRWBSubFrame *amr_subframe,
  266. const int subframe)
  267. {
  268. int pitch_lag_int, pitch_lag_frac;
  269. int i;
  270. float *exc = ctx->excitation;
  271. enum Mode mode = ctx->fr_cur_mode;
  272. if (mode <= MODE_8k85) {
  273. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  274. &ctx->base_pitch_lag, subframe, mode);
  275. } else
  276. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  277. &ctx->base_pitch_lag, subframe);
  278. ctx->pitch_lag_int = pitch_lag_int;
  279. pitch_lag_int += pitch_lag_frac > 0;
  280. /* Calculate the pitch vector by interpolating the past excitation at the
  281. pitch lag using a hamming windowed sinc function */
  282. ctx->acelpf_ctx.acelp_interpolatef(exc,
  283. exc + 1 - pitch_lag_int,
  284. ac_inter, 4,
  285. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  286. LP_ORDER, AMRWB_SFR_SIZE + 1);
  287. /* Check which pitch signal path should be used
  288. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  289. if (amr_subframe->ltp) {
  290. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  291. } else {
  292. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  293. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  294. 0.18 * exc[i + 1];
  295. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  296. }
  297. }
  298. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  299. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  300. /** Get the bit at specified position */
  301. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  302. /**
  303. * The next six functions decode_[i]p_track decode exactly i pulses
  304. * positions and amplitudes (-1 or 1) in a subframe track using
  305. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  306. *
  307. * The results are given in out[], in which a negative number means
  308. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  309. *
  310. * @param[out] out Output buffer (writes i elements)
  311. * @param[in] code Pulse index (no. of bits varies, see below)
  312. * @param[in] m (log2) Number of potential positions
  313. * @param[in] off Offset for decoded positions
  314. */
  315. static inline void decode_1p_track(int *out, int code, int m, int off)
  316. {
  317. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  318. out[0] = BIT_POS(code, m) ? -pos : pos;
  319. }
  320. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  321. {
  322. int pos0 = BIT_STR(code, m, m) + off;
  323. int pos1 = BIT_STR(code, 0, m) + off;
  324. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  325. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  326. out[1] = pos0 > pos1 ? -out[1] : out[1];
  327. }
  328. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  329. {
  330. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  331. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  332. m - 1, off + half_2p);
  333. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  334. }
  335. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  336. {
  337. int half_4p, subhalf_2p;
  338. int b_offset = 1 << (m - 1);
  339. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  340. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  341. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  342. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  343. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  344. m - 2, off + half_4p + subhalf_2p);
  345. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  346. m - 1, off + half_4p);
  347. break;
  348. case 1: /* 1 pulse in A, 3 pulses in B */
  349. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  350. m - 1, off);
  351. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  352. m - 1, off + b_offset);
  353. break;
  354. case 2: /* 2 pulses in each half */
  355. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  356. m - 1, off);
  357. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  358. m - 1, off + b_offset);
  359. break;
  360. case 3: /* 3 pulses in A, 1 pulse in B */
  361. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  362. m - 1, off);
  363. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  364. m - 1, off + b_offset);
  365. break;
  366. }
  367. }
  368. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  369. {
  370. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  371. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  372. m - 1, off + half_3p);
  373. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  374. }
  375. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  376. {
  377. int b_offset = 1 << (m - 1);
  378. /* which half has more pulses in cases 0 to 2 */
  379. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  380. int half_other = b_offset - half_more;
  381. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  382. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  383. decode_1p_track(out, BIT_STR(code, 0, m),
  384. m - 1, off + half_more);
  385. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  386. m - 1, off + half_more);
  387. break;
  388. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  389. decode_1p_track(out, BIT_STR(code, 0, m),
  390. m - 1, off + half_other);
  391. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  392. m - 1, off + half_more);
  393. break;
  394. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  395. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  396. m - 1, off + half_other);
  397. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  398. m - 1, off + half_more);
  399. break;
  400. case 3: /* 3 pulses in A, 3 pulses in B */
  401. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  402. m - 1, off);
  403. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  404. m - 1, off + b_offset);
  405. break;
  406. }
  407. }
  408. /**
  409. * Decode the algebraic codebook index to pulse positions and signs,
  410. * then construct the algebraic codebook vector.
