|
- /*
- * AC-3 Audio Decoder
- * This code was developed as part of Google Summer of Code 2006.
- * E-AC-3 support was added as part of Google Summer of Code 2007.
- *
- * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
- * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
- * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- #include <stdio.h>
- #include <stddef.h>
- #include <math.h>
- #include <string.h>
-
- #include "libavutil/crc.h"
- #include "libavutil/opt.h"
- #include "internal.h"
- #include "aac_ac3_parser.h"
- #include "ac3_parser.h"
- #include "ac3dec.h"
- #include "ac3dec_data.h"
- #include "kbdwin.h"
-
- /**
- * table for ungrouping 3 values in 7 bits.
- * used for exponents and bap=2 mantissas
- */
- static uint8_t ungroup_3_in_7_bits_tab[128][3];
-
- /** tables for ungrouping mantissas */
- static int b1_mantissas[32][3];
- static int b2_mantissas[128][3];
- static int b3_mantissas[8];
- static int b4_mantissas[128][2];
- static int b5_mantissas[16];
-
- /**
- * Quantization table: levels for symmetric. bits for asymmetric.
- * reference: Table 7.18 Mapping of bap to Quantizer
- */
- static const uint8_t quantization_tab[16] = {
- 0, 3, 5, 7, 11, 15,
- 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
- };
-
- /** dynamic range table. converts codes to scale factors. */
- static float dynamic_range_tab[256];
-
- /** Adjustments in dB gain */
- static const float gain_levels[9] = {
- LEVEL_PLUS_3DB,
- LEVEL_PLUS_1POINT5DB,
- LEVEL_ONE,
- LEVEL_MINUS_1POINT5DB,
- LEVEL_MINUS_3DB,
- LEVEL_MINUS_4POINT5DB,
- LEVEL_MINUS_6DB,
- LEVEL_ZERO,
- LEVEL_MINUS_9DB
- };
-
- /**
- * Table for default stereo downmixing coefficients
- * reference: Section 7.8.2 Downmixing Into Two Channels
- */
- static const uint8_t ac3_default_coeffs[8][5][2] = {
- { { 2, 7 }, { 7, 2 }, },
- { { 4, 4 }, },
- { { 2, 7 }, { 7, 2 }, },
- { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
- { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
- { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
- { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
- { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
- };
-
- /**
- * Symmetrical Dequantization
- * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
- * Tables 7.19 to 7.23
- */
- static inline int
- symmetric_dequant(int code, int levels)
- {
- return ((code - (levels >> 1)) << 24) / levels;
- }
-
- /*
- * Initialize tables at runtime.
- */
- static av_cold void ac3_tables_init(void)
- {
- int i;
-
- /* generate table for ungrouping 3 values in 7 bits
- reference: Section 7.1.3 Exponent Decoding */
- for (i = 0; i < 128; i++) {
- ungroup_3_in_7_bits_tab[i][0] = i / 25;
- ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
- ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
- }
-
- /* generate grouped mantissa tables
- reference: Section 7.3.5 Ungrouping of Mantissas */
- for (i = 0; i < 32; i++) {
- /* bap=1 mantissas */
- b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
- b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
- b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
- }
- for (i = 0; i < 128; i++) {
- /* bap=2 mantissas */
- b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
- b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
- b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
-
- /* bap=4 mantissas */
- b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
- b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
- }
- /* generate ungrouped mantissa tables
- reference: Tables 7.21 and 7.23 */
- for (i = 0; i < 7; i++) {
- /* bap=3 mantissas */
- b3_mantissas[i] = symmetric_dequant(i, 7);
- }
- for (i = 0; i < 15; i++) {
- /* bap=5 mantissas */
- b5_mantissas[i] = symmetric_dequant(i, 15);
- }
-
- /* generate dynamic range table
- reference: Section 7.7.1 Dynamic Range Control */
- for (i = 0; i < 256; i++) {
- int v = (i >> 5) - ((i >> 7) << 3) - 5;
- dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
- }
- }
-
- /**
- * AVCodec initialization
- */
- static av_cold int ac3_decode_init(AVCodecContext *avctx)
- {
- AC3DecodeContext *s = avctx->priv_data;
- s->avctx = avctx;
-
- ff_ac3_common_init();
- ac3_tables_init();
- ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
- ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
- ff_kbd_window_init(s->window, 5.0, 256);
- ff_dsputil_init(&s->dsp, avctx);
- ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
- ff_fmt_convert_init(&s->fmt_conv, avctx);
- av_lfg_init(&s->dith_state, 0);
-
- /* set scale value for float to int16 conversion */
- if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
- s->mul_bias = 1.0f;
- avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
- } else {
- s->mul_bias = 32767.0f;
- avctx->sample_fmt = AV_SAMPLE_FMT_S16;
- }
-
- /* allow downmixing to stereo or mono */
- if (avctx->channels > 0 && avctx->request_channels > 0 &&
- avctx->request_channels < avctx->channels &&
- avctx->request_channels <= 2) {
- avctx->channels = avctx->request_channels;
- }
- s->downmixed = 1;
-
- avcodec_get_frame_defaults(&s->frame);
- avctx->coded_frame = &s->frame;
-
- return 0;
- }
-
- /**
- * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
- * GetBitContext within AC3DecodeContext must point to
- * the start of the synchronized AC-3 bitstream.
