You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1722 lines
64KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "sbrdsp.h"
  34. #include "libavutil/libm.h"
  35. #include "libavutil/avassert.h"
  36. #include <stdint.h>
  37. #include <float.h>
  38. #include <math.h>
  39. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  40. #define NOISE_FLOOR_OFFSET 6.0f
  41. /**
  42. * SBR VLC tables
  43. */
  44. enum {
  45. T_HUFFMAN_ENV_1_5DB,
  46. F_HUFFMAN_ENV_1_5DB,
  47. T_HUFFMAN_ENV_BAL_1_5DB,
  48. F_HUFFMAN_ENV_BAL_1_5DB,
  49. T_HUFFMAN_ENV_3_0DB,
  50. F_HUFFMAN_ENV_3_0DB,
  51. T_HUFFMAN_ENV_BAL_3_0DB,
  52. F_HUFFMAN_ENV_BAL_3_0DB,
  53. T_HUFFMAN_NOISE_3_0DB,
  54. T_HUFFMAN_NOISE_BAL_3_0DB,
  55. };
  56. /**
  57. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  58. */
  59. enum {
  60. FIXFIX,
  61. FIXVAR,
  62. VARFIX,
  63. VARVAR,
  64. };
  65. enum {
  66. EXTENSION_ID_PS = 2,
  67. };
  68. static VLC vlc_sbr[10];
  69. static const int8_t vlc_sbr_lav[10] =
  70. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  71. static const DECLARE_ALIGNED(16, float, zero64)[64];
  72. #define SBR_INIT_VLC_STATIC(num, size) \
  73. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  74. sbr_tmp[num].sbr_bits , 1, 1, \
  75. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  76. size)
  77. #define SBR_VLC_ROW(name) \
  78. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  79. av_cold void ff_aac_sbr_init(void)
  80. {
  81. int n;
  82. static const struct {
  83. const void *sbr_codes, *sbr_bits;
  84. const unsigned int table_size, elem_size;
  85. } sbr_tmp[] = {
  86. SBR_VLC_ROW(t_huffman_env_1_5dB),
  87. SBR_VLC_ROW(f_huffman_env_1_5dB),
  88. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  89. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  90. SBR_VLC_ROW(t_huffman_env_3_0dB),
  91. SBR_VLC_ROW(f_huffman_env_3_0dB),
  92. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  93. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  94. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  95. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  96. };
  97. // SBR VLC table initialization
  98. SBR_INIT_VLC_STATIC(0, 1098);
  99. SBR_INIT_VLC_STATIC(1, 1092);
  100. SBR_INIT_VLC_STATIC(2, 768);
  101. SBR_INIT_VLC_STATIC(3, 1026);
  102. SBR_INIT_VLC_STATIC(4, 1058);
  103. SBR_INIT_VLC_STATIC(5, 1052);
  104. SBR_INIT_VLC_STATIC(6, 544);
  105. SBR_INIT_VLC_STATIC(7, 544);
  106. SBR_INIT_VLC_STATIC(8, 592);
  107. SBR_INIT_VLC_STATIC(9, 512);
  108. for (n = 1; n < 320; n++)
  109. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  110. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  111. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  112. for (n = 0; n < 320; n++)
  113. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  114. ff_ps_init();
  115. }
  116. /** Places SBR in pure upsampling mode. */
  117. static void sbr_turnoff(SpectralBandReplication *sbr) {
  118. sbr->start = 0;
  119. // Init defults used in pure upsampling mode
  120. sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  121. sbr->m[1] = 0;
  122. // Reset values for first SBR header
  123. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  124. memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
  125. }
  126. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  127. {
  128. float mdct_scale;
  129. if(sbr->mdct.mdct_bits)
  130. return;
  131. sbr->kx[0] = sbr->kx[1];
  132. sbr_turnoff(sbr);
  133. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  134. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  135. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  136. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  137. * and scale back down at synthesis. */
  138. mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
  139. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale));
  140. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
  141. ff_ps_ctx_init(&sbr->ps);
  142. ff_sbrdsp_init(&sbr->dsp);
  143. }
  144. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  145. {
  146. ff_mdct_end(&sbr->mdct);
  147. ff_mdct_end(&sbr->mdct_ana);
  148. }
  149. static int qsort_comparison_function_int16(const void *a, const void *b)
  150. {
  151. return *(const int16_t *)a - *(const int16_t *)b;
  152. }
  153. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  154. {
  155. int i;
  156. for (i = 0; i <= last_el; i++)
  157. if (table[i] == needle)
  158. return 1;
  159. return 0;
  160. }
  161. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  162. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  163. {
  164. int k;
  165. if (sbr->bs_limiter_bands > 0) {
  166. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  167. 1.18509277094158210129f, //2^(0.49/2)
  168. 1.11987160404675912501f }; //2^(0.49/3)
  169. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  170. int16_t patch_borders[7];
  171. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  172. patch_borders[0] = sbr->kx[1];
  173. for (k = 1; k <= sbr->num_patches; k++)
  174. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  175. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  176. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  177. if (sbr->num_patches > 1)
  178. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  179. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  180. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  181. sizeof(sbr->f_tablelim[0]),
  182. qsort_comparison_function_int16);
  183. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  184. while (out < sbr->f_tablelim + sbr->n_lim) {
  185. if (*in >= *out * lim_bands_per_octave_warped) {
  186. *++out = *in++;
  187. } else if (*in == *out ||
  188. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  189. in++;
  190. sbr->n_lim--;
  191. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  192. *out = *in++;
  193. sbr->n_lim--;
  194. } else {
  195. *++out = *in++;
  196. }
  197. }
  198. } else {
  199. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  200. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  201. sbr->n_lim = 1;
  202. }
  203. }
  204. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  205. {
  206. unsigned int cnt = get_bits_count(gb);
  207. uint8_t bs_header_extra_1;
  208. uint8_t bs_header_extra_2;
  209. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  210. SpectrumParameters old_spectrum_params;
  211. sbr->start = 1;
  212. // Save last spectrum parameters variables to compare to new ones
  213. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  214. sbr->bs_amp_res_header = get_bits1(gb);
  215. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  216. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  217. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  218. skip_bits(gb, 2); // bs_reserved
