You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4352 lines
122KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string.
  64. @c man end GRAPH2DOT
  65. @chapter Filtergraph description
  66. @c man begin FILTERGRAPH DESCRIPTION
  67. A filtergraph is a directed graph of connected filters. It can contain
  68. cycles, and there can be multiple links between a pair of
  69. filters. Each link has one input pad on one side connecting it to one
  70. filter from which it takes its input, and one output pad on the other
  71. side connecting it to the one filter accepting its output.
  72. Each filter in a filtergraph is an instance of a filter class
  73. registered in the application, which defines the features and the
  74. number of input and output pads of the filter.
  75. A filter with no input pads is called a "source", a filter with no
  76. output pads is called a "sink".
  77. @anchor{Filtergraph syntax}
  78. @section Filtergraph syntax
  79. A filtergraph can be represented using a textual representation, which is
  80. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  81. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  82. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  83. @file{libavfilter/avfiltergraph.h}.
  84. A filterchain consists of a sequence of connected filters, each one
  85. connected to the previous one in the sequence. A filterchain is
  86. represented by a list of ","-separated filter descriptions.
  87. A filtergraph consists of a sequence of filterchains. A sequence of
  88. filterchains is represented by a list of ";"-separated filterchain
  89. descriptions.
  90. A filter is represented by a string of the form:
  91. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  92. @var{filter_name} is the name of the filter class of which the
  93. described filter is an instance of, and has to be the name of one of
  94. the filter classes registered in the program.
  95. The name of the filter class is optionally followed by a string
  96. "=@var{arguments}".
  97. @var{arguments} is a string which contains the parameters used to
  98. initialize the filter instance, and are described in the filter
  99. descriptions below.
  100. The list of arguments can be quoted using the character "'" as initial
  101. and ending mark, and the character '\' for escaping the characters
  102. within the quoted text; otherwise the argument string is considered
  103. terminated when the next special character (belonging to the set
  104. "[]=;,") is encountered.
  105. The name and arguments of the filter are optionally preceded and
  106. followed by a list of link labels.
  107. A link label allows to name a link and associate it to a filter output
  108. or input pad. The preceding labels @var{in_link_1}
  109. ... @var{in_link_N}, are associated to the filter input pads,
  110. the following labels @var{out_link_1} ... @var{out_link_M}, are
  111. associated to the output pads.
  112. When two link labels with the same name are found in the
  113. filtergraph, a link between the corresponding input and output pad is
  114. created.
  115. If an output pad is not labelled, it is linked by default to the first
  116. unlabelled input pad of the next filter in the filterchain.
  117. For example in the filterchain:
  118. @example
  119. nullsrc, split[L1], [L2]overlay, nullsink
  120. @end example
  121. the split filter instance has two output pads, and the overlay filter
  122. instance two input pads. The first output pad of split is labelled
  123. "L1", the first input pad of overlay is labelled "L2", and the second
  124. output pad of split is linked to the second input pad of overlay,
  125. which are both unlabelled.
  126. In a complete filterchain all the unlabelled filter input and output
  127. pads must be connected. A filtergraph is considered valid if all the
  128. filter input and output pads of all the filterchains are connected.
  129. Libavfilter will automatically insert scale filters where format
  130. conversion is required. It is possible to specify swscale flags
  131. for those automatically inserted scalers by prepending
  132. @code{sws_flags=@var{flags};}
  133. to the filtergraph description.
  134. Follows a BNF description for the filtergraph syntax:
  135. @example
  136. @var{NAME} ::= sequence of alphanumeric characters and '_'
  137. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  138. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  139. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  140. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  141. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  142. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  143. @end example
  144. @c man end FILTERGRAPH DESCRIPTION
  145. @chapter Audio Filters
  146. @c man begin AUDIO FILTERS
  147. When you configure your FFmpeg build, you can disable any of the
  148. existing filters using @code{--disable-filters}.
  149. The configure output will show the audio filters included in your
  150. build.
  151. Below is a description of the currently available audio filters.
  152. @section aconvert
  153. Convert the input audio format to the specified formats.
  154. The filter accepts a string of the form:
  155. "@var{sample_format}:@var{channel_layout}".
  156. @var{sample_format} specifies the sample format, and can be a string or the
  157. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  158. suffix for a planar sample format.
  159. @var{channel_layout} specifies the channel layout, and can be a string
  160. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  161. The special parameter "auto", signifies that the filter will
  162. automatically select the output format depending on the output filter.
  163. Some examples follow.
  164. @itemize
  165. @item
  166. Convert input to float, planar, stereo:
  167. @example
  168. aconvert=fltp:stereo
  169. @end example
  170. @item
  171. Convert input to unsigned 8-bit, automatically select out channel layout:
  172. @example
  173. aconvert=u8:auto
  174. @end example
  175. @end itemize
  176. @section aformat
  177. Convert the input audio to one of the specified formats. The framework will
  178. negotiate the most appropriate format to minimize conversions.
  179. The filter accepts the following named parameters:
  180. @table @option
  181. @item sample_fmts
  182. A comma-separated list of requested sample formats.
  183. @item sample_rates
  184. A comma-separated list of requested sample rates.
  185. @item channel_layouts
  186. A comma-separated list of requested channel layouts.
  187. @end table
  188. If a parameter is omitted, all values are allowed.
  189. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  190. @example
  191. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  192. @end example
  193. @section amerge
  194. Merge two or more audio streams into a single multi-channel stream.
  195. The filter accepts the following named options:
  196. @table @option
  197. @item inputs
  198. Set the number of inputs. Default is 2.
  199. @end table
  200. If the channel layouts of the inputs are disjoint, and therefore compatible,
  201. the channel layout of the output will be set accordingly and the channels
  202. will be reordered as necessary. If the channel layouts of the inputs are not
  203. disjoint, the output will have all the channels of the first input then all
  204. the channels of the second input, in that order, and the channel layout of
  205. the output will be the default value corresponding to the total number of
  206. channels.
  207. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  208. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  209. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  210. first input, b1 is the first channel of the second input).
  211. On the other hand, if both input are in stereo, the output channels will be
  212. in the default order: a1, a2, b1, b2, and the channel layout will be
  213. arbitrarily set to 4.0, which may or may not be the expected value.
  214. All inputs must have the same sample rate, and format.
  215. If inputs do not have the same duration, the output will stop with the
  216. shortest.
  217. Example: merge two mono files into a stereo stream:
  218. @example
  219. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  220. @end example
  221. Example: multiple merges:
  222. @example
  223. ffmpeg -f lavfi -i "
  224. amovie=input.mkv:si=0 [a0];
  225. amovie=input.mkv:si=1 [a1];
  226. amovie=input.mkv:si=2 [a2];
  227. amovie=input.mkv:si=3 [a3];
  228. amovie=input.mkv:si=4 [a4];
  229. amovie=input.mkv:si=5 [a5];
  230. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  231. @end example
  232. @section amix
  233. Mixes multiple audio inputs into a single output.
  234. For example
  235. @example
  236. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  237. @end example
  238. will mix 3 input audio streams to a single output with the same duration as the
  239. first input and a dropout transition time of 3 seconds.
  240. The filter accepts the following named parameters:
  241. @table @option
  242. @item inputs
  243. Number of inputs. If unspecified, it defaults to 2.
  244. @item duration
  245. How to determine the end-of-stream.
  246. @table @option
  247. @item longest
  248. Duration of longest input. (default)
  249. @item shortest
  250. Duration of shortest input.
  251. @item first
  252. Duration of first input.
  253. @end table
  254. @item dropout_transition
  255. Transition time, in seconds, for volume renormalization when an input
  256. stream ends. The default value is 2 seconds.
  257. @end table
  258. @section anull
  259. Pass the audio source unchanged to the output.
  260. @section aresample
  261. Resample the input audio to the specified sample rate.
  262. The filter accepts exactly one parameter, the output sample rate. If not
  263. specified then the filter will automatically convert between its input
  264. and output sample rates.
  265. For example, to resample the input audio to 44100Hz:
  266. @example
  267. aresample=44100
  268. @end example
  269. @section asetnsamples
  270. Set the number of samples per each output audio frame.
  271. The last output packet may contain a different number of samples, as
  272. the filter will flush all the remaining samples when the input audio
  273. signal its end.
  274. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  275. separated by ":".
  276. @table @option
  277. @item nb_out_samples, n
  278. Set the number of frames per each output audio frame. The number is
  279. intended as the number of samples @emph{per each channel}.
  280. Default value is 1024.
  281. @item pad, p
  282. If set to 1, the filter will pad the last audio frame with zeroes, so
  283. that the last frame will contain the same number of samples as the
  284. previous ones. Default value is 1.
  285. @end table
  286. For example, to set the number of per-frame samples to 1234 and
  287. disable padding for the last frame, use:
  288. @example
  289. asetnsamples=n=1234:p=0
  290. @end example
  291. @section ashowinfo
  292. Show a line containing various information for each input audio frame.
  293. The input audio is not modified.
  294. The shown line contains a sequence of key/value pairs of the form
  295. @var{key}:@var{value}.
  296. A description of each shown parameter follows:
  297. @table @option
  298. @item n
  299. sequential number of the input frame, starting from 0
  300. @item pts
  301. presentation TimeStamp of the input frame, expressed as a number of
  302. time base units. The time base unit depends on the filter input pad, and
  303. is usually 1/@var{sample_rate}.
  304. @item pts_time
  305. presentation TimeStamp of the input frame, expressed as a number of
  306. seconds
  307. @item pos
  308. position of the frame in the input stream, -1 if this information in
  309. unavailable and/or meaningless (for example in case of synthetic audio)
  310. @item fmt
  311. sample format name
  312. @item chlayout
  313. channel layout description
  314. @item nb_samples
  315. number of samples (per each channel) contained in the filtered frame
  316. @item rate
  317. sample rate for the audio frame
  318. @item checksum
  319. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  320. @item plane_checksum
  321. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  322. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  323. @var{c6} @var{c7}]"
  324. @end table
  325. @section asplit
  326. Split input audio into several identical outputs.
  327. The filter accepts a single parameter which specifies the number of outputs. If
  328. unspecified, it defaults to 2.
  329. For example:
  330. @example
  331. [in] asplit [out0][out1]
  332. @end example
  333. will create two separate outputs from the same input.