- */
- static int ac3_parse_header(AC3DecodeContext *s)
- {
- GetBitContext *gbc = &s->gbc;
- int i;
-
- /* read the rest of the bsi. read twice for dual mono mode. */
- i = !s->channel_mode;
- do {
- skip_bits(gbc, 5); // skip dialog normalization
- if (get_bits1(gbc))
- skip_bits(gbc, 8); //skip compression
- if (get_bits1(gbc))
- skip_bits(gbc, 8); //skip language code
- if (get_bits1(gbc))
- skip_bits(gbc, 7); //skip audio production information
- } while (i--);
-
- skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
-
- /* skip the timecodes (or extra bitstream information for Alternate Syntax)
- TODO: read & use the xbsi1 downmix levels */
- if (get_bits1(gbc))
- skip_bits(gbc, 14); //skip timecode1 / xbsi1
- if (get_bits1(gbc))
- skip_bits(gbc, 14); //skip timecode2 / xbsi2
-
- /* skip additional bitstream info */
- if (get_bits1(gbc)) {
- i = get_bits(gbc, 6);
- do {
- skip_bits(gbc, 8);
- } while (i--);
- }
-
- return 0;
- }
-
- /**
- * Common function to parse AC-3 or E-AC-3 frame header
- */
- static int parse_frame_header(AC3DecodeContext *s)
- {
- AC3HeaderInfo hdr;
- int err;
-
- err = avpriv_ac3_parse_header(&s->gbc, &hdr);
- if (err)
- return err;
-
- /* get decoding parameters from header info */
- s->bit_alloc_params.sr_code = hdr.sr_code;
- s->bitstream_mode = hdr.bitstream_mode;
- s->channel_mode = hdr.channel_mode;
- s->channel_layout = hdr.channel_layout;
- s->lfe_on = hdr.lfe_on;
- s->bit_alloc_params.sr_shift = hdr.sr_shift;
- s->sample_rate = hdr.sample_rate;
- s->bit_rate = hdr.bit_rate;
- s->channels = hdr.channels;
- s->fbw_channels = s->channels - s->lfe_on;
- s->lfe_ch = s->fbw_channels + 1;
- s->frame_size = hdr.frame_size;
- s->center_mix_level = hdr.center_mix_level;
- s->surround_mix_level = hdr.surround_mix_level;
- s->num_blocks = hdr.num_blocks;
- s->frame_type = hdr.frame_type;
- s->substreamid = hdr.substreamid;
-
- if (s->lfe_on) {
- s->start_freq[s->lfe_ch] = 0;
- s->end_freq[s->lfe_ch] = 7;
- s->num_exp_groups[s->lfe_ch] = 2;
- s->channel_in_cpl[s->lfe_ch] = 0;
- }
-
- if (hdr.bitstream_id <= 10) {
- s->eac3 = 0;
- s->snr_offset_strategy = 2;
- s->block_switch_syntax = 1;
- s->dither_flag_syntax = 1;
- s->bit_allocation_syntax = 1;
- s->fast_gain_syntax = 0;
- s->first_cpl_leak = 0;
- s->dba_syntax = 1;
- s->skip_syntax = 1;
- memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
- return ac3_parse_header(s);
- } else if (CONFIG_EAC3_DECODER) {
- s->eac3 = 1;
- return ff_eac3_parse_header(s);
- } else {
- av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
- return -1;
- }
- }
-
- /**
- * Set stereo downmixing coefficients based on frame header info.
- * reference: Section 7.8.2 Downmixing Into Two Channels
- */
- static void set_downmix_coeffs(AC3DecodeContext *s)
- {
- int i;
- float cmix = gain_levels[s-> center_mix_level];
- float smix = gain_levels[s->surround_mix_level];
- float norm0, norm1;
-
- for (i = 0; i < s->fbw_channels; i++) {
- s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
- s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
- }
- if (s->channel_mode > 1 && s->channel_mode & 1) {
- s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
- }
- if (s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
- int nf = s->channel_mode - 2;
- s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
- }
- if (s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
- int nf = s->channel_mode - 4;
- s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
- }
-
- /* renormalize */
- norm0 = norm1 = 0.0;
- for (i = 0; i < s->fbw_channels; i++) {
- norm0 += s->downmix_coeffs[i][0];
- norm1 += s->downmix_coeffs[i][1];
- }
- norm0 = 1.0f / norm0;
- norm1 = 1.0f / norm1;
- for (i = 0; i < s->fbw_channels; i++) {
- s->downmix_coeffs[i][0] *= norm0;
- s->downmix_coeffs[i][1] *= norm1;
- }
-
- if (s->output_mode == AC3_CHMODE_MONO) {
- for (i = 0; i < s->fbw_channels; i++)
- s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] +
- s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
- }
- }
-
- /**
- * Decode the grouped exponents according to exponent strategy.
- * reference: Section 7.1.3 Exponent Decoding
- */
- static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
- uint8_t absexp, int8_t *dexps)
- {
- int i, j, grp, group_size;
- int dexp[256];
- int expacc, prevexp;
-
- /* unpack groups */
- group_size = exp_strategy + (exp_strategy == EXP_D45);
- for (grp = 0, i = 0; grp < ngrps; grp++) {
- expacc = get_bits(gbc, 7);
- dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
- dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
- dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
- }
-
- /* convert to absolute exps and expand groups */
- prevexp = absexp;
- for (i = 0, j = 0; i < ngrps * 3; i++) {
- prevexp += dexp[i] - 2;
- if (prevexp > 24U)
- return -1;
- switch (group_size) {
- case 4: dexps[j++] = prevexp;
- dexps[j++] = prevexp;
- case 2: dexps[j++] = prevexp;
- case 1: dexps[j++] = prevexp;
- }
- }
- return 0;
- }
-
- /**
- * Generate transform coefficients for each coupled channel in the coupling
- * range using the coupling coefficients and coupling coordinates.