  219. bs_header_extra_1 = get_bits1(gb);
  220. bs_header_extra_2 = get_bits1(gb);
  221. if (bs_header_extra_1) {
  222. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  223. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  224. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  225. } else {
  226. sbr->spectrum_params.bs_freq_scale = 2;
  227. sbr->spectrum_params.bs_alter_scale = 1;
  228. sbr->spectrum_params.bs_noise_bands = 2;
  229. }
  230. // Check if spectrum parameters changed
  231. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  232. sbr->reset = 1;
  233. if (bs_header_extra_2) {
  234. sbr->bs_limiter_bands = get_bits(gb, 2);
  235. sbr->bs_limiter_gains = get_bits(gb, 2);
  236. sbr->bs_interpol_freq = get_bits1(gb);
  237. sbr->bs_smoothing_mode = get_bits1(gb);
  238. } else {
  239. sbr->bs_limiter_bands = 2;
  240. sbr->bs_limiter_gains = 2;
  241. sbr->bs_interpol_freq = 1;
  242. sbr->bs_smoothing_mode = 1;
  243. }
  244. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  245. sbr_make_f_tablelim(sbr);
  246. return get_bits_count(gb) - cnt;
  247. }
  248. static int array_min_int16(const int16_t *array, int nel)
  249. {
  250. int i, min = array[0];
  251. for (i = 1; i < nel; i++)
  252. min = FFMIN(array[i], min);
  253. return min;
  254. }
  255. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  256. {
  257. int k, previous, present;
  258. float base, prod;
  259. base = powf((float)stop / start, 1.0f / num_bands);
  260. prod = start;
  261. previous = start;
  262. for (k = 0; k < num_bands-1; k++) {
  263. prod *= base;
  264. present = lrintf(prod);
  265. bands[k] = present - previous;
  266. previous = present;
  267. }
  268. bands[num_bands-1] = stop - previous;
  269. }
  270. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  271. {
  272. // Requirements (14496-3 sp04 p205)
  273. if (n_master <= 0) {
  274. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  275. return -1;
  276. }
  277. if (bs_xover_band >= n_master) {
  278. av_log(avctx, AV_LOG_ERROR,
  279. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  280. bs_xover_band);
  281. return -1;
  282. }
  283. return 0;
  284. }
  285. /// Master Frequency Band Table (14496-3 sp04 p194)
  286. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  287. SpectrumParameters *spectrum)
  288. {
  289. unsigned int temp, max_qmf_subbands;
  290. unsigned int start_min, stop_min;
  291. int k;
  292. const int8_t *sbr_offset_ptr;
  293. int16_t stop_dk[13];
  294. if (sbr->sample_rate < 32000) {
  295. temp = 3000;
  296. } else if (sbr->sample_rate < 64000) {
  297. temp = 4000;
  298. } else
  299. temp = 5000;
  300. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  301. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  302. switch (sbr->sample_rate) {
  303. case 16000:
  304. sbr_offset_ptr = sbr_offset[0];
  305. break;
  306. case 22050:
  307. sbr_offset_ptr = sbr_offset[1];
  308. break;
  309. case 24000:
  310. sbr_offset_ptr = sbr_offset[2];
  311. break;
  312. case 32000:
  313. sbr_offset_ptr = sbr_offset[3];
  314. break;
  315. case 44100: case 48000: case 64000:
  316. sbr_offset_ptr = sbr_offset[4];
  317. break;
  318. case 88200: case 96000: case 128000: case 176400: case 192000:
  319. sbr_offset_ptr = sbr_offset[5];
  320. break;
  321. default:
  322. av_log(ac->avctx, AV_LOG_ERROR,
  323. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  324. return -1;
  325. }
  326. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  327. if (spectrum->bs_stop_freq < 14) {
  328. sbr->k[2] = stop_min;
  329. make_bands(stop_dk, stop_min, 64, 13);
  330. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  331. for (k = 0; k < spectrum->bs_stop_freq; k++)
  332. sbr->k[2] += stop_dk[k];
  333. } else if (spectrum->bs_stop_freq == 14) {
  334. sbr->k[2] = 2*sbr->k[0];
  335. } else if (spectrum->bs_stop_freq == 15) {
  336. sbr->k[2] = 3*sbr->k[0];
  337. } else {
  338. av_log(ac->avctx, AV_LOG_ERROR,
  339. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  340. return -1;
  341. }
  342. sbr->k[2] = FFMIN(64, sbr->k[2]);
  343. // Requirements (14496-3 sp04 p205)
  344. if (sbr->sample_rate <= 32000) {
  345. max_qmf_subbands = 48;
  346. } else if (sbr->sample_rate == 44100) {
  347. max_qmf_subbands = 35;
  348. } else if (sbr->sample_rate >= 48000)
  349. max_qmf_subbands = 32;
  350. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  351. av_log(ac->avctx, AV_LOG_ERROR,
  352. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  353. return -1;
  354. }
  355. if (!spectrum->bs_freq_scale) {
  356. int dk, k2diff;
  357. dk = spectrum->bs_alter_scale + 1;
  358. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  359. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  360. return -1;
  361. for (k = 1; k <= sbr->n_master; k++)
  362. sbr->f_master[k] = dk;
  363. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  364. if (k2diff < 0) {
  365. sbr->f_master[1]--;
  366. sbr->f_master[2]-= (k2diff < -1);
  367. } else if (k2diff) {
  368. sbr->f_master[sbr->n_master]++;
  369. }
  370. sbr->f_master[0] = sbr->k[0];
  371. for (k = 1; k <= sbr->n_master; k++)
  372. sbr->f_master[k] += sbr->f_master[k - 1];
  373. } else {
  374. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  375. int two_regions, num_bands_0;
  376. int vdk0_max, vdk1_min;
  377. int16_t vk0[49];
  378. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  379. two_regions = 1;
  380. sbr->k[1] = 2 * sbr->k[0];
  381. } else {
  382. two_regions = 0;
  383. sbr->k[1] = sbr->k[2];
  384. }
  385. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  386. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  387. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  388. return -1;
  389. }
  390. vk0[0] = 0;
  391. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  392. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  393. vdk0_max = vk0[num_bands_0];
  394. vk0[0] = sbr->k[0];
  395. for (k = 1; k <= num_bands_0; k++) {
  396. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  397. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  398. return -1;
  399. }
  400. vk0[k] += vk0[k-1];
  401. }
  402. if (two_regions) {
  403. int16_t vk1[49];
  404. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  405. : 1.0f; // bs_alter_scale = {0,1}
  406. int num_bands_1 = lrintf(half_bands * invwarp *
  407. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  408. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  409. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  410. if (vdk1_min < vdk0_max) {
  411. int change;
  412. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  413. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  414. vk1[1] += change;