  334. To create 3 or more outputs, you need to specify the number of
  335. outputs, like in:
  336. @example
  337. [in] asplit=3 [out0][out1][out2]
  338. @end example
  339. @example
  340. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  341. @end example
  342. will create 5 copies of the input audio.
  343. @section astreamsync
  344. Forward two audio streams and control the order the buffers are forwarded.
  345. The argument to the filter is an expression deciding which stream should be
  346. forwarded next: if the result is negative, the first stream is forwarded; if
  347. the result is positive or zero, the second stream is forwarded. It can use
  348. the following variables:
  349. @table @var
  350. @item b1 b2
  351. number of buffers forwarded so far on each stream
  352. @item s1 s2
  353. number of samples forwarded so far on each stream
  354. @item t1 t2
  355. current timestamp of each stream
  356. @end table
  357. The default value is @code{t1-t2}, which means to always forward the stream
  358. that has a smaller timestamp.
  359. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  360. input, while avoiding too much of a desynchronization:
  361. @example
  362. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  363. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  364. [a2] [b2] amerge
  365. @end example
  366. @section atempo
  367. Adjust audio tempo.
  368. The filter accepts exactly one parameter, the audio tempo. If not
  369. specified then the filter will assume nominal 1.0 tempo. Tempo must
  370. be in the [0.5, 2.0] range.
  371. For example, to slow down audio to 80% tempo:
  372. @example
  373. atempo=0.8
  374. @end example
  375. For example, to speed up audio to 125% tempo:
  376. @example
  377. atempo=1.25
  378. @end example
  379. @section earwax
  380. Make audio easier to listen to on headphones.
  381. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  382. so that when listened to on headphones the stereo image is moved from
  383. inside your head (standard for headphones) to outside and in front of
  384. the listener (standard for speakers).
  385. Ported from SoX.
  386. @section pan
  387. Mix channels with specific gain levels. The filter accepts the output
  388. channel layout followed by a set of channels definitions.
  389. This filter is also designed to remap efficiently the channels of an audio
  390. stream.
  391. The filter accepts parameters of the form:
  392. "@var{l}:@var{outdef}:@var{outdef}:..."
  393. @table @option
  394. @item l
  395. output channel layout or number of channels
  396. @item outdef
  397. output channel specification, of the form:
  398. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  399. @item out_name
  400. output channel to define, either a channel name (FL, FR, etc.) or a channel
  401. number (c0, c1, etc.)
  402. @item gain
  403. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  404. @item in_name
  405. input channel to use, see out_name for details; it is not possible to mix
  406. named and numbered input channels
  407. @end table
  408. If the `=' in a channel specification is replaced by `<', then the gains for
  409. that specification will be renormalized so that the total is 1, thus
  410. avoiding clipping noise.
  411. @subsection Mixing examples
  412. For example, if you want to down-mix from stereo to mono, but with a bigger
  413. factor for the left channel:
  414. @example
  415. pan=1:c0=0.9*c0+0.1*c1
  416. @end example
  417. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  418. 7-channels surround:
  419. @example
  420. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  421. @end example
  422. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  423. that should be preferred (see "-ac" option) unless you have very specific
  424. needs.
  425. @subsection Remapping examples
  426. The channel remapping will be effective if, and only if:
  427. @itemize
  428. @item gain coefficients are zeroes or ones,
  429. @item only one input per channel output,
  430. @end itemize
  431. If all these conditions are satisfied, the filter will notify the user ("Pure
  432. channel mapping detected"), and use an optimized and lossless method to do the
  433. remapping.
  434. For example, if you have a 5.1 source and want a stereo audio stream by
  435. dropping the extra channels:
  436. @example
  437. pan="stereo: c0=FL : c1=FR"
  438. @end example
  439. Given the same source, you can also switch front left and front right channels
  440. and keep the input channel layout:
  441. @example
  442. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  443. @end example
  444. If the input is a stereo audio stream, you can mute the front left channel (and
  445. still keep the stereo channel layout) with:
  446. @example
  447. pan="stereo:c1=c1"
  448. @end example
  449. Still with a stereo audio stream input, you can copy the right channel in both
  450. front left and right:
  451. @example
  452. pan="stereo: c0=FR : c1=FR"
  453. @end example
  454. @section silencedetect
  455. Detect silence in an audio stream.
  456. This filter logs a message when it detects that the input audio volume is less
  457. or equal to a noise tolerance value for a duration greater or equal to the
  458. minimum detected noise duration.
  459. The printed times and duration are expressed in seconds.
  460. @table @option
  461. @item duration, d
  462. Set silence duration until notification (default is 2 seconds).
  463. @item noise, n
  464. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  465. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  466. @end table
  467. Detect 5 seconds of silence with -50dB noise tolerance:
  468. @example
  469. silencedetect=n=-50dB:d=5
  470. @end example
  471. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  472. tolerance in @file{silence.mp3}:
  473. @example
  474. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  475. @end example
  476. @section volume
  477. Adjust the input audio volume.
  478. The filter accepts exactly one parameter @var{vol}, which expresses
  479. how the audio volume will be increased or decreased.
  480. Output values are clipped to the maximum value.
  481. If @var{vol} is expressed as a decimal number, the output audio
  482. volume is given by the relation:
  483. @example
  484. @var{output_volume} = @var{vol} * @var{input_volume}
  485. @end example
  486. If @var{vol} is expressed as a decimal number followed by the string
  487. "dB", the value represents the requested change in decibels of the
  488. input audio power, and the output audio volume is given by the
  489. relation:
  490. @example
  491. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  492. @end example
  493. Otherwise @var{vol} is considered an expression and its evaluated
  494. value is used for computing the output audio volume according to the
  495. first relation.
  496. Default value for @var{vol} is 1.0.
  497. @subsection Examples
  498. @itemize
  499. @item
  500. Half the input audio volume:
  501. @example
  502. volume=0.5
  503. @end example
  504. The above example is equivalent to:
  505. @example
  506. volume=1/2
  507. @end example
  508. @item
  509. Decrease input audio power by 12 decibels:
  510. @example
  511. volume=-12dB
  512. @end example
  513. @end itemize
  514. @section asyncts
  515. Synchronize audio data with timestamps by squeezing/stretching it and/or
  516. dropping samples/adding silence when needed.
  517. The filter accepts the following named parameters:
  518. @table @option
  519. @item compensate
  520. Enable stretching/squeezing the data to make it match the timestamps.
  521. @item min_delta
  522. Minimum difference between timestamps and audio data (in seconds) to trigger
  523. adding/dropping samples.
  524. @item max_comp
  525. Maximum compensation in samples per second.
  526. @item first_pts
  527. Assume the first pts should be this value.
  528. This allows for padding/trimming at the start of stream. By default, no
  529. assumption is made about the first frame's expected pts, so no padding or
  530. trimming is done. For example, this could be set to 0 to pad the beginning with
  531. silence if an audio stream starts after the video stream.
  532. @end table
  533. @section channelsplit
  534. Split each channel in input audio stream into a separate output stream.
  535. This filter accepts the following named parameters:
  536. @table @option
  537. @item channel_layout
  538. Channel layout of the input stream. Default is "stereo".
  539. @end table
  540. For example, assuming a stereo input MP3 file
  541. @example
  542. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  543. @end example
  544. will create an output Matroska file with two audio streams, one containing only
  545. the left channel and the other the right channel.
  546. To split a 5.1 WAV file into per-channel files
  547. @example
  548. ffmpeg -i in.wav -filter_complex
  549. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  550. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  551. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  552. side_right.wav
  553. @end example
  554. @section channelmap
  555. Remap input channels to new locations.
  556. This filter accepts the following named parameters:
  557. @table @option
  558. @item channel_layout
  559. Channel layout of the output stream.
  560. @item map
  561. Map channels from input to output. The argument is a comma-separated list of
  562. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  563. @var{in_channel} form. @var{in_channel} can be either the name of the input
  564. channel (e.g. FL for front left) or its index in the input channel layout.
  565. @var{out_channel} is the name of the output channel or its index in the output
  566. channel layout. If @var{out_channel} is not given then it is implicitly an
  567. index, starting with zero and increasing by one for each mapping.
  568. @end table
  569. If no mapping is present, the filter will implicitly map input channels to
  570. output channels preserving index.
  571. For example, assuming a 5.1+downmix input MOV file
  572. @example
  573. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  574. @end example
  575. will create an output WAV file tagged as stereo from the downmix channels of
  576. the input.
  577. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  578. @example
  579. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  580. @end example
  581. @section join
  582. Join multiple input streams into one multi-channel stream.
  583. The filter accepts the following named parameters:
  584. @table @option
  585. @item inputs
  586. Number of input streams. Defaults to 2.
  587. @item channel_layout
  588. Desired output channel layout. Defaults to stereo.
  589. @item map
  590. Map channels from inputs to output. The argument is a comma-separated list of
  591. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  592. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  593. can be either the name of the input channel (e.g. FL for front left) or its
  594. index in the specified input stream. @var{out_channel} is the name of the output
  595. channel.
  596. @end table
  597. The filter will attempt to guess the mappings when those are not specified
  598. explicitly. It does so by first trying to find an unused matching input channel
  599. and if that fails it picks the first unused input channel.
  600. E.g. to join 3 inputs (with properly set channel layouts)
  601. @example
  602. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  603. @end example
  604. To build a 5.1 output from 6 single-channel streams:
  605. @example
  606. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  607. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  608. out
  609. @end example
  610. @section resample
  611. Convert the audio sample format, sample rate and channel layout. This filter is
  612. not meant to be used directly.
  613. @c man end AUDIO FILTERS
  614. @chapter Audio Sources
  615. @c man begin AUDIO SOURCES
  616. Below is a description of the currently available audio sources.
  617. @section abuffer
  618. Buffer audio frames, and make them available to the filter chain.
  619. This source is mainly intended for a programmatic use, in particular
  620. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  621. It accepts the following mandatory parameters:
  622. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  623. @table @option
  624. @item sample_rate
  625. The sample rate of the incoming audio buffers.
  626. @item sample_fmt
  627. The sample format of the incoming audio buffers.
  628. Either a sample format name or its corresponging integer representation from
  629. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  630. @item channel_layout
  631. The channel layout of the incoming audio buffers.
  632. Either a channel layout name from channel_layout_map in
  633. @file{libavutil/audioconvert.c} or its corresponding integer representation
  634. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  635. @end table
  636. For example:
  637. @example
  638. abuffer=44100:s16p:stereo
  639. @end example
  640. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  641. Since the sample format with name "s16p" corresponds to the number
  642. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  643. equivalent to:
  644. @example
  645. abuffer=44100:6:0x3
  646. @end example
  647. @section aevalsrc
  648. Generate an audio signal specified by an expression.
  649. This source accepts in input one or more expressions (one for each
  650. channel), which are evaluated and used to generate a corresponding
  651. audio signal.