- * reference: Section 7.4.3 Coupling Coordinate Format
- */
- static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
- {
- int bin, band, ch;
-
- bin = s->start_freq[CPL_CH];
- for (band = 0; band < s->num_cpl_bands; band++) {
- int band_start = bin;
- int band_end = bin + s->cpl_band_sizes[band];
- for (ch = 1; ch <= s->fbw_channels; ch++) {
- if (s->channel_in_cpl[ch]) {
- int cpl_coord = s->cpl_coords[ch][band] << 5;
- for (bin = band_start; bin < band_end; bin++) {
- s->fixed_coeffs[ch][bin] =
- MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
- }
- if (ch == 2 && s->phase_flags[band]) {
- for (bin = band_start; bin < band_end; bin++)
- s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
- }
- }
- }
- bin = band_end;
- }
- }
-
- /**
- * Grouped mantissas for 3-level 5-level and 11-level quantization
- */
- typedef struct {
- int b1_mant[2];
- int b2_mant[2];
- int b4_mant;
- int b1;
- int b2;
- int b4;
- } mant_groups;
-
- /**
- * Decode the transform coefficients for a particular channel
- * reference: Section 7.3 Quantization and Decoding of Mantissas
- */
- static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
- {
- int start_freq = s->start_freq[ch_index];
- int end_freq = s->end_freq[ch_index];
- uint8_t *baps = s->bap[ch_index];
- int8_t *exps = s->dexps[ch_index];
- int *coeffs = s->fixed_coeffs[ch_index];
- int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
- GetBitContext *gbc = &s->gbc;
- int freq;
-
- for (freq = start_freq; freq < end_freq; freq++) {
- int bap = baps[freq];
- int mantissa;
- switch (bap) {
- case 0:
- if (dither)
- mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
- else
- mantissa = 0;
- break;
- case 1:
- if (m->b1) {
- m->b1--;
- mantissa = m->b1_mant[m->b1];
- } else {
- int bits = get_bits(gbc, 5);
- mantissa = b1_mantissas[bits][0];
- m->b1_mant[1] = b1_mantissas[bits][1];
- m->b1_mant[0] = b1_mantissas[bits][2];
- m->b1 = 2;
- }
- break;
- case 2:
- if (m->b2) {
- m->b2--;
- mantissa = m->b2_mant[m->b2];
- } else {
- int bits = get_bits(gbc, 7);
- mantissa = b2_mantissas[bits][0];
- m->b2_mant[1] = b2_mantissas[bits][1];
- m->b2_mant[0] = b2_mantissas[bits][2];
- m->b2 = 2;
- }
- break;
- case 3:
- mantissa = b3_mantissas[get_bits(gbc, 3)];
- break;
- case 4:
- if (m->b4) {
- m->b4 = 0;
- mantissa = m->b4_mant;
- } else {
- int bits = get_bits(gbc, 7);
- mantissa = b4_mantissas[bits][0];
- m->b4_mant = b4_mantissas[bits][1];
- m->b4 = 1;
- }
- break;
- case 5:
- mantissa = b5_mantissas[get_bits(gbc, 4)];
- break;
- default: /* 6 to 15 */
- /* Shift mantissa and sign-extend it. */
- mantissa = get_sbits(gbc, quantization_tab[bap]);
- mantissa <<= 24 - quantization_tab[bap];
- break;
- }
- coeffs[freq] = mantissa >> exps[freq];
- }
- }
-
- /**
- * Remove random dithering from coupling range coefficients with zero-bit
- * mantissas for coupled channels which do not use dithering.
- * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
- */
- static void remove_dithering(AC3DecodeContext *s) {
- int ch, i;
-
- for (ch = 1; ch <= s->fbw_channels; ch++) {
- if (!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
- for (i = s->start_freq[CPL_CH]; i < s->end_freq[CPL_CH]; i++) {
- if (!s->bap[CPL_CH][i])
- s->fixed_coeffs[ch][i] = 0;
- }
- }
- }
- }
-
- static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
- mant_groups *m)
- {
- if (!s->channel_uses_aht[ch]) {
- ac3_decode_transform_coeffs_ch(s, ch, m);
- } else {
- /* if AHT is used, mantissas for all blocks are encoded in the first
- block of the frame. */
- int bin;
- if (!blk && CONFIG_EAC3_DECODER)
- ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
- for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
- s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
- }
- }
- }
-
- /**
- * Decode the transform coefficients.
- */
- static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
- {
- int ch, end;
- int got_cplchan = 0;
- mant_groups m;
-
- m.b1 = m.b2 = m.b4 = 0;
-
- for (ch = 1; ch <= s->channels; ch++) {
- /* transform coefficients for full-bandwidth channel */
- decode_transform_coeffs_ch(s, blk, ch, &m);
- /* tranform coefficients for coupling channel come right after the
- coefficients for the first coupled channel*/
- if (s->channel_in_cpl[ch]) {
- if (!got_cplchan) {
- decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
- calc_transform_coeffs_cpl(s);
- got_cplchan = 1;
- }
- end = s->end_freq[CPL_CH];
- } else {
- end = s->end_freq[ch];
- }
- do
- s->fixed_coeffs[ch][end] = 0;
- while (++end < 256);
- }
-
- /* zero the dithered coefficients for appropriate channels */
- remove_dithering(s);
- }
-
- /**
- * Stereo rematrixing.
- * reference: Section 7.5.4 Rematrixing : Decoding Technique
- */
- static void do_rematrixing(AC3DecodeContext *s)
- {
- int bnd, i;
- int end, bndend;
-
- end = FFMIN(s->end_freq[1], s->end_freq[2]);
-
- for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
- if (s->rematrixing_flags[bnd]) {
- bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd + 1]);
- for (i = ff_ac3_rematrix_band_tab[bnd]; i < bndend; i++) {
- int tmp0 = s->fixed_coeffs[1][i];
- s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
- s->fixed_coeffs[2][i] = tmp0 - s->fixed_coeffs[2][i];
- }
- }
- }
- }
-
- /**
- * Inverse MDCT Transform.
- * Convert frequency domain coefficients to time-domain audio samples.
- * reference: Section 7.9.4 Transformation Equations
- */
- static inline void do_imdct(AC3DecodeContext *s, int channels)
- {
- int ch;
-
- for (ch = 1; ch <= channels; ch++) {
- if (s->block_switch[ch]) {
- int i;
- float *x = s->tmp_output + 128;
- for (i = 0; i < 128; i++)
- x[i] = s->transform_coeffs[ch][2 * i];
- s->imdct_256.imdct_half(&s->imdct_256, s->tmp_output, x);
- s->dsp.vector_fmul_window(s->output[ch - 1], s->delay[ch - 1],
- s->tmp_output, s->window, 128);
- for (i = 0; i < 128; i++)
- x[i] = s->transform_coeffs[ch][2 * i + 1];
- s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch - 1], x);
- } else {
- s->imdct_512.imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
- s->dsp.vector_fmul_window(s->output[ch - 1], s->delay[ch - 1],
- s->tmp_output, s->window, 128);
- memcpy(s->delay[ch - 1], s->tmp_output + 128, 128 * sizeof(float));
- }
- }
- }
-
- /**
- * Downmix the output to mono or stereo.