  415. vk1[num_bands_1] -= change;
  416. }
  417. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  418. vk1[0] = sbr->k[1];
  419. for (k = 1; k <= num_bands_1; k++) {
  420. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  421. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  422. return -1;
  423. }
  424. vk1[k] += vk1[k-1];
  425. }
  426. sbr->n_master = num_bands_0 + num_bands_1;
  427. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  428. return -1;
  429. memcpy(&sbr->f_master[0], vk0,
  430. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  431. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  432. num_bands_1 * sizeof(sbr->f_master[0]));
  433. } else {
  434. sbr->n_master = num_bands_0;
  435. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  436. return -1;
  437. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  438. }
  439. }
  440. return 0;
  441. }
  442. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  443. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  444. {
  445. int i, k, sb = 0;
  446. int msb = sbr->k[0];
  447. int usb = sbr->kx[1];
  448. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  449. sbr->num_patches = 0;
  450. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  451. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  452. } else
  453. k = sbr->n_master;
  454. do {
  455. int odd = 0;
  456. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  457. sb = sbr->f_master[i];
  458. odd = (sb + sbr->k[0]) & 1;
  459. }
  460. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  461. // After this check the final number of patches can still be six which is
  462. // illegal however the Coding Technologies decoder check stream has a final
  463. // count of 6 patches
  464. if (sbr->num_patches > 5) {
  465. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  466. return -1;
  467. }
  468. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  469. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  470. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  471. usb = sb;
  472. msb = sb;
  473. sbr->num_patches++;
  474. } else
  475. msb = sbr->kx[1];
  476. if (sbr->f_master[k] - sb < 3)
  477. k = sbr->n_master;
  478. } while (sb != sbr->kx[1] + sbr->m[1]);
  479. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  480. sbr->num_patches--;
  481. return 0;
  482. }
  483. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  484. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  485. {
  486. int k, temp;
  487. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  488. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  489. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  490. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  491. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  492. sbr->kx[1] = sbr->f_tablehigh[0];
  493. // Requirements (14496-3 sp04 p205)
  494. if (sbr->kx[1] + sbr->m[1] > 64) {
  495. av_log(ac->avctx, AV_LOG_ERROR,
  496. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  497. return -1;
  498. }
  499. if (sbr->kx[1] > 32) {
  500. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  501. return -1;
  502. }
  503. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  504. temp = sbr->n[1] & 1;
  505. for (k = 1; k <= sbr->n[0]; k++)
  506. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  507. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  508. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  509. if (sbr->n_q > 5) {
  510. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  511. return -1;
  512. }
  513. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  514. temp = 0;
  515. for (k = 1; k <= sbr->n_q; k++) {
  516. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  517. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  518. }
  519. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  520. return -1;
  521. sbr_make_f_tablelim(sbr);
  522. sbr->data[0].f_indexnoise = 0;
  523. sbr->data[1].f_indexnoise = 0;
  524. return 0;
  525. }
  526. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  527. int elements)
  528. {
  529. int i;
  530. for (i = 0; i < elements; i++) {
  531. vec[i] = get_bits1(gb);
  532. }
  533. }
  534. /** ceil(log2(index+1)) */
  535. static const int8_t ceil_log2[] = {
  536. 0, 1, 2, 2, 3, 3,
  537. };
  538. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  539. GetBitContext *gb, SBRData *ch_data)
  540. {
  541. int i;
  542. unsigned bs_pointer = 0;
  543. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  544. int abs_bord_trail = 16;
  545. int num_rel_lead, num_rel_trail;
  546. unsigned bs_num_env_old = ch_data->bs_num_env;
  547. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  548. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  549. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  550. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  551. case FIXFIX:
  552. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  553. num_rel_lead = ch_data->bs_num_env - 1;
  554. if (ch_data->bs_num_env == 1)
  555. ch_data->bs_amp_res = 0;
  556. if (ch_data->bs_num_env > 4) {
  557. av_log(ac->avctx, AV_LOG_ERROR,
  558. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  559. ch_data->bs_num_env);
  560. return -1;
  561. }
  562. ch_data->t_env[0] = 0;
  563. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  564. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  565. ch_data->bs_num_env;
  566. for (i = 0; i < num_rel_lead; i++)
  567. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  568. ch_data->bs_freq_res[1] = get_bits1(gb);
  569. for (i = 1; i < ch_data->bs_num_env; i++)
  570. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  571. break;
  572. case FIXVAR:
  573. abs_bord_trail += get_bits(gb, 2);
  574. num_rel_trail = get_bits(gb, 2);
  575. ch_data->bs_num_env = num_rel_trail + 1;
  576. ch_data->t_env[0] = 0;
  577. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  578. for (i = 0; i < num_rel_trail; i++)
  579. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  580. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  581. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  582. for (i = 0; i < ch_data->bs_num_env; i++)
  583. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  584. break;
  585. case VARFIX:
  586. ch_data->t_env[0] = get_bits(gb, 2);
  587. num_rel_lead = get_bits(gb, 2);
  588. ch_data->bs_num_env = num_rel_lead + 1;
  589. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  590. for (i = 0; i < num_rel_lead; i++)
  591. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  592. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  593. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  594. break;
  595. case VARVAR:
  596. ch_data->t_env[0] = get_bits(gb, 2);
  597. abs_bord_trail += get_bits(gb, 2);
  598. num_rel_lead = get_bits(gb, 2);
  599. num_rel_trail = get_bits(gb, 2);
  600. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  601. if (ch_data->bs_num_env > 5) {
  602. av_log(ac->avctx, AV_LOG_ERROR,
  603. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  604. ch_data->bs_num_env);
  605. return -1;
  606. }
  607. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  608. for (i = 0; i < num_rel_lead; i++)
  609. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  610. for (i = 0; i < num_rel_trail; i++)
  611. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  612. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  613. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  614. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  615. break;
  616. }
  617. if (bs_pointer > ch_data->bs_num_env + 1) {
  618. av_log(ac->avctx, AV_LOG_ERROR,
  619. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  620. bs_pointer);
  621. return -1;
  622. }
  623. for (i = 1; i <= ch_data->bs_num_env; i++) {
  624. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  625. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  626. return -1;
  627. }
  628. }
  629. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  630. ch_data->t_q[0] = ch_data->t_env[0];
  631. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  632. if (ch_data->bs_num_noise > 1) {
  633. unsigned int idx;
  634. if (ch_data->bs_frame_class == FIXFIX) {
  635. idx = ch_data->bs_num_env >> 1;
  636. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  637. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  638. } else { // VARFIX
  639. if (!bs_pointer)
  640. idx = 1;
  641. else if (bs_pointer == 1)
  642. idx = ch_data->bs_num_env - 1;
  643. else // bs_pointer > 1
  644. idx = bs_pointer - 1;
  645. }
  646. ch_data->t_q[1] = ch_data->t_env[idx];
  647. }
  648. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  649. ch_data->e_a[1] = -1;
  650. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  651. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  652. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  653. ch_data->e_a[1] = bs_pointer - 1;
  654. return 0;
  655. }
  656. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  657. //These variables are saved from the previous frame rather than copied
  658. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  659. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  660. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  661. //These variables are read from the bitstream and therefore copied
  662. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  663. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  664. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  665. dst->bs_num_env = src->bs_num_env;
  666. dst->bs_amp_res = src->bs_amp_res;
  667. dst->bs_num_noise = src->bs_num_noise;
  668. dst->bs_frame_class = src->bs_frame_class;
  669. dst->e_a[1] = src->e_a[1];
  670. }
  671. /// Read how the envelope and noise floor data is delta coded
  672. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  673. SBRData *ch_data)
  674. {
  675. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  676. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  677. }
  678. /// Read inverse filtering data
  679. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  680. SBRData *ch_data)
  681. {
  682. int i;
  683. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  684. for (i = 0; i < sbr->n_q; i++)
  685. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  686. }
  687. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  688. SBRData *ch_data, int ch)
  689. {
  690. int bits;
  691. int i, j, k;
  692. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  693. int t_lav, f_lav;
  694. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  695. const int odd = sbr->n[1] & 1;
  696. if (sbr->bs_coupling && ch) {
  697. if (ch_data->bs_amp_res) {
  698. bits = 5;
  699. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  700. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  701. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  702. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  703. } else {
  704. bits = 6;
  705. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  706. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  707. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  708. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  709. }
  710. } else {
  711. if (ch_data->bs_amp_res) {
  712. bits = 6;
  713. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  714. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  715. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  716. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  717. } else {
  718. bits = 7;
  719. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  720. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  721. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  722. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  723. }
  724. }
  725. for (i = 0; i < ch_data->bs_num_env; i++) {
  726. if (ch_data->bs_df_env[i]) {
  727. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  728. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  729. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  730. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  731. } else if (ch_data->bs_freq_res[i + 1]) {
  732. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  733. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  734. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  735. }
  736. } else {
  737. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  738. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  739. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  740. }
  741. }
  742. } else {
  743. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  744. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  745. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  746. }
  747. }
  748. //assign 0th elements of env_facs from last elements
  749. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  750. sizeof(ch_data->env_facs[0]));
  751. }
  752. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  753. SBRData *ch_data, int ch)
  754. {
  755. int i, j;
  756. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  757. int t_lav, f_lav;
  758. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  759. if (sbr->bs_coupling && ch) {
  760. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  761. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  762. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  763. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  764. } else {