  652. It accepts the syntax: @var{exprs}[::@var{options}].
  653. @var{exprs} is a list of expressions separated by ":", one for each
  654. separate channel. In case the @var{channel_layout} is not
  655. specified, the selected channel layout depends on the number of
  656. provided expressions.
  657. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  658. separated by ":".
  659. The description of the accepted options follows.
  660. @table @option
  661. @item channel_layout, c
  662. Set the channel layout. The number of channels in the specified layout
  663. must be equal to the number of specified expressions.
  664. @item duration, d
  665. Set the minimum duration of the sourced audio. See the function
  666. @code{av_parse_time()} for the accepted format.
  667. Note that the resulting duration may be greater than the specified
  668. duration, as the generated audio is always cut at the end of a
  669. complete frame.
  670. If not specified, or the expressed duration is negative, the audio is
  671. supposed to be generated forever.
  672. @item nb_samples, n
  673. Set the number of samples per channel per each output frame,
  674. default to 1024.
  675. @item sample_rate, s
  676. Specify the sample rate, default to 44100.
  677. @end table
  678. Each expression in @var{exprs} can contain the following constants:
  679. @table @option
  680. @item n
  681. number of the evaluated sample, starting from 0
  682. @item t
  683. time of the evaluated sample expressed in seconds, starting from 0
  684. @item s
  685. sample rate
  686. @end table
  687. @subsection Examples
  688. @itemize
  689. @item
  690. Generate silence:
  691. @example
  692. aevalsrc=0
  693. @end example
  694. @item
  695. Generate a sin signal with frequency of 440 Hz, set sample rate to
  696. 8000 Hz:
  697. @example
  698. aevalsrc="sin(440*2*PI*t)::s=8000"
  699. @end example
  700. @item
  701. Generate a two channels signal, specify the channel layout (Front
  702. Center + Back Center) explicitly:
  703. @example
  704. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  705. @end example
  706. @item
  707. Generate white noise:
  708. @example
  709. aevalsrc="-2+random(0)"
  710. @end example
  711. @item
  712. Generate an amplitude modulated signal:
  713. @example
  714. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  715. @end example
  716. @item
  717. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  718. @example
  719. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  720. @end example
  721. @end itemize
  722. @section anullsrc
  723. Null audio source, return unprocessed audio frames. It is mainly useful
  724. as a template and to be employed in analysis / debugging tools, or as
  725. the source for filters which ignore the input data (for example the sox
  726. synth filter).
  727. It accepts an optional sequence of @var{key}=@var{value} pairs,
  728. separated by ":".
  729. The description of the accepted options follows.
  730. @table @option
  731. @item sample_rate, s
  732. Specify the sample rate, and defaults to 44100.
  733. @item channel_layout, cl
  734. Specify the channel layout, and can be either an integer or a string
  735. representing a channel layout. The default value of @var{channel_layout}
  736. is "stereo".
  737. Check the channel_layout_map definition in
  738. @file{libavcodec/audioconvert.c} for the mapping between strings and
  739. channel layout values.
  740. @item nb_samples, n
  741. Set the number of samples per requested frames.
  742. @end table
  743. Follow some examples:
  744. @example
  745. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  746. anullsrc=r=48000:cl=4
  747. # same as
  748. anullsrc=r=48000:cl=mono
  749. @end example
  750. @section abuffer
  751. Buffer audio frames, and make them available to the filter chain.
  752. This source is not intended to be part of user-supplied graph descriptions but
  753. for insertion by calling programs through the interface defined in
  754. @file{libavfilter/buffersrc.h}.
  755. It accepts the following named parameters:
  756. @table @option
  757. @item time_base
  758. Timebase which will be used for timestamps of submitted frames. It must be
  759. either a floating-point number or in @var{numerator}/@var{denominator} form.
  760. @item sample_rate
  761. Audio sample rate.
  762. @item sample_fmt
  763. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  764. @item channel_layout
  765. Channel layout of the audio data, in the form that can be accepted by
  766. @code{av_get_channel_layout()}.
  767. @end table
  768. All the parameters need to be explicitly defined.
  769. @section flite
  770. Synthesize a voice utterance using the libflite library.
  771. To enable compilation of this filter you need to configure FFmpeg with
  772. @code{--enable-libflite}.
  773. Note that the flite library is not thread-safe.
  774. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  775. separated by ":".
  776. The description of the accepted parameters follows.
  777. @table @option
  778. @item list_voices
  779. If set to 1, list the names of the available voices and exit
  780. immediately. Default value is 0.
  781. @item nb_samples, n
  782. Set the maximum number of samples per frame. Default value is 512.
  783. @item textfile
  784. Set the filename containing the text to speak.
  785. @item text
  786. Set the text to speak.
  787. @item voice, v
  788. Set the voice to use for the speech synthesis. Default value is
  789. @code{kal}. See also the @var{list_voices} option.
  790. @end table
  791. @section Examples
  792. @itemize
  793. @item
  794. Read from file @file{speech.txt}, and synthetize the text using the
  795. standard flite voice:
  796. @example
  797. flite=textfile=speech.txt
  798. @end example
  799. @item
  800. Read the specified text selecting the @code{slt} voice:
  801. @example
  802. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  803. @end example
  804. @item
  805. Make @file{ffplay} speech the specified text, using @code{flite} and
  806. the @code{lavfi} device:
  807. @example
  808. ffplay -f lavfi flite='No more be grieved for which that thou hast done.'
  809. @end example
  810. @end itemize
  811. For more information about libflite, check:
  812. @url{http://www.speech.cs.cmu.edu/flite/}
  813. @c man end AUDIO SOURCES
  814. @chapter Audio Sinks
  815. @c man begin AUDIO SINKS
  816. Below is a description of the currently available audio sinks.
  817. @section abuffersink
  818. Buffer audio frames, and make them available to the end of filter chain.
  819. This sink is mainly intended for programmatic use, in particular
  820. through the interface defined in @file{libavfilter/buffersink.h}.
  821. It requires a pointer to an AVABufferSinkContext structure, which
  822. defines the incoming buffers' formats, to be passed as the opaque
  823. parameter to @code{avfilter_init_filter} for initialization.
  824. @section anullsink
  825. Null audio sink, do absolutely nothing with the input audio. It is
  826. mainly useful as a template and to be employed in analysis / debugging
  827. tools.
  828. @section abuffersink
  829. This sink is intended for programmatic use. Frames that arrive on this sink can
  830. be retrieved by the calling program using the interface defined in
  831. @file{libavfilter/buffersink.h}.
  832. This filter accepts no parameters.
  833. @c man end AUDIO SINKS
  834. @chapter Video Filters
  835. @c man begin VIDEO FILTERS
  836. When you configure your FFmpeg build, you can disable any of the
  837. existing filters using @code{--disable-filters}.
  838. The configure output will show the video filters included in your
  839. build.
  840. Below is a description of the currently available video filters.
  841. @section alphaextract
  842. Extract the alpha component from the input as a grayscale video. This
  843. is especially useful with the @var{alphamerge} filter.
  844. @section alphamerge
  845. Add or replace the alpha component of the primary input with the
  846. grayscale value of a second input. This is intended for use with
  847. @var{alphaextract} to allow the transmission or storage of frame
  848. sequences that have alpha in a format that doesn't support an alpha
  849. channel.
  850. For example, to reconstruct full frames from a normal YUV-encoded video
  851. and a separate video created with @var{alphaextract}, you might use:
  852. @example
  853. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  854. @end example
  855. Since this filter is designed for reconstruction, it operates on frame
  856. sequences without considering timestamps, and terminates when either
  857. input reaches end of stream. This will cause problems if your encoding
  858. pipeline drops frames. If you're trying to apply an image as an
  859. overlay to a video stream, consider the @var{overlay} filter instead.
  860. @section ass
  861. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  862. using the libass library.
  863. To enable compilation of this filter you need to configure FFmpeg with
  864. @code{--enable-libass}.
  865. This filter accepts the syntax: @var{ass_filename}[:@var{options}],
  866. where @var{ass_filename} is the filename of the ASS file to read, and
  867. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  868. separated by ":".
  869. A description of the accepted options follows.
  870. @table @option
  871. @item original_size
  872. Specifies the size of the original video, the video for which the ASS file
  873. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  874. necessary to correctly scale the fonts if the aspect ratio has been changed.
  875. @end table
  876. For example, to render the file @file{sub.ass} on top of the input
  877. video, use the command:
  878. @example
  879. ass=sub.ass
  880. @end example
  881. @section bbox
  882. Compute the bounding box for the non-black pixels in the input frame
  883. luminance plane.
  884. This filter computes the bounding box containing all the pixels with a
  885. luminance value greater than the minimum allowed value.
  886. The parameters describing the bounding box are printed on the filter
  887. log.
  888. @section blackdetect
  889. Detect video intervals that are (almost) completely black. Can be
  890. useful to detect chapter transitions, commercials, or invalid
  891. recordings. Output lines contains the time for the start, end and
  892. duration of the detected black interval expressed in seconds.
  893. In order to display the output lines, you need to set the loglevel at
  894. least to the AV_LOG_INFO value.
  895. This filter accepts a list of options in the form of
  896. @var{key}=@var{value} pairs separated by ":". A description of the
  897. accepted options follows.
  898. @table @option
  899. @item black_min_duration, d
  900. Set the minimum detected black duration expressed in seconds. It must
  901. be a non-negative floating point number.
  902. Default value is 2.0.
  903. @item picture_black_ratio_th, pic_th
  904. Set the threshold for considering a picture "black".
  905. Express the minimum value for the ratio:
  906. @example
  907. @var{nb_black_pixels} / @var{nb_pixels}
  908. @end example
  909. for which a picture is considered black.
  910. Default value is 0.98.
  911. @item pixel_black_th, pix_th
  912. Set the threshold for considering a pixel "black".
  913. The threshold expresses the maximum pixel luminance value for which a
  914. pixel is considered "black". The provided value is scaled according to
  915. the following equation:
  916. @example
  917. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  918. @end example
  919. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  920. the input video format, the range is [0-255] for YUV full-range
  921. formats and [16-235] for YUV non full-range formats.