- */
- void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2],
- int out_ch, int in_ch, int len)
- {
- int i, j;
- float v0, v1;
- if (out_ch == 2) {
- for (i = 0; i < len; i++) {
- v0 = v1 = 0.0f;
- for (j = 0; j < in_ch; j++) {
- v0 += samples[j][i] * matrix[j][0];
- v1 += samples[j][i] * matrix[j][1];
- }
- samples[0][i] = v0;
- samples[1][i] = v1;
- }
- } else if (out_ch == 1) {
- for (i = 0; i < len; i++) {
- v0 = 0.0f;
- for (j = 0; j < in_ch; j++)
- v0 += samples[j][i] * matrix[j][0];
- samples[0][i] = v0;
- }
- }
- }
-
- /**
- * Upmix delay samples from stereo to original channel layout.
- */
- static void ac3_upmix_delay(AC3DecodeContext *s)
- {
- int channel_data_size = sizeof(s->delay[0]);
- switch (s->channel_mode) {
- case AC3_CHMODE_DUALMONO:
- case AC3_CHMODE_STEREO:
- /* upmix mono to stereo */
- memcpy(s->delay[1], s->delay[0], channel_data_size);
- break;
- case AC3_CHMODE_2F2R:
- memset(s->delay[3], 0, channel_data_size);
- case AC3_CHMODE_2F1R:
- memset(s->delay[2], 0, channel_data_size);
- break;
- case AC3_CHMODE_3F2R:
- memset(s->delay[4], 0, channel_data_size);
- case AC3_CHMODE_3F1R:
- memset(s->delay[3], 0, channel_data_size);
- case AC3_CHMODE_3F:
- memcpy(s->delay[2], s->delay[1], channel_data_size);
- memset(s->delay[1], 0, channel_data_size);
- break;
- }
- }
-
- /**
- * Decode band structure for coupling, spectral extension, or enhanced coupling.
- * The band structure defines how many subbands are in each band. For each
- * subband in the range, 1 means it is combined with the previous band, and 0
- * means that it starts a new band.
- *
- * @param[in] gbc bit reader context
- * @param[in] blk block number
- * @param[in] eac3 flag to indicate E-AC-3
- * @param[in] ecpl flag to indicate enhanced coupling
- * @param[in] start_subband subband number for start of range
- * @param[in] end_subband subband number for end of range
- * @param[in] default_band_struct default band structure table
- * @param[out] num_bands number of bands (optionally NULL)
- * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
- */
- static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
- int ecpl, int start_subband, int end_subband,
- const uint8_t *default_band_struct,
- int *num_bands, uint8_t *band_sizes)
- {
- int subbnd, bnd, n_subbands, n_bands=0;
- uint8_t bnd_sz[22];
- uint8_t coded_band_struct[22];
- const uint8_t *band_struct;
-
- n_subbands = end_subband - start_subband;
-
- /* decode band structure from bitstream or use default */
- if (!eac3 || get_bits1(gbc)) {
- for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
- coded_band_struct[subbnd] = get_bits1(gbc);
- }
- band_struct = coded_band_struct;
- } else if (!blk) {
- band_struct = &default_band_struct[start_subband+1];
- } else {
- /* no change in band structure */
- return;
- }
-
- /* calculate number of bands and band sizes based on band structure.
- note that the first 4 subbands in enhanced coupling span only 6 bins
- instead of 12. */
- if (num_bands || band_sizes ) {
- n_bands = n_subbands;
- bnd_sz[0] = ecpl ? 6 : 12;
- for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
- int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
- if (band_struct[subbnd - 1]) {
- n_bands--;
- bnd_sz[bnd] += subbnd_size;
- } else {
- bnd_sz[++bnd] = subbnd_size;
- }
- }
- }
-
- /* set optional output params */
- if (num_bands)
- *num_bands = n_bands;
- if (band_sizes)
- memcpy(band_sizes, bnd_sz, n_bands);
- }
-
- /**
- * Decode a single audio block from the AC-3 bitstream.