  411. *
  412. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  413. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  414. * @param[in] pulse_lo LSBs part of the pulse index array
  415. * @param[in] mode Mode of the current frame
  416. */
  417. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  418. const uint16_t *pulse_lo, const enum Mode mode)
  419. {
  420. /* sig_pos stores for each track the decoded pulse position indexes
  421. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  422. int sig_pos[4][6];
  423. int spacing = (mode == MODE_6k60) ? 2 : 4;
  424. int i, j;
  425. switch (mode) {
  426. case MODE_6k60:
  427. for (i = 0; i < 2; i++)
  428. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  429. break;
  430. case MODE_8k85:
  431. for (i = 0; i < 4; i++)
  432. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  433. break;
  434. case MODE_12k65:
  435. for (i = 0; i < 4; i++)
  436. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  437. break;
  438. case MODE_14k25:
  439. for (i = 0; i < 2; i++)
  440. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  441. for (i = 2; i < 4; i++)
  442. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  443. break;
  444. case MODE_15k85:
  445. for (i = 0; i < 4; i++)
  446. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  447. break;
  448. case MODE_18k25:
  449. for (i = 0; i < 4; i++)
  450. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  451. ((int) pulse_hi[i] << 14), 4, 1);
  452. break;
  453. case MODE_19k85:
  454. for (i = 0; i < 2; i++)
  455. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  456. ((int) pulse_hi[i] << 10), 4, 1);
  457. for (i = 2; i < 4; i++)
  458. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  459. ((int) pulse_hi[i] << 14), 4, 1);
  460. break;
  461. case MODE_23k05:
  462. case MODE_23k85:
  463. for (i = 0; i < 4; i++)
  464. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  465. ((int) pulse_hi[i] << 11), 4, 1);
  466. break;
  467. }
  468. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  469. for (i = 0; i < 4; i++)
  470. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  471. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  472. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  473. }
  474. }
  475. /**
  476. * Decode pitch gain and fixed gain correction factor.
  477. *
  478. * @param[in] vq_gain Vector-quantized index for gains
  479. * @param[in] mode Mode of the current frame
  480. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  481. * @param[out] pitch_gain Decoded pitch gain
  482. */
  483. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  484. float *fixed_gain_factor, float *pitch_gain)
  485. {
  486. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  487. qua_gain_7b[vq_gain]);
  488. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  489. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  490. }
  491. /**
  492. * Apply pitch sharpening filters to the fixed codebook vector.
  493. *
  494. * @param[in] ctx The context
  495. * @param[in,out] fixed_vector Fixed codebook excitation
  496. */
  497. // XXX: Spec states this procedure should be applied when the pitch
  498. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  499. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  500. {
  501. int i;
  502. /* Tilt part */
  503. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  504. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  505. /* Periodicity enhancement part */
  506. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  507. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  508. }
  509. /**
  510. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  511. *
  512. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  513. * @param[in] p_gain, f_gain Pitch and fixed gains
  514. * @param[in] ctx The context
  515. */
  516. // XXX: There is something wrong with the precision here! The magnitudes
  517. // of the energies are not correct. Please check the reference code carefully
  518. static float voice_factor(float *p_vector, float p_gain,
  519. float *f_vector, float f_gain,
  520. CELPMContext *ctx)
  521. {
  522. double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
  523. AMRWB_SFR_SIZE) * p_gain * p_gain;
  524. double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
  525. AMRWB_SFR_SIZE) * f_gain * f_gain;
  526. return (p_ener - f_ener) / (p_ener + f_ener);
  527. }
  528. /**
  529. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  530. * also known as "adaptive phase dispersion".