  922. Default value is 0.10.
  923. @end table
  924. The following example sets the maximum pixel threshold to the minimum
  925. value, and detects only black intervals of 2 or more seconds:
  926. @example
  927. blackdetect=d=2:pix_th=0.00
  928. @end example
  929. @section blackframe
  930. Detect frames that are (almost) completely black. Can be useful to
  931. detect chapter transitions or commercials. Output lines consist of
  932. the frame number of the detected frame, the percentage of blackness,
  933. the position in the file if known or -1 and the timestamp in seconds.
  934. In order to display the output lines, you need to set the loglevel at
  935. least to the AV_LOG_INFO value.
  936. The filter accepts the syntax:
  937. @example
  938. blackframe[=@var{amount}:[@var{threshold}]]
  939. @end example
  940. @var{amount} is the percentage of the pixels that have to be below the
  941. threshold, and defaults to 98.
  942. @var{threshold} is the threshold below which a pixel value is
  943. considered black, and defaults to 32.
  944. @section boxblur
  945. Apply boxblur algorithm to the input video.
  946. This filter accepts the parameters:
  947. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  948. Chroma and alpha parameters are optional, if not specified they default
  949. to the corresponding values set for @var{luma_radius} and
  950. @var{luma_power}.
  951. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  952. the radius in pixels of the box used for blurring the corresponding
  953. input plane. They are expressions, and can contain the following
  954. constants:
  955. @table @option
  956. @item w, h
  957. the input width and height in pixels
  958. @item cw, ch
  959. the input chroma image width and height in pixels
  960. @item hsub, vsub
  961. horizontal and vertical chroma subsample values. For example for the
  962. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  963. @end table
  964. The radius must be a non-negative number, and must not be greater than
  965. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  966. and of @code{min(cw,ch)/2} for the chroma planes.
  967. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  968. how many times the boxblur filter is applied to the corresponding
  969. plane.
  970. Some examples follow:
  971. @itemize
  972. @item
  973. Apply a boxblur filter with luma, chroma, and alpha radius
  974. set to 2:
  975. @example
  976. boxblur=2:1
  977. @end example
  978. @item
  979. Set luma radius to 2, alpha and chroma radius to 0
  980. @example
  981. boxblur=2:1:0:0:0:0
  982. @end example
  983. @item
  984. Set luma and chroma radius to a fraction of the video dimension
  985. @example
  986. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  987. @end example
  988. @end itemize
  989. @section colormatrix
  990. The colormatrix filter allows conversion between any of the following color
  991. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  992. and FCC (@var{fcc}).
  993. The syntax of the parameters is @var{source}:@var{destination}:
  994. @example
  995. colormatrix=bt601:smpte240m
  996. @end example
  997. @section copy
  998. Copy the input source unchanged to the output. Mainly useful for
  999. testing purposes.
  1000. @section crop
  1001. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1002. The @var{keep_aspect} parameter is optional, if specified and set to a
  1003. non-zero value will force the output display aspect ratio to be the
  1004. same of the input, by changing the output sample aspect ratio.
  1005. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1006. expressions containing the following constants:
  1007. @table @option
  1008. @item x, y
  1009. the computed values for @var{x} and @var{y}. They are evaluated for
  1010. each new frame.
  1011. @item in_w, in_h
  1012. the input width and height
  1013. @item iw, ih
  1014. same as @var{in_w} and @var{in_h}
  1015. @item out_w, out_h
  1016. the output (cropped) width and height
  1017. @item ow, oh
  1018. same as @var{out_w} and @var{out_h}
  1019. @item a
  1020. same as @var{iw} / @var{ih}
  1021. @item sar
  1022. input sample aspect ratio
  1023. @item dar
  1024. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1025. @item hsub, vsub
  1026. horizontal and vertical chroma subsample values. For example for the
  1027. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1028. @item n
  1029. the number of input frame, starting from 0
  1030. @item pos
  1031. the position in the file of the input frame, NAN if unknown
  1032. @item t
  1033. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1034. @end table
  1035. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1036. the width and height of the output (cropped) video. They are
  1037. evaluated just at the configuration of the filter.
  1038. The default value of @var{out_w} is "in_w", and the default value of
  1039. @var{out_h} is "in_h".
  1040. The expression for @var{out_w} may depend on the value of @var{out_h},
  1041. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1042. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1043. evaluated after @var{out_w} and @var{out_h}.
  1044. The @var{x} and @var{y} parameters specify the expressions for the
  1045. position of the top-left corner of the output (non-cropped) area. They
  1046. are evaluated for each frame. If the evaluated value is not valid, it
  1047. is approximated to the nearest valid value.
  1048. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1049. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1050. the center of the input image.
  1051. The expression for @var{x} may depend on @var{y}, and the expression
  1052. for @var{y} may depend on @var{x}.
  1053. Follow some examples:
  1054. @example
  1055. # crop the central input area with size 100x100
  1056. crop=100:100
  1057. # crop the central input area with size 2/3 of the input video
  1058. "crop=2/3*in_w:2/3*in_h"
  1059. # crop the input video central square
  1060. crop=in_h
  1061. # delimit the rectangle with the top-left corner placed at position
  1062. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1063. # corner of the input image.
  1064. crop=in_w-100:in_h-100:100:100
  1065. # crop 10 pixels from the left and right borders, and 20 pixels from
  1066. # the top and bottom borders
  1067. "crop=in_w-2*10:in_h-2*20"
  1068. # keep only the bottom right quarter of the input image
  1069. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1070. # crop height for getting Greek harmony
  1071. "crop=in_w:1/PHI*in_w"
  1072. # trembling effect
  1073. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1074. # erratic camera effect depending on timestamp
  1075. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1076. # set x depending on the value of y
  1077. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1078. @end example
  1079. @section cropdetect
  1080. Auto-detect crop size.
  1081. Calculate necessary cropping parameters and prints the recommended
  1082. parameters through the logging system. The detected dimensions
  1083. correspond to the non-black area of the input video.
  1084. It accepts the syntax:
  1085. @example
  1086. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1087. @end example
  1088. @table @option
  1089. @item limit
  1090. Threshold, which can be optionally specified from nothing (0) to
  1091. everything (255), defaults to 24.
  1092. @item round
  1093. Value which the width/height should be divisible by, defaults to
  1094. 16. The offset is automatically adjusted to center the video. Use 2 to
  1095. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1096. encoding to most video codecs.
  1097. @item reset
  1098. Counter that determines after how many frames cropdetect will reset
  1099. the previously detected largest video area and start over to detect
  1100. the current optimal crop area. Defaults to 0.
  1101. This can be useful when channel logos distort the video area. 0
  1102. indicates never reset and return the largest area encountered during
  1103. playback.
  1104. @end table
  1105. @section delogo
  1106. Suppress a TV station logo by a simple interpolation of the surrounding
  1107. pixels. Just set a rectangle covering the logo and watch it disappear
  1108. (and sometimes something even uglier appear - your mileage may vary).
  1109. The filter accepts parameters as a string of the form
  1110. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1111. @var{key}=@var{value} pairs, separated by ":".
  1112. The description of the accepted parameters follows.
  1113. @table @option
  1114. @item x, y
  1115. Specify the top left corner coordinates of the logo. They must be
  1116. specified.
  1117. @item w, h
  1118. Specify the width and height of the logo to clear. They must be
  1119. specified.
  1120. @item band, t
  1121. Specify the thickness of the fuzzy edge of the rectangle (added to
  1122. @var{w} and @var{h}). The default value is 4.
  1123. @item show
  1124. When set to 1, a green rectangle is drawn on the screen to simplify
  1125. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1126. @var{band} is set to 4. The default value is 0.
  1127. @end table
  1128. Some examples follow.
  1129. @itemize
  1130. @item
  1131. Set a rectangle covering the area with top left corner coordinates 0,0
  1132. and size 100x77, setting a band of size 10:
  1133. @example
  1134. delogo=0:0:100:77:10
  1135. @end example
  1136. @item
  1137. As the previous example, but use named options:
  1138. @example
  1139. delogo=x=0:y=0:w=100:h=77:band=10
  1140. @end example
  1141. @end itemize
  1142. @section deshake
  1143. Attempt to fix small changes in horizontal and/or vertical shift. This
  1144. filter helps remove camera shake from hand-holding a camera, bumping a
  1145. tripod, moving on a vehicle, etc.
  1146. The filter accepts parameters as a string of the form
  1147. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1148. A description of the accepted parameters follows.
  1149. @table @option
  1150. @item x, y, w, h
  1151. Specify a rectangular area where to limit the search for motion
  1152. vectors.
  1153. If desired the search for motion vectors can be limited to a
  1154. rectangular area of the frame defined by its top left corner, width
  1155. and height. These parameters have the same meaning as the drawbox
  1156. filter which can be used to visualise the position of the bounding
  1157. box.
  1158. This is useful when simultaneous movement of subjects within the frame
  1159. might be confused for camera motion by the motion vector search.
  1160. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1161. then the full frame is used. This allows later options to be set
  1162. without specifying the bounding box for the motion vector search.
  1163. Default - search the whole frame.
  1164. @item rx, ry
  1165. Specify the maximum extent of movement in x and y directions in the
  1166. range 0-64 pixels. Default 16.
  1167. @item edge
  1168. Specify how to generate pixels to fill blanks at the edge of the
  1169. frame. An integer from 0 to 3 as follows:
  1170. @table @option
  1171. @item 0
  1172. Fill zeroes at blank locations
  1173. @item 1
  1174. Original image at blank locations
  1175. @item 2
  1176. Extruded edge value at blank locations
  1177. @item 3
  1178. Mirrored edge at blank locations
  1179. @end table
  1180. The default setting is mirror edge at blank locations.
  1181. @item blocksize
  1182. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1183. default 8.
  1184. @item contrast
  1185. Specify the contrast threshold for blocks. Only blocks with more than
  1186. the specified contrast (difference between darkest and lightest
  1187. pixels) will be considered. Range 1-255, default 125.
  1188. @item search
  1189. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1190. search. Default - exhaustive search.
  1191. @item filename
  1192. If set then a detailed log of the motion search is written to the
  1193. specified file.