- */
- static int decode_audio_block(AC3DecodeContext *s, int blk)
- {
- int fbw_channels = s->fbw_channels;
- int channel_mode = s->channel_mode;
- int i, bnd, seg, ch;
- int different_transforms;
- int downmix_output;
- int cpl_in_use;
- GetBitContext *gbc = &s->gbc;
- uint8_t bit_alloc_stages[AC3_MAX_CHANNELS] = { 0 };
-
- /* block switch flags */
- different_transforms = 0;
- if (s->block_switch_syntax) {
- for (ch = 1; ch <= fbw_channels; ch++) {
- s->block_switch[ch] = get_bits1(gbc);
- if (ch > 1 && s->block_switch[ch] != s->block_switch[1])
- different_transforms = 1;
- }
- }
-
- /* dithering flags */
- if (s->dither_flag_syntax) {
- for (ch = 1; ch <= fbw_channels; ch++) {
- s->dither_flag[ch] = get_bits1(gbc);
- }
- }
-
- /* dynamic range */
- i = !s->channel_mode;
- do {
- if (get_bits1(gbc)) {
- s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)] - 1.0) *
- s->drc_scale) + 1.0;
- } else if (blk == 0) {
- s->dynamic_range[i] = 1.0f;
- }
- } while (i--);
-
- /* spectral extension strategy */
- if (s->eac3 && (!blk || get_bits1(gbc))) {
- s->spx_in_use = get_bits1(gbc);
- if (s->spx_in_use) {
- int dst_start_freq, dst_end_freq, src_start_freq,
- start_subband, end_subband;
-
- /* determine which channels use spx */
- if (s->channel_mode == AC3_CHMODE_MONO) {
- s->channel_uses_spx[1] = 1;
- } else {
- for (ch = 1; ch <= fbw_channels; ch++)
- s->channel_uses_spx[ch] = get_bits1(gbc);
- }
-
- /* get the frequency bins of the spx copy region and the spx start
- and end subbands */
- dst_start_freq = get_bits(gbc, 2);
- start_subband = get_bits(gbc, 3) + 2;
- if (start_subband > 7)
- start_subband += start_subband - 7;
- end_subband = get_bits(gbc, 3) + 5;
- if (end_subband > 7)
- end_subband += end_subband - 7;
- dst_start_freq = dst_start_freq * 12 + 25;
- src_start_freq = start_subband * 12 + 25;
- dst_end_freq = end_subband * 12 + 25;
-
- /* check validity of spx ranges */
- if (start_subband >= end_subband) {
- av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
- "range (%d >= %d)\n", start_subband, end_subband);
- return -1;
- }
- if (dst_start_freq >= src_start_freq) {
- av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
- "copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
- return -1;
- }
-
- s->spx_dst_start_freq = dst_start_freq;
- s->spx_src_start_freq = src_start_freq;
- s->spx_dst_end_freq = dst_end_freq;
-
- decode_band_structure(gbc, blk, s->eac3, 0,
- start_subband, end_subband,
- ff_eac3_default_spx_band_struct,
- &s->num_spx_bands,
- s->spx_band_sizes);
- } else {
- for (ch = 1; ch <= fbw_channels; ch++) {
- s->channel_uses_spx[ch] = 0;
- s->first_spx_coords[ch] = 1;
- }
- }
- }
-
- /* spectral extension coordinates */
- if (s->spx_in_use) {
- for (ch = 1; ch <= fbw_channels; ch++) {
- if (s->channel_uses_spx[ch]) {
- if (s->first_spx_coords[ch] || get_bits1(gbc)) {
- float spx_blend;
- int bin, master_spx_coord;
-
- s->first_spx_coords[ch] = 0;
- spx_blend = get_bits(gbc, 5) * (1.0f/32);
- master_spx_coord = get_bits(gbc, 2) * 3;
-
- bin = s->spx_src_start_freq;
- for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
- int bandsize;
- int spx_coord_exp, spx_coord_mant;
- float nratio, sblend, nblend, spx_coord;
-
- /* calculate blending factors */
- bandsize = s->spx_band_sizes[bnd];
- nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
- nratio = av_clipf(nratio, 0.0f, 1.0f);
- nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3)
- // to give unity variance
- sblend = sqrtf(1.0f - nratio);
- bin += bandsize;
-
- /* decode spx coordinates */
- spx_coord_exp = get_bits(gbc, 4);
- spx_coord_mant = get_bits(gbc, 2);
- if (spx_coord_exp == 15) spx_coord_mant <<= 1;
- else spx_coord_mant += 4;
- spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
- spx_coord = spx_coord_mant * (1.0f / (1 << 23));
-
- /* multiply noise and signal blending factors by spx coordinate */
- s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
- s->spx_signal_blend[ch][bnd] = sblend * spx_coord;
- }
- }
- } else {
- s->first_spx_coords[ch] = 1;
- }
- }
- }
-
- /* coupling strategy */
- if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
- memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
- if (!s->eac3)
- s->cpl_in_use[blk] = get_bits1(gbc);
- if (s->cpl_in_use[blk]) {
- /* coupling in use */
- int cpl_start_subband, cpl_end_subband;
-
- if (channel_mode < AC3_CHMODE_STEREO) {
- av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
- return -1;
- }
-
- /* check for enhanced coupling */
- if (s->eac3 && get_bits1(gbc)) {
- /* TODO: parse enhanced coupling strategy info */
- av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
- return -1;
- }
-
- /* determine which channels are coupled */
- if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
- s->channel_in_cpl[1] = 1;
- s->channel_in_cpl[2] = 1;
- } else {
- for (ch = 1; ch <= fbw_channels; ch++)
- s->channel_in_cpl[ch] = get_bits1(gbc);
- }
-
- /* phase flags in use */
- if (channel_mode == AC3_CHMODE_STEREO)
- s->phase_flags_in_use = get_bits1(gbc);
-
- /* coupling frequency range */
- cpl_start_subband = get_bits(gbc, 4);
- cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 :
- get_bits(gbc, 4) + 3;
- if (cpl_start_subband >= cpl_end_subband) {
- av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
- cpl_start_subband, cpl_end_subband);
- return -1;
- }
- s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
- s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
-
- decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
- cpl_end_subband,
- ff_eac3_default_cpl_band_struct,
- &s->num_cpl_bands, s->cpl_band_sizes);
- } else {
- /* coupling not in use */
- for (ch = 1; ch <= fbw_channels; ch++) {
- s->channel_in_cpl[ch] = 0;
- s->first_cpl_coords[ch] = 1;
- }
- s->first_cpl_leak = s->eac3;
- s->phase_flags_in_use = 0;
- }
- } else if (!s->eac3) {
- if (!blk) {
- av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must "
- "be present in block 0\n");
- return -1;
- } else {
- s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
- }
- }
- cpl_in_use = s->cpl_in_use[blk];
-
- /* coupling coordinates */