  765. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  766. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  767. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  768. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  769. }
  770. for (i = 0; i < ch_data->bs_num_noise; i++) {
  771. if (ch_data->bs_df_noise[i]) {
  772. for (j = 0; j < sbr->n_q; j++)
  773. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  774. } else {
  775. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  776. for (j = 1; j < sbr->n_q; j++)
  777. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  778. }
  779. }
  780. //assign 0th elements of noise_facs from last elements
  781. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  782. sizeof(ch_data->noise_facs[0]));
  783. }
  784. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  785. GetBitContext *gb,
  786. int bs_extension_id, int *num_bits_left)
  787. {
  788. switch (bs_extension_id) {
  789. case EXTENSION_ID_PS:
  790. if (!ac->oc[1].m4ac.ps) {
  791. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  792. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  793. *num_bits_left = 0;
  794. } else {
  795. #if 1
  796. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  797. #else
  798. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  799. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  800. *num_bits_left = 0;
  801. #endif
  802. }
  803. break;
  804. default:
  805. // some files contain 0-padding
  806. if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
  807. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  808. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  809. *num_bits_left = 0;
  810. break;
  811. }
  812. }
  813. static int read_sbr_single_channel_element(AACContext *ac,
  814. SpectralBandReplication *sbr,
  815. GetBitContext *gb)
  816. {
  817. if (get_bits1(gb)) // bs_data_extra
  818. skip_bits(gb, 4); // bs_reserved
  819. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  820. return -1;
  821. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  822. read_sbr_invf(sbr, gb, &sbr->data[0]);
  823. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  824. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  825. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  826. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  827. return 0;
  828. }
  829. static int read_sbr_channel_pair_element(AACContext *ac,
  830. SpectralBandReplication *sbr,
  831. GetBitContext *gb)
  832. {
  833. if (get_bits1(gb)) // bs_data_extra
  834. skip_bits(gb, 8); // bs_reserved
  835. if ((sbr->bs_coupling = get_bits1(gb))) {
  836. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  837. return -1;
  838. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  839. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  840. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  841. read_sbr_invf(sbr, gb, &sbr->data[0]);
  842. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  843. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  844. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  845. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  846. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  847. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  848. } else {
  849. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  850. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  851. return -1;
  852. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  853. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  854. read_sbr_invf(sbr, gb, &sbr->data[0]);
  855. read_sbr_invf(sbr, gb, &sbr->data[1]);
  856. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  857. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  858. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  859. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  860. }
  861. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  862. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  863. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  864. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  865. return 0;
  866. }
  867. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  868. GetBitContext *gb, int id_aac)
  869. {
  870. unsigned int cnt = get_bits_count(gb);
  871. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  872. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  873. sbr_turnoff(sbr);
  874. return get_bits_count(gb) - cnt;
  875. }
  876. } else if (id_aac == TYPE_CPE) {
  877. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  878. sbr_turnoff(sbr);
  879. return get_bits_count(gb) - cnt;
  880. }
  881. } else {
  882. av_log(ac->avctx, AV_LOG_ERROR,
  883. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  884. sbr_turnoff(sbr);
  885. return get_bits_count(gb) - cnt;
  886. }
  887. if (get_bits1(gb)) { // bs_extended_data
  888. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  889. if (num_bits_left == 15)
  890. num_bits_left += get_bits(gb, 8); // bs_esc_count
  891. num_bits_left <<= 3;
  892. while (num_bits_left > 7) {
  893. num_bits_left -= 2;
  894. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  895. }
  896. if (num_bits_left < 0) {
  897. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  898. }
  899. if (num_bits_left > 0)
  900. skip_bits(gb, num_bits_left);
  901. }
  902. return get_bits_count(gb) - cnt;
  903. }
  904. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  905. {
  906. int err;
  907. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  908. if (err >= 0)
  909. err = sbr_make_f_derived(ac, sbr);
  910. if (err < 0) {
  911. av_log(ac->avctx, AV_LOG_ERROR,
  912. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  913. sbr_turnoff(sbr);
  914. }
  915. }
  916. /**
  917. * Decode Spectral Band Replication extension data; reference: table 4.55.
  918. *
  919. * @param crc flag indicating the presence of CRC checksum
  920. * @param cnt length of TYPE_FIL syntactic element in bytes
  921. *
  922. * @return Returns number of bytes consumed from the TYPE_FIL element.
  923. */
  924. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  925. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  926. {
  927. unsigned int num_sbr_bits = 0, num_align_bits;
  928. unsigned bytes_read;
  929. GetBitContext gbc = *gb_host, *gb = &gbc;
  930. skip_bits_long(gb_host, cnt*8 - 4);
  931. sbr->reset = 0;
  932. if (!sbr->sample_rate)
  933. sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  934. if (!ac->oc[1].m4ac.ext_sample_rate)
  935. ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
  936. if (crc) {
  937. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  938. num_sbr_bits += 10;
  939. }
  940. //Save some state from the previous frame.