  1194. @end table
  1195. @section drawbox
  1196. Draw a colored box on the input image.
  1197. It accepts the syntax:
  1198. @example
  1199. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  1200. @end example
  1201. @table @option
  1202. @item x, y
  1203. Specify the top left corner coordinates of the box. Default to 0.
  1204. @item width, height
  1205. Specify the width and height of the box, if 0 they are interpreted as
  1206. the input width and height. Default to 0.
  1207. @item color
  1208. Specify the color of the box to write, it can be the name of a color
  1209. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1210. @end table
  1211. Follow some examples:
  1212. @example
  1213. # draw a black box around the edge of the input image
  1214. drawbox
  1215. # draw a box with color red and an opacity of 50%
  1216. drawbox=10:20:200:60:red@@0.5"
  1217. @end example
  1218. @section drawtext
  1219. Draw text string or text from specified file on top of video using the
  1220. libfreetype library.
  1221. To enable compilation of this filter you need to configure FFmpeg with
  1222. @code{--enable-libfreetype}.
  1223. The filter also recognizes strftime() sequences in the provided text
  1224. and expands them accordingly. Check the documentation of strftime().
  1225. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1226. separated by ":".
  1227. The description of the accepted parameters follows.
  1228. @table @option
  1229. @item box
  1230. Used to draw a box around text using background color.
  1231. Value should be either 1 (enable) or 0 (disable).
  1232. The default value of @var{box} is 0.
  1233. @item boxcolor
  1234. The color to be used for drawing box around text.
  1235. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1236. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1237. The default value of @var{boxcolor} is "white".
  1238. @item draw
  1239. Set an expression which specifies if the text should be drawn. If the
  1240. expression evaluates to 0, the text is not drawn. This is useful for
  1241. specifying that the text should be drawn only when specific conditions
  1242. are met.
  1243. Default value is "1".
  1244. See below for the list of accepted constants and functions.
  1245. @item fix_bounds
  1246. If true, check and fix text coords to avoid clipping.
  1247. @item fontcolor
  1248. The color to be used for drawing fonts.
  1249. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1250. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1251. The default value of @var{fontcolor} is "black".
  1252. @item fontfile
  1253. The font file to be used for drawing text. Path must be included.
  1254. This parameter is mandatory.
  1255. @item fontsize
  1256. The font size to be used for drawing text.
  1257. The default value of @var{fontsize} is 16.
  1258. @item ft_load_flags
  1259. Flags to be used for loading the fonts.
  1260. The flags map the corresponding flags supported by libfreetype, and are
  1261. a combination of the following values:
  1262. @table @var
  1263. @item default
  1264. @item no_scale
  1265. @item no_hinting
  1266. @item render
  1267. @item no_bitmap
  1268. @item vertical_layout
  1269. @item force_autohint
  1270. @item crop_bitmap
  1271. @item pedantic
  1272. @item ignore_global_advance_width
  1273. @item no_recurse
  1274. @item ignore_transform
  1275. @item monochrome
  1276. @item linear_design
  1277. @item no_autohint
  1278. @item end table
  1279. @end table
  1280. Default value is "render".
  1281. For more information consult the documentation for the FT_LOAD_*
  1282. libfreetype flags.
  1283. @item shadowcolor
  1284. The color to be used for drawing a shadow behind the drawn text. It
  1285. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1286. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1287. The default value of @var{shadowcolor} is "black".
  1288. @item shadowx, shadowy
  1289. The x and y offsets for the text shadow position with respect to the
  1290. position of the text. They can be either positive or negative
  1291. values. Default value for both is "0".
  1292. @item tabsize
  1293. The size in number of spaces to use for rendering the tab.
  1294. Default value is 4.
  1295. @item timecode
  1296. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1297. format. It can be used with or without text parameter. @var{timecode_rate}
  1298. option must be specified.
  1299. @item timecode_rate, rate, r
  1300. Set the timecode frame rate (timecode only).
  1301. @item text
  1302. The text string to be drawn. The text must be a sequence of UTF-8
  1303. encoded characters.
  1304. This parameter is mandatory if no file is specified with the parameter
  1305. @var{textfile}.
  1306. @item textfile
  1307. A text file containing text to be drawn. The text must be a sequence
  1308. of UTF-8 encoded characters.
  1309. This parameter is mandatory if no text string is specified with the
  1310. parameter @var{text}.
  1311. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1312. @item x, y
  1313. The expressions which specify the offsets where text will be drawn
  1314. within the video frame. They are relative to the top/left border of the
  1315. output image.
  1316. The default value of @var{x} and @var{y} is "0".
  1317. See below for the list of accepted constants and functions.
  1318. @end table
  1319. The parameters for @var{x} and @var{y} are expressions containing the
  1320. following constants and functions:
  1321. @table @option
  1322. @item dar
  1323. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1324. @item hsub, vsub
  1325. horizontal and vertical chroma subsample values. For example for the
  1326. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1327. @item line_h, lh
  1328. the height of each text line
  1329. @item main_h, h, H
  1330. the input height
  1331. @item main_w, w, W
  1332. the input width
  1333. @item max_glyph_a, ascent
  1334. the maximum distance from the baseline to the highest/upper grid
  1335. coordinate used to place a glyph outline point, for all the rendered
  1336. glyphs.
  1337. It is a positive value, due to the grid's orientation with the Y axis
  1338. upwards.
  1339. @item max_glyph_d, descent
  1340. the maximum distance from the baseline to the lowest grid coordinate
  1341. used to place a glyph outline point, for all the rendered glyphs.
  1342. This is a negative value, due to the grid's orientation, with the Y axis
  1343. upwards.
  1344. @item max_glyph_h
  1345. maximum glyph height, that is the maximum height for all the glyphs
  1346. contained in the rendered text, it is equivalent to @var{ascent} -
  1347. @var{descent}.
  1348. @item max_glyph_w
  1349. maximum glyph width, that is the maximum width for all the glyphs
  1350. contained in the rendered text
  1351. @item n
  1352. the number of input frame, starting from 0
  1353. @item rand(min, max)
  1354. return a random number included between @var{min} and @var{max}
  1355. @item sar
  1356. input sample aspect ratio
  1357. @item t
  1358. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1359. @item text_h, th
  1360. the height of the rendered text
  1361. @item text_w, tw
  1362. the width of the rendered text
  1363. @item x, y
  1364. the x and y offset coordinates where the text is drawn.
  1365. These parameters allow the @var{x} and @var{y} expressions to refer
  1366. each other, so you can for example specify @code{y=x/dar}.
  1367. @end table
  1368. If libavfilter was built with @code{--enable-fontconfig}, then
  1369. @option{fontfile} can be a fontconfig pattern or omitted.
  1370. Some examples follow.
  1371. @itemize
  1372. @item
  1373. Draw "Test Text" with font FreeSerif, using the default values for the
  1374. optional parameters.
  1375. @example
  1376. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1377. @end example
  1378. @item
  1379. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1380. and y=50 (counting from the top-left corner of the screen), text is
  1381. yellow with a red box around it. Both the text and the box have an
  1382. opacity of 20%.
  1383. @example
  1384. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1385. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1386. @end example
  1387. Note that the double quotes are not necessary if spaces are not used
  1388. within the parameter list.
  1389. @item
  1390. Show the text at the center of the video frame:
  1391. @example
  1392. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1393. @end example
  1394. @item
  1395. Show a text line sliding from right to left in the last row of the video
  1396. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1397. with no newlines.
  1398. @example
  1399. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1400. @end example
  1401. @item
  1402. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1403. @example
  1404. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1405. @end example
  1406. @item
  1407. Draw a single green letter "g", at the center of the input video.
  1408. The glyph baseline is placed at half screen height.
  1409. @example
  1410. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1411. @end example
  1412. @item
  1413. Show text for 1 second every 3 seconds:
  1414. @example
  1415. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\\,3)\\,1):text='blink'"
  1416. @end example
  1417. @item
  1418. Use fontconfig to set the font. Note that the colons need to be escaped.
  1419. @example
  1420. drawtext='fontfile=Linux Libertine O-40\\:style=Semibold:text=FFmpeg'
  1421. @end example
  1422. @end itemize
  1423. For more information about libfreetype, check:
  1424. @url{http://www.freetype.org/}.
  1425. For more information about fontconfig, check:
  1426. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1427. @section edgedetect
  1428. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1429. This filter accepts the following optional named parameters:
  1430. @table @option
  1431. @item low, high
  1432. Set low and high threshold values used by the Canny thresholding
  1433. algorithm.
  1434. The high threshold selects the "strong" edge pixels, which are then
  1435. connected through 8-connectivity with the "weak" edge pixels selected
  1436. by the low threshold.
  1437. @var{low} and @var{high} threshold values must be choosen in the range
  1438. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1439. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1440. is @code{50/255}.
  1441. @end table
  1442. Example:
  1443. @example
  1444. edgedetect=low=0.1:high=0.4
  1445. @end example
  1446. @section fade
  1447. Apply fade-in/out effect to input video.
  1448. It accepts the parameters:
  1449. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1450. @var{type} specifies if the effect type, can be either "in" for
  1451. fade-in, or "out" for a fade-out effect.
  1452. @var{start_frame} specifies the number of the start frame for starting
  1453. to apply the fade effect.
  1454. @var{nb_frames} specifies the number of frames for which the fade
  1455. effect has to last. At the end of the fade-in effect the output video
  1456. will have the same intensity as the input video, at the end of the
  1457. fade-out transition the output video will be completely black.
  1458. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1459. separated by ":". The description of the accepted options follows.
  1460. @table @option
  1461. @item type, t
  1462. See @var{type}.
  1463. @item start_frame, s
  1464. See @var{start_frame}.
  1465. @item nb_frames, n
  1466. See @var{nb_frames}.
  1467. @item alpha
  1468. If set to 1, fade only alpha channel, if one exists on the input.
  1469. Default value is 0.
  1470. @end table
  1471. A few usage examples follow, usable too as test scenarios.
  1472. @example
  1473. # fade in first 30 frames of video
  1474. fade=in:0:30
  1475. # fade out last 45 frames of a 200-frame video
  1476. fade=out:155:45
  1477. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1478. fade=in:0:25, fade=out:975:25
  1479. # make first 5 frames black, then fade in from frame 5-24
  1480. fade=in:5:20
  1481. # fade in alpha over first 25 frames of video
  1482. fade=in:0:25:alpha=1
  1483. @end example
  1484. @section fieldorder
  1485. Transform the field order of the input video.
  1486. It accepts one parameter which specifies the required field order that
  1487. the input interlaced video will be transformed to. The parameter can
  1488. assume one of the following values:
  1489. @table @option
  1490. @item 0 or bff
  1491. output bottom field first
  1492. @item 1 or tff
  1493. output top field first
  1494. @end table
  1495. Default value is "tff".
  1496. Transformation is achieved by shifting the picture content up or down
  1497. by one line, and filling the remaining line with appropriate picture content.