- if (cpl_in_use) {
- int cpl_coords_exist = 0;
-
- for (ch = 1; ch <= fbw_channels; ch++) {
- if (s->channel_in_cpl[ch]) {
- if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
- int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
- s->first_cpl_coords[ch] = 0;
- cpl_coords_exist = 1;
- master_cpl_coord = 3 * get_bits(gbc, 2);
- for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
- cpl_coord_exp = get_bits(gbc, 4);
- cpl_coord_mant = get_bits(gbc, 4);
- if (cpl_coord_exp == 15)
- s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
- else
- s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
- s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
- }
- } else if (!blk) {
- av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must "
- "be present in block 0\n");
- return -1;
- }
- } else {
- /* channel not in coupling */
- s->first_cpl_coords[ch] = 1;
- }
- }
- /* phase flags */
- if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
- for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
- s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
- }
- }
- }
-
- /* stereo rematrixing strategy and band structure */
- if (channel_mode == AC3_CHMODE_STEREO) {
- if ((s->eac3 && !blk) || get_bits1(gbc)) {
- s->num_rematrixing_bands = 4;
- if (cpl_in_use && s->start_freq[CPL_CH] <= 61) {
- s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
- } else if (s->spx_in_use && s->spx_src_start_freq <= 61) {
- s->num_rematrixing_bands--;
- }
- for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++)
- s->rematrixing_flags[bnd] = get_bits1(gbc);
- } else if (!blk) {
- av_log(s->avctx, AV_LOG_WARNING, "Warning: "
- "new rematrixing strategy not present in block 0\n");
- s->num_rematrixing_bands = 0;
- }
- }
-
- /* exponent strategies for each channel */
- for (ch = !cpl_in_use; ch <= s->channels; ch++) {
- if (!s->eac3)
- s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
- if (s->exp_strategy[blk][ch] != EXP_REUSE)
- bit_alloc_stages[ch] = 3;
- }
-
- /* channel bandwidth */
- for (ch = 1; ch <= fbw_channels; ch++) {
- s->start_freq[ch] = 0;
- if (s->exp_strategy[blk][ch] != EXP_REUSE) {
- int group_size;
- int prev = s->end_freq[ch];
- if (s->channel_in_cpl[ch])
- s->end_freq[ch] = s->start_freq[CPL_CH];
- else if (s->channel_uses_spx[ch])
- s->end_freq[ch] = s->spx_src_start_freq;
- else {
- int bandwidth_code = get_bits(gbc, 6);
- if (bandwidth_code > 60) {
- av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
- return -1;
- }
- s->end_freq[ch] = bandwidth_code * 3 + 73;
- }
- group_size = 3 << (s->exp_strategy[blk][ch] - 1);
- s->num_exp_groups[ch] = (s->end_freq[ch] + group_size-4) / group_size;
- if (blk > 0 && s->end_freq[ch] != prev)
- memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
- }
- }
- if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
- s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
- (3 << (s->exp_strategy[blk][CPL_CH] - 1));
- }
-
- /* decode exponents for each channel */
- for (ch = !cpl_in_use; ch <= s->channels; ch++) {
- if (s->exp_strategy[blk][ch] != EXP_REUSE) {
- s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
- if (decode_exponents(gbc, s->exp_strategy[blk][ch],
- s->num_exp_groups[ch], s->dexps[ch][0],
- &s->dexps[ch][s->start_freq[ch]+!!ch])) {
- av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
- return -1;
- }
- if (ch != CPL_CH && ch != s->lfe_ch)
- skip_bits(gbc, 2); /* skip gainrng */
- }
- }
-
- /* bit allocation information */
- if (s->bit_allocation_syntax) {
- if (get_bits1(gbc)) {
- s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
- s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
- s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
- s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
- s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
- for (ch = !cpl_in_use; ch <= s->channels; ch++)
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- } else if (!blk) {
- av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must "
- "be present in block 0\n");
- return -1;
- }
- }
-
- /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
- if (!s->eac3 || !blk) {
- if (s->snr_offset_strategy && get_bits1(gbc)) {
- int snr = 0;
- int csnr;
- csnr = (get_bits(gbc, 6) - 15) << 4;
- for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
- /* snr offset */
- if (ch == i || s->snr_offset_strategy == 2)
- snr = (csnr + get_bits(gbc, 4)) << 2;
- /* run at least last bit allocation stage if snr offset changes */
- if (blk && s->snr_offset[ch] != snr) {
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
- }
- s->snr_offset[ch] = snr;
-
- /* fast gain (normal AC-3 only) */
- if (!s->eac3) {
- int prev = s->fast_gain[ch];
- s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
- /* run last 2 bit allocation stages if fast gain changes */
- if (blk && prev != s->fast_gain[ch])
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- }
- }
- } else if (!s->eac3 && !blk) {
- av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
- return -1;
- }
- }
-
- /* fast gain (E-AC-3 only) */
- if (s->fast_gain_syntax && get_bits1(gbc)) {
- for (ch = !cpl_in_use; ch <= s->channels; ch++) {
- int prev = s->fast_gain[ch];
- s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
- /* run last 2 bit allocation stages if fast gain changes */
- if (blk && prev != s->fast_gain[ch])
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- }
- } else if (s->eac3 && !blk) {
- for (ch = !cpl_in_use; ch <= s->channels; ch++)
- s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
- }
-
- /* E-AC-3 to AC-3 converter SNR offset */
- if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
- skip_bits(gbc, 10); // skip converter snr offset
- }
-
- /* coupling leak information */
- if (cpl_in_use) {
- if (s->first_cpl_leak || get_bits1(gbc)) {
- int fl = get_bits(gbc, 3);
- int sl = get_bits(gbc, 3);
- /* run last 2 bit allocation stages for coupling channel if
- coupling leak changes */
- if (blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
- sl != s->bit_alloc_params.cpl_slow_leak)) {
- bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
- }
- s->bit_alloc_params.cpl_fast_leak = fl;
- s->bit_alloc_params.cpl_slow_leak = sl;
- } else if (!s->eac3 && !blk) {
- av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must "
- "be present in block 0\n");
- return -1;
- }
- s->first_cpl_leak = 0;
- }
-
- /* delta bit allocation information */
- if (s->dba_syntax && get_bits1(gbc)) {
- /* delta bit allocation exists (strategy) */
- for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
- s->dba_mode[ch] = get_bits(gbc, 2);
- if (s->dba_mode[ch] == DBA_RESERVED) {
- av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
- return -1;
- }
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- }
- /* channel delta offset, len and bit allocation */
- for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
- if (s->dba_mode[ch] == DBA_NEW) {
- s->dba_nsegs[ch] = get_bits(gbc, 3) + 1;
- for (seg = 0; seg < s->dba_nsegs[ch]; seg++) {
- s->dba_offsets[ch][seg] = get_bits(gbc, 5);
- s->dba_lengths[ch][seg] = get_bits(gbc, 4);
- s->dba_values[ch][seg] = get_bits(gbc, 3);
- }
- /* run last 2 bit allocation stages if new dba values */
- bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
- }
- }
- } else if (blk == 0) {
- for (ch = 0; ch <= s->channels; ch++) {
- s->dba_mode[ch] = DBA_NONE;
- }
- }
-
- /* Bit allocation */
- for (ch = !cpl_in_use; ch <= s->channels; ch++) {
- if (bit_alloc_stages[ch] > 2) {
- /* Exponent mapping into PSD and PSD integration */
- ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
- s->start_freq[ch], s->end_freq[ch],
- s->psd[ch], s->band_psd[ch]);
- }
- if (bit_alloc_stages[ch] > 1) {
- /* Compute excitation function, Compute masking curve, and
- Apply delta bit allocation */
- if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
- s->start_freq[ch], s->end_freq[ch],
- s->fast_gain[ch], (ch == s->lfe_ch),
- s->dba_mode[ch], s->dba_nsegs[ch],
- s->dba_offsets[ch], s->dba_lengths[ch],
- s->dba_values[ch], s->mask[ch])) {
- av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
- return -1;
- }
- }
- if (bit_alloc_stages[ch] > 0) {
- /* Compute bit allocation */
- const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
- ff_eac3_hebap_tab : ff_ac3_bap_tab;
- s->ac3dsp.bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
- s->start_freq[ch], s->end_freq[ch],
- s->snr_offset[ch],
- s->bit_alloc_params.floor,
- bap_tab, s->bap[ch]);
- }
- }
-
- /* unused dummy data */
- if (s->skip_syntax && get_bits1(gbc)) {
- int skipl = get_bits(gbc, 9);
- while (skipl--)
- skip_bits(gbc, 8);
- }
-
- /* unpack the transform coefficients
- this also uncouples channels if coupling is in use. */
- decode_transform_coeffs(s, blk);
-
- /* TODO: generate enhanced coupling coordinates and uncouple */
-
- /* recover coefficients if rematrixing is in use */
- if (s->channel_mode == AC3_CHMODE_STEREO)
- do_rematrixing(s);
-
- /* apply scaling to coefficients (headroom, dynrng) */
- for (ch = 1; ch <= s->channels; ch++) {
- float gain = s->mul_bias / 4194304.0f;
- if (s->channel_mode == AC3_CHMODE_DUALMONO) {
- gain *= s->dynamic_range[2 - ch];
- } else {
- gain *= s->dynamic_range[0];
- }
- s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch],
- s->fixed_coeffs[ch], gain, 256);
- }
-
- /* apply spectral extension to high frequency bins */
- if (s->spx_in_use && CONFIG_EAC3_DECODER) {
- ff_eac3_apply_spectral_extension(s);
- }
-
- /* downmix and MDCT. order depends on whether block switching is used for
- any channel in this block. this is because coefficients for the long
- and short transforms cannot be mixed. */
- downmix_output = s->channels != s->out_channels &&
- !((s->output_mode & AC3_OUTPUT_LFEON) &&
- s->fbw_channels == s->out_channels);
- if (different_transforms) {
- /* the delay samples have already been downmixed, so we upmix the delay
- samples in order to reconstruct all channels before downmixing. */
- if (s->downmixed) {
- s->downmixed = 0;
- ac3_upmix_delay(s);
- }
-
- do_imdct(s, s->channels);
-
- if (downmix_output) {
- s->dsp.ac3_downmix(s->output, s->downmix_coeffs,
- s->out_channels, s->fbw_channels, 256);
- }
- } else {
- if (downmix_output) {
- s->dsp.ac3_downmix(s->transform_coeffs + 1, s->downmix_coeffs,
- s->out_channels, s->fbw_channels, 256);
- }
-
- if (downmix_output && !s->downmixed) {
- s->downmixed = 1;
- s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels,
- s->fbw_channels, 128);
- }
-
- do_imdct(s, s->out_channels);
- }
-
- return 0;
- }
-
- /**
- * Decode a single AC-3 frame.
- */
- static int ac3_decode_frame(AVCodecContext * avctx, void *data,
- int *got_frame_ptr, AVPacket *avpkt)
- {
- const uint8_t *buf = avpkt->data;
- int buf_size = avpkt->size;
- AC3DecodeContext *s = avctx->priv_data;
- float *out_samples_flt;
- int16_t *out_samples_s16;
- int blk, ch, err, ret;
- const uint8_t *channel_map;
- const float *output[AC3_MAX_CHANNELS];
-
- /* copy input buffer to decoder context to avoid reading past the end
- of the buffer, which can be caused by a damaged input stream. */
- if (buf_size >= 2 && AV_RB16(buf) == 0x770B) {
- // seems to be byte-swapped AC-3
- int cnt = FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE) >> 1;
- s->dsp.bswap16_buf((uint16_t *)s->input_buffer, (const uint16_t *)buf, cnt);
- } else
- memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
- buf = s->input_buffer;
- /* initialize the GetBitContext with the start of valid AC-3 Frame */
- init_get_bits(&s->gbc, buf, buf_size * 8);
-
- /* parse the syncinfo */
- err = parse_frame_header(s);
-
- if (err) {
- switch (err) {
- case AAC_AC3_PARSE_ERROR_SYNC:
- av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
- return -1;
- case AAC_AC3_PARSE_ERROR_BSID:
- av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
- break;
- case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
- av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
- break;
- case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
- av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
- break;
- case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
- /* skip frame if CRC is ok. otherwise use error concealment. */