  531. *
  532. * @param[in] ctx The context
  533. * @param[in,out] fixed_vector Unfiltered fixed vector
  534. * @param[out] buf Space for modified vector if necessary
  535. *
  536. * @return The potentially overwritten filtered fixed vector address
  537. */
  538. static float *anti_sparseness(AMRWBContext *ctx,
  539. float *fixed_vector, float *buf)
  540. {
  541. int ir_filter_nr;
  542. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  543. return fixed_vector;
  544. if (ctx->pitch_gain[0] < 0.6) {
  545. ir_filter_nr = 0; // strong filtering
  546. } else if (ctx->pitch_gain[0] < 0.9) {
  547. ir_filter_nr = 1; // medium filtering
  548. } else
  549. ir_filter_nr = 2; // no filtering
  550. /* detect 'onset' */
  551. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  552. if (ir_filter_nr < 2)
  553. ir_filter_nr++;
  554. } else {
  555. int i, count = 0;
  556. for (i = 0; i < 6; i++)
  557. if (ctx->pitch_gain[i] < 0.6)
  558. count++;
  559. if (count > 2)
  560. ir_filter_nr = 0;
  561. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  562. ir_filter_nr--;
  563. }
  564. /* update ir filter strength history */
  565. ctx->prev_ir_filter_nr = ir_filter_nr;
  566. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  567. if (ir_filter_nr < 2) {
  568. int i;
  569. const float *coef = ir_filters_lookup[ir_filter_nr];
  570. /* Circular convolution code in the reference
  571. * decoder was modified to avoid using one
  572. * extra array. The filtered vector is given by:
  573. *
  574. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  575. */
  576. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  577. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  578. if (fixed_vector[i])
  579. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  580. AMRWB_SFR_SIZE);
  581. fixed_vector = buf;
  582. }
  583. return fixed_vector;
  584. }
  585. /**
  586. * Calculate a stability factor {teta} based on distance between
  587. * current and past isf. A value of 1 shows maximum signal stability.
  588. */
  589. static float stability_factor(const float *isf, const float *isf_past)
  590. {
  591. int i;
  592. float acc = 0.0;
  593. for (i = 0; i < LP_ORDER - 1; i++)
  594. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  595. // XXX: This part is not so clear from the reference code
  596. // the result is more accurate changing the "/ 256" to "* 512"
  597. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  598. }
  599. /**
  600. * Apply a non-linear fixed gain smoothing in order to reduce
  601. * fluctuation in the energy of excitation.
  602. *
  603. * @param[in] fixed_gain Unsmoothed fixed gain
  604. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  605. * @param[in] voice_fac Frame voicing factor
  606. * @param[in] stab_fac Frame stability factor
  607. *
  608. * @return The smoothed gain
  609. */
  610. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  611. float voice_fac, float stab_fac)
  612. {
  613. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  614. float g0;
  615. // XXX: the following fixed-point constants used to in(de)crement
  616. // gain by 1.5dB were taken from the reference code, maybe it could
  617. // be simpler
  618. if (fixed_gain < *prev_tr_gain) {
  619. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  620. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  621. } else
  622. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  623. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  624. *prev_tr_gain = g0; // update next frame threshold
  625. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  626. }
  627. /**
  628. * Filter the fixed_vector to emphasize the higher frequencies.
  629. *
  630. * @param[in,out] fixed_vector Fixed codebook vector
  631. * @param[in] voice_fac Frame voicing factor
  632. */
  633. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  634. {
  635. int i;
  636. float cpe = 0.125 * (1 + voice_fac);
  637. float last = fixed_vector[0]; // holds c(i - 1)
  638. fixed_vector[0] -= cpe * fixed_vector[1];
  639. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  640. float cur = fixed_vector[i];
  641. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  642. last = cur;
  643. }
  644. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  645. }
  646. /**
  647. * Conduct 16th order linear predictive coding synthesis from excitation.
  648. *
  649. * @param[in] ctx Pointer to the AMRWBContext
  650. * @param[in] lpc Pointer to the LPC coefficients
  651. * @param[out] excitation Buffer for synthesis final excitation
  652. * @param[in] fixed_gain Fixed codebook gain for synthesis
  653. * @param[in] fixed_vector Algebraic codebook vector
  654. * @param[in,out] samples Pointer to the output samples and memory
  655. */
  656. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  657. float fixed_gain, const float *fixed_vector,
  658. float *samples)
  659. {
  660. ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  661. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  662. /* emphasize pitch vector contribution in low bitrate modes */
  663. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  664. int i;
  665. float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
  666. AMRWB_SFR_SIZE);
  667. // XXX: Weird part in both ref code and spec. A unknown parameter
  668. // {beta} seems to be identical to the current pitch gain
  669. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  670. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  671. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  672. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  673. energy, AMRWB_SFR_SIZE);
  674. }
  675. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  676. AMRWB_SFR_SIZE, LP_ORDER);
  677. }
  678. /**
  679. * Apply to synthesis a de-emphasis filter of the form:
  680. * H(z) = 1 / (1 - m * z^-1)
  681. *
  682. * @param[out] out Output buffer
  683. * @param[in] in Input samples array with in[-1]
  684. * @param[in] m Filter coefficient
  685. * @param[in,out] mem State from last filtering
  686. */
  687. static void de_emphasis(float *out, float *in, float m, float mem[1])
  688. {
  689. int i;
  690. out[0] = in[0] + m * mem[0];
  691. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  692. out[i] = in[i] + out[i - 1] * m;
  693. mem[0] = out[AMRWB_SFR_SIZE - 1];
  694. }
  695. /**
  696. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  697. * a FIR interpolation filter. Uses past data from before *in address.