  1498. This method is consistent with most broadcast field order converters.
  1499. If the input video is not flagged as being interlaced, or it is already
  1500. flagged as being of the required output field order then this filter does
  1501. not alter the incoming video.
  1502. This filter is very useful when converting to or from PAL DV material,
  1503. which is bottom field first.
  1504. For example:
  1505. @example
  1506. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1507. @end example
  1508. @section fifo
  1509. Buffer input images and send them when they are requested.
  1510. This filter is mainly useful when auto-inserted by the libavfilter
  1511. framework.
  1512. The filter does not take parameters.
  1513. @section format
  1514. Convert the input video to one of the specified pixel formats.
  1515. Libavfilter will try to pick one that is supported for the input to
  1516. the next filter.
  1517. The filter accepts a list of pixel format names, separated by ":",
  1518. for example "yuv420p:monow:rgb24".
  1519. Some examples follow:
  1520. @example
  1521. # convert the input video to the format "yuv420p"
  1522. format=yuv420p
  1523. # convert the input video to any of the formats in the list
  1524. format=yuv420p:yuv444p:yuv410p
  1525. @end example
  1526. @section fps
  1527. Convert the video to specified constant framerate by duplicating or dropping
  1528. frames as necessary.
  1529. This filter accepts the following named parameters:
  1530. @table @option
  1531. @item fps
  1532. Desired output framerate.
  1533. @end table
  1534. @section framestep
  1535. Select one frame every N.
  1536. This filter accepts in input a string representing a positive
  1537. integer. Default argument is @code{1}.
  1538. @anchor{frei0r}
  1539. @section frei0r
  1540. Apply a frei0r effect to the input video.
  1541. To enable compilation of this filter you need to install the frei0r
  1542. header and configure FFmpeg with @code{--enable-frei0r}.
  1543. The filter supports the syntax:
  1544. @example
  1545. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1546. @end example
  1547. @var{filter_name} is the name to the frei0r effect to load. If the
  1548. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1549. is searched in each one of the directories specified by the colon
  1550. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1551. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1552. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1553. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1554. for the frei0r effect.
  1555. A frei0r effect parameter can be a boolean (whose values are specified
  1556. with "y" and "n"), a double, a color (specified by the syntax
  1557. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1558. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1559. description), a position (specified by the syntax @var{X}/@var{Y},
  1560. @var{X} and @var{Y} being float numbers) and a string.
  1561. The number and kind of parameters depend on the loaded effect. If an
  1562. effect parameter is not specified the default value is set.
  1563. Some examples follow:
  1564. @itemize
  1565. @item
  1566. Apply the distort0r effect, set the first two double parameters:
  1567. @example
  1568. frei0r=distort0r:0.5:0.01
  1569. @end example
  1570. @item
  1571. Apply the colordistance effect, takes a color as first parameter:
  1572. @example
  1573. frei0r=colordistance:0.2/0.3/0.4
  1574. frei0r=colordistance:violet
  1575. frei0r=colordistance:0x112233
  1576. @end example
  1577. @item
  1578. Apply the perspective effect, specify the top left and top right image
  1579. positions:
  1580. @example
  1581. frei0r=perspective:0.2/0.2:0.8/0.2
  1582. @end example
  1583. @end itemize
  1584. For more information see:
  1585. @url{http://frei0r.dyne.org}
  1586. @section gradfun
  1587. Fix the banding artifacts that are sometimes introduced into nearly flat
  1588. regions by truncation to 8bit color depth.
  1589. Interpolate the gradients that should go where the bands are, and
  1590. dither them.
  1591. This filter is designed for playback only. Do not use it prior to
  1592. lossy compression, because compression tends to lose the dither and
  1593. bring back the bands.
  1594. The filter takes two optional parameters, separated by ':':
  1595. @var{strength}:@var{radius}
  1596. @var{strength} is the maximum amount by which the filter will change
  1597. any one pixel. Also the threshold for detecting nearly flat
  1598. regions. Acceptable values range from .51 to 255, default value is
  1599. 1.2, out-of-range values will be clipped to the valid range.
  1600. @var{radius} is the neighborhood to fit the gradient to. A larger
  1601. radius makes for smoother gradients, but also prevents the filter from
  1602. modifying the pixels near detailed regions. Acceptable values are
  1603. 8-32, default value is 16, out-of-range values will be clipped to the
  1604. valid range.
  1605. @example
  1606. # default parameters
  1607. gradfun=1.2:16
  1608. # omitting radius
  1609. gradfun=1.2
  1610. @end example
  1611. @section hflip
  1612. Flip the input video horizontally.
  1613. For example to horizontally flip the input video with @command{ffmpeg}:
  1614. @example
  1615. ffmpeg -i in.avi -vf "hflip" out.avi
  1616. @end example
  1617. @section hqdn3d
  1618. High precision/quality 3d denoise filter. This filter aims to reduce
  1619. image noise producing smooth images and making still images really
  1620. still. It should enhance compressibility.
  1621. It accepts the following optional parameters:
  1622. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1623. @table @option
  1624. @item luma_spatial
  1625. a non-negative float number which specifies spatial luma strength,
  1626. defaults to 4.0
  1627. @item chroma_spatial
  1628. a non-negative float number which specifies spatial chroma strength,
  1629. defaults to 3.0*@var{luma_spatial}/4.0
  1630. @item luma_tmp
  1631. a float number which specifies luma temporal strength, defaults to
  1632. 6.0*@var{luma_spatial}/4.0
  1633. @item chroma_tmp
  1634. a float number which specifies chroma temporal strength, defaults to
  1635. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1636. @end table
  1637. @section hue
  1638. Modify the hue and/or the saturation of the input.
  1639. This filter accepts the following optional named options:
  1640. @table @option
  1641. @item h
  1642. Specify the hue angle as a number of degrees. It accepts a float
  1643. number or an expression, and defaults to 0.0.
  1644. @item H
  1645. Specify the hue angle as a number of degrees. It accepts a float
  1646. number or an expression, and defaults to 0.0.
  1647. @item s
  1648. Specify the saturation in the [-10,10] range. It accepts a float number and
  1649. defaults to 1.0.
  1650. @end table
  1651. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1652. In this case @var{hue} is expressed in degrees.
  1653. Some examples follow:
  1654. @itemize
  1655. @item
  1656. Set the hue to 90 degrees and the saturation to 1.0:
  1657. @example
  1658. hue=h=90:s=1
  1659. @end example
  1660. @item
  1661. Same command but expressing the hue in radians:
  1662. @example
  1663. hue=H=PI/2:s=1
  1664. @end example
  1665. @item
  1666. Same command without named options, hue must be expressed in degrees:
  1667. @example
  1668. hue=90:1
  1669. @end example
  1670. @item
  1671. Note that "h:s" syntax does not support expressions for the values of
  1672. h and s, so the following example will issue an error:
  1673. @example
  1674. hue=PI/2:1
  1675. @end example
  1676. @end itemize
  1677. @section idet
  1678. Interlaceing detect filter. This filter tries to detect if the input is
  1679. interlaced or progressive. Top or bottom field first.
  1680. @section lut, lutrgb, lutyuv
  1681. Compute a look-up table for binding each pixel component input value
  1682. to an output value, and apply it to input video.
  1683. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1684. to an RGB input video.
  1685. These filters accept in input a ":"-separated list of options, which
  1686. specify the expressions used for computing the lookup table for the
  1687. corresponding pixel component values.
  1688. The @var{lut} filter requires either YUV or RGB pixel formats in
  1689. input, and accepts the options:
  1690. @table @option
  1691. @item c0
  1692. first pixel component
  1693. @item c1
  1694. second pixel component
  1695. @item c2
  1696. third pixel component
  1697. @item c3
  1698. fourth pixel component, corresponds to the alpha component
  1699. @end table
  1700. The exact component associated to each option depends on the format in
  1701. input.
  1702. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1703. accepts the options:
  1704. @table @option
  1705. @item r
  1706. red component
  1707. @item g
  1708. green component
  1709. @item b
  1710. blue component
  1711. @item a
  1712. alpha component
  1713. @end table
  1714. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1715. accepts the options:
  1716. @table @option
  1717. @item y
  1718. Y/luminance component
  1719. @item u
  1720. U/Cb component
  1721. @item v
  1722. V/Cr component
  1723. @item a
  1724. alpha component
  1725. @end table
  1726. The expressions can contain the following constants and functions:
  1727. @table @option
  1728. @item w, h
  1729. the input width and height
  1730. @item val
  1731. input value for the pixel component
  1732. @item clipval
  1733. the input value clipped in the @var{minval}-@var{maxval} range
  1734. @item maxval
  1735. maximum value for the pixel component
  1736. @item minval
  1737. minimum value for the pixel component
  1738. @item negval
  1739. the negated value for the pixel component value clipped in the
  1740. @var{minval}-@var{maxval} range , it corresponds to the expression
  1741. "maxval-clipval+minval"
  1742. @item clip(val)
  1743. the computed value in @var{val} clipped in the
  1744. @var{minval}-@var{maxval} range
  1745. @item gammaval(gamma)
  1746. the computed gamma correction value of the pixel component value
  1747. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1748. expression
  1749. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1750. @end table
  1751. All expressions default to "val".
  1752. Some examples follow:
  1753. @example
  1754. # negate input video
  1755. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1756. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1757. # the above is the same as
  1758. lutrgb="r=negval:g=negval:b=negval"
  1759. lutyuv="y=negval:u=negval:v=negval"
  1760. # negate luminance
  1761. lutyuv=y=negval
  1762. # remove chroma components, turns the video into a graytone image
  1763. lutyuv="u=128:v=128"
  1764. # apply a luma burning effect
  1765. lutyuv="y=2*val"
  1766. # remove green and blue components
  1767. lutrgb="g=0:b=0"
  1768. # set a constant alpha channel value on input
  1769. format=rgba,lutrgb=a="maxval-minval/2"
  1770. # correct luminance gamma by a 0.5 factor
  1771. lutyuv=y=gammaval(0.5)
  1772. @end example
  1773. @section mp
  1774. Apply an MPlayer filter to the input video.
  1775. This filter provides a wrapper around most of the filters of
  1776. MPlayer/MEncoder.
  1777. This wrapper is considered experimental. Some of the wrapped filters
  1778. may not work properly and we may drop support for them, as they will
  1779. be implemented natively into FFmpeg. Thus you should avoid
  1780. depending on them when writing portable scripts.