  941. sbr->kx[0] = sbr->kx[1];
  942. sbr->m[0] = sbr->m[1];
  943. sbr->kx_and_m_pushed = 1;
  944. num_sbr_bits++;
  945. if (get_bits1(gb)) // bs_header_flag
  946. num_sbr_bits += read_sbr_header(sbr, gb);
  947. if (sbr->reset)
  948. sbr_reset(ac, sbr);
  949. if (sbr->start)
  950. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  951. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  952. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  953. if (bytes_read > cnt) {
  954. av_log(ac->avctx, AV_LOG_ERROR,
  955. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  956. }
  957. return cnt;
  958. }
  959. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  960. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  961. {
  962. int k, e;
  963. int ch;
  964. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  965. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  966. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  967. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  968. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  969. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  970. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  971. float fac = temp1 / (1.0f + temp2);
  972. sbr->data[0].env_facs[e][k] = fac;
  973. sbr->data[1].env_facs[e][k] = fac * temp2;
  974. }
  975. }
  976. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  977. for (k = 0; k < sbr->n_q; k++) {
  978. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  979. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  980. float fac = temp1 / (1.0f + temp2);
  981. sbr->data[0].noise_facs[e][k] = fac;
  982. sbr->data[1].noise_facs[e][k] = fac * temp2;
  983. }
  984. }
  985. } else { // SCE or one non-coupled CPE
  986. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  987. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  988. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  989. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  990. sbr->data[ch].env_facs[e][k] =
  991. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  992. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  993. for (k = 0; k < sbr->n_q; k++)
  994. sbr->data[ch].noise_facs[e][k] =
  995. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  996. }
  997. }
  998. }
  999. /**
  1000. * Analysis QMF Bank (14496-3 sp04 p206)
  1001. *
  1002. * @param x pointer to the beginning of the first sample window
  1003. * @param W array of complex-valued samples split into subbands
  1004. */
  1005. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct,
  1006. SBRDSPContext *sbrdsp, const float *in, float *x,
  1007. float z[320], float W[2][32][32][2])
  1008. {
  1009. int i;
  1010. memcpy(W[0], W[1], sizeof(W[0]));
  1011. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  1012. memcpy(x+288, in, 1024*sizeof(x[0]));
  1013. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  1014. // are not supported
  1015. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1016. sbrdsp->sum64x5(z);
  1017. sbrdsp->qmf_pre_shuffle(z);
  1018. mdct->imdct_half(mdct, z, z+64);
  1019. sbrdsp->qmf_post_shuffle(W[1][i], z);
  1020. x += 32;
  1021. }
  1022. }
  1023. /**
  1024. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1025. * (14496-3 sp04 p206)
  1026. */
  1027. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1028. SBRDSPContext *sbrdsp,
  1029. float *out, float X[2][38][64],
  1030. float mdct_buf[2][64],
  1031. float *v0, int *v_off, const unsigned int div)
  1032. {
  1033. int i, n;
  1034. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1035. const int step = 128 >> div;
  1036. float *v;
  1037. for (i = 0; i < 32; i++) {
  1038. if (*v_off < step) {
  1039. int saved_samples = (1280 - 128) >> div;
  1040. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1041. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
  1042. } else {
  1043. *v_off -= step;
  1044. }
  1045. v = v0 + *v_off;
  1046. if (div) {
  1047. for (n = 0; n < 32; n++) {
  1048. X[0][i][ n] = -X[0][i][n];
  1049. X[0][i][32+n] = X[1][i][31-n];
  1050. }
  1051. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1052. sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
  1053. } else {
  1054. sbrdsp->neg_odd_64(X[1][i]);
  1055. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1056. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1057. sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
  1058. }
  1059. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1060. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1061. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1062. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1063. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1064. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1065. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1066. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1067. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1068. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1069. out += 64 >> div;
  1070. }
  1071. }
  1072. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1073. * (14496-3 sp04 p214)
  1074. * Warning: This routine does not seem numerically stable.
  1075. */
  1076. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  1077. float (*alpha0)[2], float (*alpha1)[2],
  1078. const float X_low[32][40][2], int k0)
  1079. {
  1080. int k;
  1081. for (k = 0; k < k0; k++) {
  1082. LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
  1083. float dk;
  1084. dsp->autocorrelate(X_low[k], phi);
  1085. dk = phi[2][1][0] * phi[1][0][0] -
  1086. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1087. if (!dk) {
  1088. alpha1[k][0] = 0;
  1089. alpha1[k][1] = 0;
  1090. } else {
  1091. float temp_real, temp_im;
  1092. temp_real = phi[0][0][0] * phi[1][1][0] -
  1093. phi[0][0][1] * phi[1][1][1] -
  1094. phi[0][1][0] * phi[1][0][0];
  1095. temp_im = phi[0][0][0] * phi[1][1][1] +
  1096. phi[0][0][1] * phi[1][1][0] -
  1097. phi[0][1][1] * phi[1][0][0];
  1098. alpha1[k][0] = temp_real / dk;
  1099. alpha1[k][1] = temp_im / dk;
  1100. }
  1101. if (!phi[1][0][0]) {
  1102. alpha0[k][0] = 0;
  1103. alpha0[k][1] = 0;
  1104. } else {
  1105. float temp_real, temp_im;
  1106. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1107. alpha1[k][1] * phi[1][1][1];
  1108. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1109. alpha1[k][0] * phi[1][1][1];
  1110. alpha0[k][0] = -temp_real / phi[1][0][0];
  1111. alpha0[k][1] = -temp_im / phi[1][0][0];
  1112. }
  1113. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1114. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1115. alpha1[k][0] = 0;
  1116. alpha1[k][1] = 0;
  1117. alpha0[k][0] = 0;
  1118. alpha0[k][1] = 0;
  1119. }
  1120. }
  1121. }
  1122. /// Chirp Factors (14496-3 sp04 p214)
  1123. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1124. {
  1125. int i;
  1126. float new_bw;
  1127. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1128. for (i = 0; i < sbr->n_q; i++) {
  1129. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1130. new_bw = 0.6f;
  1131. } else