  698. *
  699. * @param[out] out Buffer for interpolated signal
  700. * @param[in] in Current signal data (length 0.8*o_size)
  701. * @param[in] o_size Output signal length
  702. * @param[in] ctx The context
  703. */
  704. static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
  705. {
  706. const float *in0 = in - UPS_FIR_SIZE + 1;
  707. int i, j, k;
  708. int int_part = 0, frac_part;
  709. i = 0;
  710. for (j = 0; j < o_size / 5; j++) {
  711. out[i] = in[int_part];
  712. frac_part = 4;
  713. i++;
  714. for (k = 1; k < 5; k++) {
  715. out[i] = ctx->dot_productf(in0 + int_part,
  716. upsample_fir[4 - frac_part],
  717. UPS_MEM_SIZE);
  718. int_part++;
  719. frac_part--;
  720. i++;
  721. }
  722. }
  723. }
  724. /**
  725. * Calculate the high-band gain based on encoded index (23k85 mode) or
  726. * on the low-band speech signal and the Voice Activity Detection flag.
  727. *
  728. * @param[in] ctx The context
  729. * @param[in] synth LB speech synthesis at 12.8k
  730. * @param[in] hb_idx Gain index for mode 23k85 only
  731. * @param[in] vad VAD flag for the frame
  732. */
  733. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  734. uint16_t hb_idx, uint8_t vad)
  735. {
  736. int wsp = (vad > 0);
  737. float tilt;
  738. if (ctx->fr_cur_mode == MODE_23k85)
  739. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  740. tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  741. ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
  742. /* return gain bounded by [0.1, 1.0] */
  743. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  744. }
  745. /**
  746. * Generate the high-band excitation with the same energy from the lower
  747. * one and scaled by the given gain.
  748. *
  749. * @param[in] ctx The context
  750. * @param[out] hb_exc Buffer for the excitation
  751. * @param[in] synth_exc Low-band excitation used for synthesis
  752. * @param[in] hb_gain Wanted excitation gain
  753. */
  754. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  755. const float *synth_exc, float hb_gain)
  756. {
  757. int i;
  758. float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  759. /* Generate a white-noise excitation */
  760. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  761. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  762. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  763. energy * hb_gain * hb_gain,
  764. AMRWB_SFR_SIZE_16k);
  765. }
  766. /**
  767. * Calculate the auto-correlation for the ISF difference vector.
  768. */
  769. static float auto_correlation(float *diff_isf, float mean, int lag)
  770. {
  771. int i;
  772. float sum = 0.0;
  773. for (i = 7; i < LP_ORDER - 2; i++) {
  774. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  775. sum += prod * prod;
  776. }
  777. return sum;
  778. }
  779. /**
  780. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  781. * used at mode 6k60 LP filter for the high frequency band.