  1781. The filters accepts the parameters:
  1782. @var{filter_name}[:=]@var{filter_params}
  1783. @var{filter_name} is the name of a supported MPlayer filter,
  1784. @var{filter_params} is a string containing the parameters accepted by
  1785. the named filter.
  1786. The list of the currently supported filters follows:
  1787. @table @var
  1788. @item decimate
  1789. @item denoise3d
  1790. @item detc
  1791. @item dint
  1792. @item divtc
  1793. @item down3dright
  1794. @item dsize
  1795. @item eq2
  1796. @item eq
  1797. @item field
  1798. @item fil
  1799. @item fixpts
  1800. @item fspp
  1801. @item geq
  1802. @item harddup
  1803. @item hqdn3d
  1804. @item il
  1805. @item ilpack
  1806. @item ivtc
  1807. @item kerndeint
  1808. @item mcdeint
  1809. @item noise
  1810. @item ow
  1811. @item palette
  1812. @item perspective
  1813. @item phase
  1814. @item pp7
  1815. @item pullup
  1816. @item qp
  1817. @item rectangle
  1818. @item rotate
  1819. @item sab
  1820. @item smartblur
  1821. @item softpulldown
  1822. @item softskip
  1823. @item spp
  1824. @item telecine
  1825. @item tile
  1826. @item tinterlace
  1827. @item unsharp
  1828. @item uspp
  1829. @item yuvcsp
  1830. @item yvu9
  1831. @end table
  1832. The parameter syntax and behavior for the listed filters are the same
  1833. of the corresponding MPlayer filters. For detailed instructions check
  1834. the "VIDEO FILTERS" section in the MPlayer manual.
  1835. Some examples follow:
  1836. @example
  1837. # adjust gamma, brightness, contrast
  1838. mp=eq2=1.0:2:0.5
  1839. # tweak hue and saturation
  1840. mp=hue=100:-10
  1841. @end example
  1842. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1843. @section negate
  1844. Negate input video.
  1845. This filter accepts an integer in input, if non-zero it negates the
  1846. alpha component (if available). The default value in input is 0.
  1847. @section noformat
  1848. Force libavfilter not to use any of the specified pixel formats for the
  1849. input to the next filter.
  1850. The filter accepts a list of pixel format names, separated by ":",
  1851. for example "yuv420p:monow:rgb24".
  1852. Some examples follow:
  1853. @example
  1854. # force libavfilter to use a format different from "yuv420p" for the
  1855. # input to the vflip filter
  1856. noformat=yuv420p,vflip
  1857. # convert the input video to any of the formats not contained in the list
  1858. noformat=yuv420p:yuv444p:yuv410p
  1859. @end example
  1860. @section null
  1861. Pass the video source unchanged to the output.
  1862. @section ocv
  1863. Apply video transform using libopencv.
  1864. To enable this filter install libopencv library and headers and
  1865. configure FFmpeg with @code{--enable-libopencv}.
  1866. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1867. @var{filter_name} is the name of the libopencv filter to apply.
  1868. @var{filter_params} specifies the parameters to pass to the libopencv
  1869. filter. If not specified the default values are assumed.
  1870. Refer to the official libopencv documentation for more precise
  1871. information:
  1872. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1873. Follows the list of supported libopencv filters.
  1874. @anchor{dilate}
  1875. @subsection dilate
  1876. Dilate an image by using a specific structuring element.
  1877. This filter corresponds to the libopencv function @code{cvDilate}.
  1878. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1879. @var{struct_el} represents a structuring element, and has the syntax:
  1880. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1881. @var{cols} and @var{rows} represent the number of columns and rows of
  1882. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1883. point, and @var{shape} the shape for the structuring element, and
  1884. can be one of the values "rect", "cross", "ellipse", "custom".
  1885. If the value for @var{shape} is "custom", it must be followed by a
  1886. string of the form "=@var{filename}". The file with name
  1887. @var{filename} is assumed to represent a binary image, with each
  1888. printable character corresponding to a bright pixel. When a custom
  1889. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1890. or columns and rows of the read file are assumed instead.
  1891. The default value for @var{struct_el} is "3x3+0x0/rect".
  1892. @var{nb_iterations} specifies the number of times the transform is
  1893. applied to the image, and defaults to 1.
  1894. Follow some example:
  1895. @example
  1896. # use the default values
  1897. ocv=dilate
  1898. # dilate using a structuring element with a 5x5 cross, iterate two times
  1899. ocv=dilate=5x5+2x2/cross:2
  1900. # read the shape from the file diamond.shape, iterate two times
  1901. # the file diamond.shape may contain a pattern of characters like this:
  1902. # *
  1903. # ***
  1904. # *****
  1905. # ***
  1906. # *
  1907. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1908. ocv=0x0+2x2/custom=diamond.shape:2
  1909. @end example
  1910. @subsection erode
  1911. Erode an image by using a specific structuring element.
  1912. This filter corresponds to the libopencv function @code{cvErode}.
  1913. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1914. with the same syntax and semantics as the @ref{dilate} filter.
  1915. @subsection smooth
  1916. Smooth the input video.
  1917. The filter takes the following parameters:
  1918. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1919. @var{type} is the type of smooth filter to apply, and can be one of
  1920. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1921. "bilateral". The default value is "gaussian".
  1922. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1923. parameters whose meanings depend on smooth type. @var{param1} and
  1924. @var{param2} accept integer positive values or 0, @var{param3} and
  1925. @var{param4} accept float values.
  1926. The default value for @var{param1} is 3, the default value for the
  1927. other parameters is 0.
  1928. These parameters correspond to the parameters assigned to the
  1929. libopencv function @code{cvSmooth}.
  1930. @anchor{overlay}
  1931. @section overlay
  1932. Overlay one video on top of another.
  1933. It takes two inputs and one output, the first input is the "main"
  1934. video on which the second input is overlayed.
  1935. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1936. @var{x} is the x coordinate of the overlayed video on the main video,
  1937. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1938. the following parameters:
  1939. @table @option
  1940. @item main_w, main_h
  1941. main input width and height
  1942. @item W, H
  1943. same as @var{main_w} and @var{main_h}
  1944. @item overlay_w, overlay_h
  1945. overlay input width and height
  1946. @item w, h
  1947. same as @var{overlay_w} and @var{overlay_h}
  1948. @end table
  1949. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1950. separated by ":".
  1951. The description of the accepted options follows.
  1952. @table @option
  1953. @item rgb
  1954. If set to 1, force the filter to accept inputs in the RGB
  1955. color space. Default value is 0.
  1956. @end table
  1957. Be aware that frames are taken from each input video in timestamp
  1958. order, hence, if their initial timestamps differ, it is a a good idea
  1959. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1960. have them begin in the same zero timestamp, as it does the example for
  1961. the @var{movie} filter.
  1962. Follow some examples:
  1963. @example
  1964. # draw the overlay at 10 pixels from the bottom right
  1965. # corner of the main video.
  1966. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1967. # insert a transparent PNG logo in the bottom left corner of the input
  1968. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  1969. # insert 2 different transparent PNG logos (second logo on bottom
  1970. # right corner):
  1971. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  1972. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  1973. # add a transparent color layer on top of the main video,
  1974. # WxH specifies the size of the main input to the overlay filter
  1975. color=red@.3:WxH [over]; [in][over] overlay [out]
  1976. # play an original video and a filtered version (here with the deshake filter)
  1977. # side by side
  1978. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  1979. # the previous example is the same as:
  1980. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  1981. @end example
  1982. You can chain together more overlays but the efficiency of such
  1983. approach is yet to be tested.
  1984. @section pad
  1985. Add paddings to the input image, and places the original input at the
  1986. given coordinates @var{x}, @var{y}.
  1987. It accepts the following parameters:
  1988. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1989. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1990. expressions containing the following constants:
  1991. @table @option
  1992. @item in_w, in_h
  1993. the input video width and height
  1994. @item iw, ih
  1995. same as @var{in_w} and @var{in_h}
  1996. @item out_w, out_h
  1997. the output width and height, that is the size of the padded area as
  1998. specified by the @var{width} and @var{height} expressions
  1999. @item ow, oh
  2000. same as @var{out_w} and @var{out_h}
  2001. @item x, y
  2002. x and y offsets as specified by the @var{x} and @var{y}
  2003. expressions, or NAN if not yet specified
  2004. @item a
  2005. same as @var{iw} / @var{ih}
  2006. @item sar
  2007. input sample aspect ratio
  2008. @item dar
  2009. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2010. @item hsub, vsub
  2011. horizontal and vertical chroma subsample values. For example for the
  2012. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2013. @end table
  2014. Follows the description of the accepted parameters.
  2015. @table @option
  2016. @item width, height
  2017. Specify the size of the output image with the paddings added. If the
  2018. value for @var{width} or @var{height} is 0, the corresponding input size
  2019. is used for the output.
  2020. The @var{width} expression can reference the value set by the
  2021. @var{height} expression, and vice versa.
  2022. The default value of @var{width} and @var{height} is 0.
  2023. @item x, y
  2024. Specify the offsets where to place the input image in the padded area
  2025. with respect to the top/left border of the output image.
  2026. The @var{x} expression can reference the value set by the @var{y}
  2027. expression, and vice versa.
  2028. The default value of @var{x} and @var{y} is 0.
  2029. @item color
  2030. Specify the color of the padded area, it can be the name of a color
  2031. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2032. The default value of @var{color} is "black".
  2033. @end table
  2034. Some examples follow:
  2035. @example
  2036. # Add paddings with color "violet" to the input video. Output video
  2037. # size is 640x480, the top-left corner of the input video is placed at
  2038. # column 0, row 40.