  1132. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1133. if (new_bw < ch_data->bw_array[i]) {
  1134. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1135. } else
  1136. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1137. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1138. }
  1139. }
  1140. /// Generate the subband filtered lowband
  1141. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1142. float X_low[32][40][2], const float W[2][32][32][2])
  1143. {
  1144. int i, k;
  1145. const int t_HFGen = 8;
  1146. const int i_f = 32;
  1147. memset(X_low, 0, 32*sizeof(*X_low));
  1148. for (k = 0; k < sbr->kx[1]; k++) {
  1149. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1150. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1151. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1152. }
  1153. }
  1154. for (k = 0; k < sbr->kx[0]; k++) {
  1155. for (i = 0; i < t_HFGen; i++) {
  1156. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1157. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1158. }
  1159. }
  1160. return 0;
  1161. }
  1162. /// High Frequency Generator (14496-3 sp04 p215)
  1163. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1164. float X_high[64][40][2], const float X_low[32][40][2],
  1165. const float (*alpha0)[2], const float (*alpha1)[2],
  1166. const float bw_array[5], const uint8_t *t_env,
  1167. int bs_num_env)
  1168. {
  1169. int j, x;
  1170. int g = 0;
  1171. int k = sbr->kx[1];
  1172. for (j = 0; j < sbr->num_patches; j++) {
  1173. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1174. const int p = sbr->patch_start_subband[j] + x;
  1175. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1176. g++;
  1177. g--;
  1178. if (g < 0) {
  1179. av_log(ac->avctx, AV_LOG_ERROR,
  1180. "ERROR : no subband found for frequency %d\n", k);
  1181. return -1;
  1182. }
  1183. sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
  1184. X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
  1185. alpha0[p], alpha1[p], bw_array[g],
  1186. 2 * t_env[0], 2 * t_env[bs_num_env]);
  1187. }
  1188. }
  1189. if (k < sbr->m[1] + sbr->kx[1])
  1190. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1191. return 0;
  1192. }
  1193. /// Generate the subband filtered lowband
  1194. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1195. const float Y0[38][64][2], const float Y1[38][64][2],
  1196. const float X_low[32][40][2], int ch)
  1197. {
  1198. int k, i;
  1199. const int i_f = 32;
  1200. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1201. memset(X, 0, 2*sizeof(*X));
  1202. for (k = 0; k < sbr->kx[0]; k++) {
  1203. for (i = 0; i < i_Temp; i++) {
  1204. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1205. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1206. }
  1207. }
  1208. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1209. for (i = 0; i < i_Temp; i++) {
  1210. X[0][i][k] = Y0[i + i_f][k][0];
  1211. X[1][i][k] = Y0[i + i_f][k][1];
  1212. }
  1213. }
  1214. for (k = 0; k < sbr->kx[1]; k++) {
  1215. for (i = i_Temp; i < 38; i++) {
  1216. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1217. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1218. }
  1219. }
  1220. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1221. for (i = i_Temp; i < i_f; i++) {
  1222. X[0][i][k] = Y1[i][k][0];
  1223. X[1][i][k] = Y1[i][k][1];
  1224. }
  1225. }
  1226. return 0;
  1227. }
  1228. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1229. * (14496-3 sp04 p217)
  1230. */
  1231. static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1232. SBRData *ch_data, int e_a[2])
  1233. {
  1234. int e, i, m;
  1235. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1236. for (e = 0; e < ch_data->bs_num_env; e++) {
  1237. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1238. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1239. int k;
  1240. if (sbr->kx[1] != table[0]) {
  1241. av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
  1242. "Derived frequency tables were not regenerated.\n");
  1243. sbr_turnoff(sbr);
  1244. return AVERROR_BUG;
  1245. }
  1246. for (i = 0; i < ilim; i++)
  1247. for (m = table[i]; m < table[i + 1]; m++)
  1248. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1249. // ch_data->bs_num_noise > 1 => 2 noise floors
  1250. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1251. for (i = 0; i < sbr->n_q; i++)
  1252. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1253. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1254. for (i = 0; i < sbr->n[1]; i++) {
  1255. if (ch_data->bs_add_harmonic_flag) {
  1256. const unsigned int m_midpoint =
  1257. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1258. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1259. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1260. }
  1261. }
  1262. for (i = 0; i < ilim; i++) {
  1263. int additional_sinusoid_present = 0;
  1264. for (m = table[i]; m < table[i + 1]; m++) {
  1265. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1266. additional_sinusoid_present = 1;
  1267. break;
  1268. }
  1269. }
  1270. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1271. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1272. }
  1273. }
  1274. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1275. return 0;
  1276. }
  1277. /// Estimation of current envelope (14496-3 sp04 p218)
  1278. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1279. SpectralBandReplication *sbr, SBRData *ch_data)
  1280. {
  1281. int e, m;
  1282. int kx1 = sbr->kx[1];
  1283. if (sbr->bs_interpol_freq) {
  1284. for (e = 0; e < ch_data->bs_num_env; e++) {
  1285. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1286. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1287. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1288. for (m = 0; m < sbr->m[1]; m++) {
  1289. float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
  1290. e_curr[e][m] = sum * recip_env_size;
  1291. }
  1292. }
  1293. } else {
  1294. int k, p;
  1295. for (e = 0; e < ch_data->bs_num_env; e++) {
  1296. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1297. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1298. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1299. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1300. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1301. float sum = 0.0f;
  1302. const int den = env_size * (table[p + 1] - table[p]);
  1303. for (k = table[p]; k < table[p + 1]; k++) {
  1304. sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
  1305. }
  1306. sum /= den;
  1307. for (k = table[p]; k < table[p + 1]; k++) {
  1308. e_curr[e][k - kx1] = sum;
  1309. }
  1310. }
  1311. }
  1312. }
  1313. }
  1314. /**
  1315. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1316. * and Calculation of gain (14496-3 sp04 p219)
  1317. */
  1318. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1319. SBRData *ch_data, const int e_a[2])
  1320. {
  1321. int e, k, m;
  1322. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1323. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1324. for (e = 0; e < ch_data->bs_num_env; e++) {