  782. *
  783. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  784. * values on input
  785. */
  786. static void extrapolate_isf(float isf[LP_ORDER_16k])
  787. {
  788. float diff_isf[LP_ORDER - 2], diff_mean;
  789. float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
  790. float corr_lag[3];
  791. float est, scale;
  792. int i, i_max_corr;
  793. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  794. /* Calculate the difference vector */
  795. for (i = 0; i < LP_ORDER - 2; i++)
  796. diff_isf[i] = isf[i + 1] - isf[i];
  797. diff_mean = 0.0;
  798. for (i = 2; i < LP_ORDER - 2; i++)
  799. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  800. /* Find which is the maximum autocorrelation */
  801. i_max_corr = 0;
  802. for (i = 0; i < 3; i++) {
  803. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  804. if (corr_lag[i] > corr_lag[i_max_corr])
  805. i_max_corr = i;
  806. }
  807. i_max_corr++;
  808. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  809. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  810. - isf[i - 2 - i_max_corr];
  811. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  812. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  813. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  814. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  815. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  816. diff_hi[i] = scale * (isf[i] - isf[i - 1]);
  817. /* Stability insurance */
  818. for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
  819. if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
  820. if (diff_hi[i] > diff_hi[i - 1]) {
  821. diff_hi[i - 1] = 5.0 - diff_hi[i];
  822. } else
  823. diff_hi[i] = 5.0 - diff_hi[i - 1];
  824. }
  825. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  826. isf[i] = isf[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
  827. /* Scale the ISF vector for 16000 Hz */
  828. for (i = 0; i < LP_ORDER_16k - 1; i++)
  829. isf[i] *= 0.8;
  830. }
  831. /**
  832. * Spectral expand the LP coefficients using the equation:
  833. * y[i] = x[i] * (gamma ** i)
  834. *
  835. * @param[out] out Output buffer (may use input array)
  836. * @param[in] lpc LP coefficients array
  837. * @param[in] gamma Weighting factor
  838. * @param[in] size LP array size
  839. */
  840. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  841. {
  842. int i;
  843. float fac = gamma;
  844. for (i = 0; i < size; i++) {
  845. out[i] = lpc[i] * fac;
  846. fac *= gamma;
  847. }
  848. }
  849. /**
  850. * Conduct 20th order linear predictive coding synthesis for the high
  851. * frequency band excitation at 16kHz.
  852. *
  853. * @param[in] ctx The context
  854. * @param[in] subframe Current subframe index (0 to 3)
  855. * @param[in,out] samples Pointer to the output speech samples
  856. * @param[in] exc Generated white-noise scaled excitation
  857. * @param[in] isf Current frame isf vector
  858. * @param[in] isf_past Past frame final isf vector
  859. */
  860. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  861. const float *exc, const float *isf, const float *isf_past)
  862. {
  863. float hb_lpc[LP_ORDER_16k];
  864. enum Mode mode = ctx->fr_cur_mode;
  865. if (mode == MODE_6k60) {
  866. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  867. double e_isp[LP_ORDER_16k];
  868. ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  869. 1.0 - isfp_inter[subframe], LP_ORDER);
  870. extrapolate_isf(e_isf);
  871. e_isf[LP_ORDER_16k - 1] *= 2.0;
  872. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  873. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  874. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  875. } else {
  876. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  877. }
  878. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  879. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  880. }
  881. /**
  882. * Apply a 15th order filter to high-band samples.
  883. * The filter characteristic depends on the given coefficients.
  884. *
  885. * @param[out] out Buffer for filtered output
  886. * @param[in] fir_coef Filter coefficients
  887. * @param[in,out] mem State from last filtering (updated)
  888. * @param[in] in Input speech data (high-band)
  889. *
  890. * @remark It is safe to pass the same array in in and out parameters
  891. */
  892. #ifndef hb_fir_filter
  893. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  894. float mem[HB_FIR_SIZE], const float *in)
  895. {
  896. int i, j;
  897. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  898. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  899. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  900. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  901. out[i] = 0.0;
  902. for (j = 0; j <= HB_FIR_SIZE; j++)
  903. out[i] += data[i + j] * fir_coef[j];
  904. }
  905. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  906. }
  907. #endif /* hb_fir_filter */
  908. /**
  909. * Update context state before the next subframe.