- /* TODO: add support for substreams and dependent frames */
- if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
- av_log(avctx, AV_LOG_ERROR, "unsupported frame type : "
- "skipping frame\n");
- *got_frame_ptr = 0;
- return s->frame_size;
- } else {
- av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
- }
- break;
- default:
- av_log(avctx, AV_LOG_ERROR, "invalid header\n");
- break;
- }
- } else {
- /* check that reported frame size fits in input buffer */
- if (s->frame_size > buf_size) {
- av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
- err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
- } else if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
- /* check for crc mismatch */
- if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2],
- s->frame_size - 2)) {
- av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
- err = AAC_AC3_PARSE_ERROR_CRC;
- }
- }
- }
-
- /* if frame is ok, set audio parameters */
- if (!err) {
- avctx->sample_rate = s->sample_rate;
- avctx->bit_rate = s->bit_rate;
-
- /* channel config */
- s->out_channels = s->channels;
- s->output_mode = s->channel_mode;
- if (s->lfe_on)
- s->output_mode |= AC3_OUTPUT_LFEON;
- if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
- avctx->request_channels < s->channels) {
- s->out_channels = avctx->request_channels;
- s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
- s->channel_layout = avpriv_ac3_channel_layout_tab[s->output_mode];
- }
- avctx->channels = s->out_channels;
- avctx->channel_layout = s->channel_layout;
-
- s->loro_center_mix_level = gain_levels[s-> center_mix_level];
- s->loro_surround_mix_level = gain_levels[s->surround_mix_level];
- s->ltrt_center_mix_level = LEVEL_MINUS_3DB;
- s->ltrt_surround_mix_level = LEVEL_MINUS_3DB;
- /* set downmixing coefficients if needed */
- if (s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
- s->fbw_channels == s->out_channels)) {
- set_downmix_coeffs(s);
- }
- } else if (!s->out_channels) {
- s->out_channels = avctx->channels;
- if (s->out_channels < s->channels)
- s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
- }
- if (avctx->channels != s->out_channels) {
- av_log(avctx, AV_LOG_ERROR, "channel number mismatching on damaged frame\n");
- return AVERROR_INVALIDDATA;
- }
- /* set audio service type based on bitstream mode for AC-3 */
- avctx->audio_service_type = s->bitstream_mode;
- if (s->bitstream_mode == 0x7 && s->channels > 1)
- avctx->audio_service_type = AV_AUDIO_SERVICE_TYPE_KARAOKE;
-
- /* get output buffer */
- s->frame.nb_samples = s->num_blocks * 256;
- if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return ret;
- }
- out_samples_flt = (float *)s->frame.data[0];
- out_samples_s16 = (int16_t *)s->frame.data[0];
-
- /* decode the audio blocks */
- channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
- for (ch = 0; ch < s->out_channels; ch++)
- output[ch] = s->output[channel_map[ch]];
- for (blk = 0; blk < s->num_blocks; blk++) {
- if (!err && decode_audio_block(s, blk)) {
- av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
- err = 1;
- }
- if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
- s->fmt_conv.float_interleave(out_samples_flt, output, 256,
- s->out_channels);
- out_samples_flt += 256 * s->out_channels;
- } else {
- s->fmt_conv.float_to_int16_interleave(out_samples_s16, output, 256,
- s->out_channels);
- out_samples_s16 += 256 * s->out_channels;
- }
- }
-
- s->frame.decode_error_flags = err ? FF_DECODE_ERROR_INVALID_BITSTREAM : 0;
-
- *got_frame_ptr = 1;
- *(AVFrame *)data = s->frame;
-
- return FFMIN(buf_size, s->frame_size);
- }
-
- /**
- * Uninitialize the AC-3 decoder.
- */
- static av_cold int ac3_decode_end(AVCodecContext *avctx)
- {
- AC3DecodeContext *s = avctx->priv_data;
- ff_mdct_end(&s->imdct_512);
- ff_mdct_end(&s->imdct_256);
-
- return 0;
- }
-
- #define OFFSET(x) offsetof(AC3DecodeContext, x)
- #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
- static const AVOption options[] = {
- { "drc_scale", "percentage of dynamic range compression to apply", OFFSET(drc_scale), AV_OPT_TYPE_FLOAT, {1.0}, 0.0, 1.0, PAR },
-
- {"dmix_mode", "Preferred Stereo Downmix Mode", OFFSET(preferred_stereo_downmix), AV_OPT_TYPE_INT, {.dbl = -1 }, -1, 2, 0, "dmix_mode"},
- {"ltrt_cmixlev", "Lt/Rt Center Mix Level", OFFSET(ltrt_center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
- {"ltrt_surmixlev", "Lt/Rt Surround Mix Level", OFFSET(ltrt_surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
- {"loro_cmixlev", "Lo/Ro Center Mix Level", OFFSET(loro_center_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
- {"loro_surmixlev", "Lo/Ro Surround Mix Level", OFFSET(loro_surround_mix_level), AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
-
- { NULL},
- };
-
- static const AVClass ac3_decoder_class = {
- .class_name = "AC3 decoder",
- .item_name = av_default_item_name,
- .option = options,
- .version = LIBAVUTIL_VERSION_INT,
- };
-
- AVCodec ff_ac3_decoder = {
- .name = "ac3",
- .type = AVMEDIA_TYPE_AUDIO,
- .id = AV_CODEC_ID_AC3,
- .priv_data_size = sizeof (AC3DecodeContext),
- .init = ac3_decode_init,
- .close = ac3_decode_end,
- .decode = ac3_decode_frame,
- .capabilities = CODEC_CAP_DR1,
- .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
- .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
- AV_SAMPLE_FMT_S16,
- AV_SAMPLE_FMT_NONE },
- .priv_class = &ac3_decoder_class,
- };
-
- #if CONFIG_EAC3_DECODER
- static const AVClass eac3_decoder_class = {
- .class_name = "E-AC3 decoder",
- .item_name = av_default_item_name,
- .option = options,
- .version = LIBAVUTIL_VERSION_INT,
- };
-
- AVCodec ff_eac3_decoder = {
- .name = "eac3",
- .type = AVMEDIA_TYPE_AUDIO,
- .id = AV_CODEC_ID_EAC3,
- .priv_data_size = sizeof (AC3DecodeContext),
- .init = ac3_decode_init,
- .close = ac3_decode_end,
- .decode = ac3_decode_frame,
- .capabilities = CODEC_CAP_DR1,
- .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
- .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
- AV_SAMPLE_FMT_S16,
- AV_SAMPLE_FMT_NONE },
- .priv_class = &eac3_decoder_class,
- };
- #endif
|