  1325. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1326. for (k = 0; k < sbr->n_lim; k++) {
  1327. float gain_boost, gain_max;
  1328. float sum[2] = { 0.0f, 0.0f };
  1329. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1330. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1331. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1332. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1333. if (!sbr->s_mapped[e][m]) {
  1334. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1335. ((1.0f + sbr->e_curr[e][m]) *
  1336. (1.0f + sbr->q_mapped[e][m] * delta)));
  1337. } else {
  1338. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1339. ((1.0f + sbr->e_curr[e][m]) *
  1340. (1.0f + sbr->q_mapped[e][m])));
  1341. }
  1342. }
  1343. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1344. sum[0] += sbr->e_origmapped[e][m];
  1345. sum[1] += sbr->e_curr[e][m];
  1346. }
  1347. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1348. gain_max = FFMIN(100000.f, gain_max);
  1349. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1350. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1351. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1352. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1353. }
  1354. sum[0] = sum[1] = 0.0f;
  1355. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1356. sum[0] += sbr->e_origmapped[e][m];
  1357. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1358. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1359. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1360. }
  1361. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1362. gain_boost = FFMIN(1.584893192f, gain_boost);
  1363. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1364. sbr->gain[e][m] *= gain_boost;
  1365. sbr->q_m[e][m] *= gain_boost;
  1366. sbr->s_m[e][m] *= gain_boost;
  1367. }
  1368. }
  1369. }
  1370. }
  1371. /// Assembling HF Signals (14496-3 sp04 p220)
  1372. static void sbr_hf_assemble(float Y1[38][64][2],
  1373. const float X_high[64][40][2],
  1374. SpectralBandReplication *sbr, SBRData *ch_data,
  1375. const int e_a[2])
  1376. {
  1377. int e, i, j, m;
  1378. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1379. const int kx = sbr->kx[1];
  1380. const int m_max = sbr->m[1];
  1381. static const float h_smooth[5] = {
  1382. 0.33333333333333,
  1383. 0.30150283239582,
  1384. 0.21816949906249,
  1385. 0.11516383427084,
  1386. 0.03183050093751,
  1387. };
  1388. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1389. int indexnoise = ch_data->f_indexnoise;
  1390. int indexsine = ch_data->f_indexsine;
  1391. if (sbr->reset) {
  1392. for (i = 0; i < h_SL; i++) {
  1393. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1394. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1395. }
  1396. } else if (h_SL) {
  1397. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1398. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1399. }
  1400. for (e = 0; e < ch_data->bs_num_env; e++) {
  1401. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1402. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1403. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1404. }
  1405. }
  1406. for (e = 0; e < ch_data->bs_num_env; e++) {
  1407. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1408. LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
  1409. LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
  1410. float *g_filt, *q_filt;
  1411. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1412. g_filt = g_filt_tab;
  1413. q_filt = q_filt_tab;
  1414. for (m = 0; m < m_max; m++) {
  1415. const int idx1 = i + h_SL;
  1416. g_filt[m] = 0.0f;
  1417. q_filt[m] = 0.0f;
  1418. for (j = 0; j <= h_SL; j++) {
  1419. g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
  1420. q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
  1421. }
  1422. }
  1423. } else {
  1424. g_filt = g_temp[i + h_SL];
  1425. q_filt = q_temp[i];
  1426. }
  1427. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  1428. i + ENVELOPE_ADJUSTMENT_OFFSET);
  1429. if (e != e_a[0] && e != e_a[1]) {
  1430. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  1431. q_filt, indexnoise,
  1432. kx, m_max);
  1433. } else {
  1434. int idx = indexsine&1;
  1435. int A = (1-((indexsine+(kx & 1))&2));
  1436. int B = (A^(-idx)) + idx;
  1437. float *out = &Y1[i][kx][idx];
  1438. float *in = sbr->s_m[e];
  1439. for (m = 0; m+1 < m_max; m+=2) {
  1440. out[2*m ] += in[m ] * A;
  1441. out[2*m+2] += in[m+1] * B;
  1442. }
  1443. if(m_max&1)
  1444. out[2*m ] += in[m ] * A;
  1445. }
  1446. indexnoise = (indexnoise + m_max) & 0x1ff;
  1447. indexsine = (indexsine + 1) & 3;
  1448. }
  1449. }
  1450. ch_data->f_indexnoise = indexnoise;
  1451. ch_data->f_indexsine = indexsine;
  1452. }
  1453. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1454. float* L, float* R)
  1455. {
  1456. int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
  1457. int ch;
  1458. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1459. int err;
  1460. if (!sbr->kx_and_m_pushed) {
  1461. sbr->kx[0] = sbr->kx[1];
  1462. sbr->m[0] = sbr->m[1];
  1463. } else {
  1464. sbr->kx_and_m_pushed = 0;
  1465. }
  1466. if (sbr->start) {
  1467. sbr_dequant(sbr, id_aac);
  1468. }
  1469. for (ch = 0; ch < nch; ch++) {
  1470. /* decode channel */
  1471. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1472. (float*)sbr->qmf_filter_scratch,
  1473. sbr->data[ch].W);
  1474. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1475. sbr->data[ch].Ypos ^= 1;
  1476. if (sbr->start) {
  1477. sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1478. sbr_chirp(sbr, &sbr->data[ch]);
  1479. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1480. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1481. sbr->data[ch].bs_num_env);
  1482. // hf_adj
  1483. err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1484. if (!err) {
  1485. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1486. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1487. sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
  1488. sbr->X_high, sbr, &sbr->data[ch],
  1489. sbr->data[ch].e_a);
  1490. }
  1491. }
  1492. /* synthesis */
  1493. sbr_x_gen(sbr, sbr->X[ch],
  1494. sbr->data[ch].Y[1-sbr->data[ch].Ypos],
  1495. sbr->data[ch].Y[ sbr->data[ch].Ypos],
  1496. sbr->X_low, ch);
  1497. }
  1498. if (ac->oc[1].m4ac.ps == 1) {
  1499. if (sbr->ps.start) {
  1500. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1501. } else {
  1502. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1503. }
  1504. nch = 2;
  1505. }
  1506. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, L, sbr->X[0], sbr->qmf_filter_scratch,
  1507. sbr->data[0].synthesis_filterbank_samples,
  1508. &sbr->data[0].synthesis_filterbank_samples_offset,
  1509. downsampled);
  1510. if (nch == 2)
  1511. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, R, sbr->X[1], sbr->qmf_filter_scratch,
  1512. sbr->data[1].synthesis_filterbank_samples,
  1513. &sbr->data[1].synthesis_filterbank_samples_offset,
  1514. downsampled);
  1515. }