  910. */
  911. static void update_sub_state(AMRWBContext *ctx)
  912. {
  913. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  914. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  915. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  916. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  917. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  918. LP_ORDER * sizeof(float));
  919. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  920. UPS_MEM_SIZE * sizeof(float));
  921. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  922. LP_ORDER_16k * sizeof(float));
  923. }
  924. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  925. int *got_frame_ptr, AVPacket *avpkt)
  926. {
  927. AMRWBContext *ctx = avctx->priv_data;
  928. AMRWBFrame *cf = &ctx->frame;
  929. const uint8_t *buf = avpkt->data;
  930. int buf_size = avpkt->size;
  931. int expected_fr_size, header_size;
  932. float *buf_out;
  933. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  934. float fixed_gain_factor; // fixed gain correction factor (gamma)
  935. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  936. float synth_fixed_gain; // the fixed gain that synthesis should use
  937. float voice_fac, stab_fac; // parameters used for gain smoothing
  938. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  939. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  940. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  941. float hb_gain;
  942. int sub, i, ret;
  943. /* get output buffer */
  944. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  945. if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
  946. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  947. return ret;
  948. }
  949. buf_out = (float *)ctx->avframe.data[0];
  950. header_size = decode_mime_header(ctx, buf);
  951. if (ctx->fr_cur_mode > MODE_SID) {
  952. av_log(avctx, AV_LOG_ERROR,
  953. "Invalid mode %d\n", ctx->fr_cur_mode);
  954. return AVERROR_INVALIDDATA;
  955. }
  956. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  957. if (buf_size < expected_fr_size) {
  958. av_log(avctx, AV_LOG_ERROR,
  959. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  960. *got_frame_ptr = 0;
  961. return AVERROR_INVALIDDATA;
  962. }
  963. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  964. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  965. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  966. av_log_missing_feature(avctx, "SID mode", 1);
  967. return -1;
  968. }
  969. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  970. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  971. /* Decode the quantized ISF vector */
  972. if (ctx->fr_cur_mode == MODE_6k60) {
  973. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  974. } else {
  975. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  976. }
  977. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  978. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  979. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  980. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  981. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  982. /* Generate a ISP vector for each subframe */
  983. if (ctx->first_frame) {
  984. ctx->first_frame = 0;
  985. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  986. }
  987. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  988. for (sub = 0; sub < 4; sub++)
  989. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  990. for (sub = 0; sub < 4; sub++) {
  991. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  992. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  993. /* Decode adaptive codebook (pitch vector) */
  994. decode_pitch_vector(ctx, cur_subframe, sub);
  995. /* Decode innovative codebook (fixed vector) */
  996. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  997. cur_subframe->pul_il, ctx->fr_cur_mode);
  998. pitch_sharpening(ctx, ctx->fixed_vector);
  999. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  1000. &fixed_gain_factor, &ctx->pitch_gain[0]);
  1001. ctx->fixed_gain[0] =
  1002. ff_amr_set_fixed_gain(fixed_gain_factor,
  1003. ctx->celpm_ctx.dot_productf(ctx->fixed_vector, ctx->fixed_vector,
  1004. AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
  1005. ctx->prediction_error,
  1006. ENERGY_MEAN, energy_pred_fac);
  1007. /* Calculate voice factor and store tilt for next subframe */
  1008. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1009. ctx->fixed_vector, ctx->fixed_gain[0],
  1010. &ctx->celpm_ctx);
  1011. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1012. /* Construct current excitation */
  1013. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1014. ctx->excitation[i] *= ctx->pitch_gain[0];
  1015. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1016. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1017. }
  1018. /* Post-processing of excitation elements */
  1019. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1020. voice_fac, stab_fac);
  1021. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1022. spare_vector);
  1023. pitch_enhancer(synth_fixed_vector, voice_fac);
  1024. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1025. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1026. /* Synthesis speech post-processing */
  1027. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1028. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1029. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1030. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1031. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1032. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1033. AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
  1034. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1035. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
  1036. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1037. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1038. hb_gain = find_hb_gain(ctx, hb_samples,
  1039. cur_subframe->hb_gain, cf->vad);
  1040. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1041. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1042. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1043. /* High-band post-processing filters */
  1044. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1045. &ctx->samples_hb[LP_ORDER_16k]);
  1046. if (ctx->fr_cur_mode == MODE_23k85)
  1047. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1048. hb_samples);
  1049. /* Add the low and high frequency bands */
  1050. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1051. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1052. /* Update buffers and history */
  1053. update_sub_state(ctx);
  1054. }
  1055. /* update state for next frame */
  1056. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1057. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1058. *got_frame_ptr = 1;
  1059. *(AVFrame *)data = ctx->avframe;
  1060. return expected_fr_size;
  1061. }
  1062. AVCodec ff_amrwb_decoder = {
  1063. .name = "amrwb",
  1064. .type = AVMEDIA_TYPE_AUDIO,
  1065. .id = AV_CODEC_ID_AMR_WB,
  1066. .priv_data_size = sizeof(AMRWBContext),
  1067. .init = amrwb_decode_init,
  1068. .decode = amrwb_decode_frame,
  1069. .capabilities = CODEC_CAP_DR1,
  1070. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1071. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1072. AV_SAMPLE_FMT_NONE },
  1073. };