  2039. pad=640:480:0:40:violet
  2040. # pad the input to get an output with dimensions increased bt 3/2,
  2041. # and put the input video at the center of the padded area
  2042. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2043. # pad the input to get a squared output with size equal to the maximum
  2044. # value between the input width and height, and put the input video at
  2045. # the center of the padded area
  2046. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2047. # pad the input to get a final w/h ratio of 16:9
  2048. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2049. # for anamorphic video, in order to set the output display aspect ratio,
  2050. # it is necessary to use sar in the expression, according to the relation:
  2051. # (ih * X / ih) * sar = output_dar
  2052. # X = output_dar / sar
  2053. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2054. # double output size and put the input video in the bottom-right
  2055. # corner of the output padded area
  2056. pad="2*iw:2*ih:ow-iw:oh-ih"
  2057. @end example
  2058. @section pixdesctest
  2059. Pixel format descriptor test filter, mainly useful for internal
  2060. testing. The output video should be equal to the input video.
  2061. For example:
  2062. @example
  2063. format=monow, pixdesctest
  2064. @end example
  2065. can be used to test the monowhite pixel format descriptor definition.
  2066. @section removelogo
  2067. Suppress a TV station logo, using an image file to determine which
  2068. pixels comprise the logo. It works by filling in the pixels that
  2069. comprise the logo with neighboring pixels.
  2070. This filter requires one argument which specifies the filter bitmap
  2071. file, which can be any image format supported by libavformat. The
  2072. width and height of the image file must match those of the video
  2073. stream being processed.
  2074. Pixels in the provided bitmap image with a value of zero are not
  2075. considered part of the logo, non-zero pixels are considered part of
  2076. the logo. If you use white (255) for the logo and black (0) for the
  2077. rest, you will be safe. For making the filter bitmap, it is
  2078. recommended to take a screen capture of a black frame with the logo
  2079. visible, and then using a threshold filter followed by the erode
  2080. filter once or twice.
  2081. If needed, little splotches can be fixed manually. Remember that if
  2082. logo pixels are not covered, the filter quality will be much
  2083. reduced. Marking too many pixels as part of the logo does not hurt as
  2084. much, but it will increase the amount of blurring needed to cover over
  2085. the image and will destroy more information than necessary, and extra
  2086. pixels will slow things down on a large logo.
  2087. @section scale
  2088. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  2089. The scale filter forces the output display aspect ratio to be the same
  2090. of the input, by changing the output sample aspect ratio.
  2091. The parameters @var{width} and @var{height} are expressions containing
  2092. the following constants:
  2093. @table @option
  2094. @item in_w, in_h
  2095. the input width and height
  2096. @item iw, ih
  2097. same as @var{in_w} and @var{in_h}
  2098. @item out_w, out_h
  2099. the output (cropped) width and height
  2100. @item ow, oh
  2101. same as @var{out_w} and @var{out_h}
  2102. @item a
  2103. same as @var{iw} / @var{ih}
  2104. @item sar
  2105. input sample aspect ratio
  2106. @item dar
  2107. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2108. @item hsub, vsub
  2109. horizontal and vertical chroma subsample values. For example for the
  2110. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2111. @end table
  2112. If the input image format is different from the format requested by
  2113. the next filter, the scale filter will convert the input to the
  2114. requested format.
  2115. If the value for @var{width} or @var{height} is 0, the respective input
  2116. size is used for the output.
  2117. If the value for @var{width} or @var{height} is -1, the scale filter will
  2118. use, for the respective output size, a value that maintains the aspect
  2119. ratio of the input image.
  2120. The default value of @var{width} and @var{height} is 0.
  2121. Valid values for the optional parameter @var{interl} are:
  2122. @table @option
  2123. @item 1
  2124. force interlaced aware scaling
  2125. @item -1
  2126. select interlaced aware scaling depending on whether the source frames
  2127. are flagged as interlaced or not
  2128. @end table
  2129. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  2130. Some examples follow:
  2131. @example
  2132. # scale the input video to a size of 200x100.
  2133. scale=200:100
  2134. # scale the input to 2x
  2135. scale=2*iw:2*ih
  2136. # the above is the same as
  2137. scale=2*in_w:2*in_h
  2138. # scale the input to 2x with forced interlaced scaling
  2139. scale=2*iw:2*ih:interl=1
  2140. # scale the input to half size
  2141. scale=iw/2:ih/2
  2142. # increase the width, and set the height to the same size
  2143. scale=3/2*iw:ow
  2144. # seek for Greek harmony
  2145. scale=iw:1/PHI*iw
  2146. scale=ih*PHI:ih
  2147. # increase the height, and set the width to 3/2 of the height
  2148. scale=3/2*oh:3/5*ih
  2149. # increase the size, but make the size a multiple of the chroma
  2150. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2151. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  2152. scale='min(500\, iw*3/2):-1'
  2153. @end example
  2154. @section select
  2155. Select frames to pass in output.
  2156. It accepts in input an expression, which is evaluated for each input
  2157. frame. If the expression is evaluated to a non-zero value, the frame
  2158. is selected and passed to the output, otherwise it is discarded.
  2159. The expression can contain the following constants:
  2160. @table @option
  2161. @item n
  2162. the sequential number of the filtered frame, starting from 0
  2163. @item selected_n
  2164. the sequential number of the selected frame, starting from 0
  2165. @item prev_selected_n
  2166. the sequential number of the last selected frame, NAN if undefined
  2167. @item TB
  2168. timebase of the input timestamps
  2169. @item pts
  2170. the PTS (Presentation TimeStamp) of the filtered video frame,
  2171. expressed in @var{TB} units, NAN if undefined
  2172. @item t
  2173. the PTS (Presentation TimeStamp) of the filtered video frame,
  2174. expressed in seconds, NAN if undefined
  2175. @item prev_pts
  2176. the PTS of the previously filtered video frame, NAN if undefined
  2177. @item prev_selected_pts
  2178. the PTS of the last previously filtered video frame, NAN if undefined
  2179. @item prev_selected_t
  2180. the PTS of the last previously selected video frame, NAN if undefined
  2181. @item start_pts
  2182. the PTS of the first video frame in the video, NAN if undefined
  2183. @item start_t
  2184. the time of the first video frame in the video, NAN if undefined
  2185. @item pict_type
  2186. the type of the filtered frame, can assume one of the following
  2187. values:
  2188. @table @option
  2189. @item I
  2190. @item P
  2191. @item B
  2192. @item S
  2193. @item SI
  2194. @item SP
  2195. @item BI
  2196. @end table
  2197. @item interlace_type
  2198. the frame interlace type, can assume one of the following values:
  2199. @table @option
  2200. @item PROGRESSIVE
  2201. the frame is progressive (not interlaced)
  2202. @item TOPFIRST
  2203. the frame is top-field-first
  2204. @item BOTTOMFIRST
  2205. the frame is bottom-field-first
  2206. @end table
  2207. @item key
  2208. 1 if the filtered frame is a key-frame, 0 otherwise
  2209. @item pos
  2210. the position in the file of the filtered frame, -1 if the information
  2211. is not available (e.g. for synthetic video)
  2212. @item scene
  2213. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2214. probability for the current frame to introduce a new scene, while a higher
  2215. value means the current frame is more likely to be one (see the example below)
  2216. @end table
  2217. The default value of the select expression is "1".
  2218. Some examples follow:
  2219. @example
  2220. # select all frames in input
  2221. select
  2222. # the above is the same as:
  2223. select=1
  2224. # skip all frames:
  2225. select=0
  2226. # select only I-frames
  2227. select='eq(pict_type\,I)'
  2228. # select one frame every 100
  2229. select='not(mod(n\,100))'
  2230. # select only frames contained in the 10-20 time interval
  2231. select='gte(t\,10)*lte(t\,20)'
  2232. # select only I frames contained in the 10-20 time interval
  2233. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2234. # select frames with a minimum distance of 10 seconds
  2235. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2236. @end example
  2237. Complete example to create a mosaic of the first scenes:
  2238. @example
  2239. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2240. @end example
  2241. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2242. choice.
  2243. @section setdar, setsar
  2244. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2245. output video.
  2246. This is done by changing the specified Sample (aka Pixel) Aspect
  2247. Ratio, according to the following equation:
  2248. @example
  2249. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2250. @end example
  2251. Keep in mind that the @code{setdar} filter does not modify the pixel
  2252. dimensions of the video frame. Also the display aspect ratio set by
  2253. this filter may be changed by later filters in the filterchain,
  2254. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2255. applied.
  2256. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2257. the filter output video.
  2258. Note that as a consequence of the application of this filter, the
  2259. output display aspect ratio will change according to the equation
  2260. above.
  2261. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2262. filter may be changed by later filters in the filterchain, e.g. if
  2263. another "setsar" or a "setdar" filter is applied.
  2264. The @code{setdar} and @code{setsar} filters accept a parameter string
  2265. which represents the wanted aspect ratio. The parameter can
  2266. be a floating point number string, an expression, or a string of the form
  2267. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  2268. and denominator of the aspect ratio. If the parameter is not
  2269. specified, it is assumed the value "0:1".
  2270. For example to change the display aspect ratio to 16:9, specify:
  2271. @example
  2272. setdar=16:9
  2273. @end example
  2274. The example above is equivalent to:
  2275. @example
  2276. setdar=1.77777
  2277. @end example
  2278. To change the sample aspect ratio to 10:11, specify:
  2279. @example
  2280. setsar=10:11
  2281. @end example
  2282. @section setfield
  2283. Force field for the output video frame.
  2284. The @code{setfield} filter marks the interlace type field for the
  2285. output frames. It does not change the input frame, but only sets the
  2286. corresponding property, which affects how the frame is treated by
  2287. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2288. It accepts a string parameter, which can assume the following values:
  2289. @table @samp
  2290. @item auto
  2291. Keep the same field property.
  2292. @item bff
  2293. Mark the frame as bottom-field-first.
  2294. @item tff
  2295. Mark the frame as top-field-first.
  2296. @item prog
  2297. Mark the frame as progressive.
  2298. @end table
  2299. @section asetpts, setpts
  2300. Change the PTS (presentation timestamp) of the input frames.
  2301. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  2302. Accept in input an expression evaluated through the eval API, which
  2303. can contain the following constants:
  2304. @table @option
  2305. @item PTS
  2306. the presentation timestamp in input
  2307. @item N
  2308. the count of the input frame, starting from 0.
  2309. @item NB_CONSUMED_SAMPLES
  2310. the number of consumed samples, not including the current frame (only
  2311. audio)
  2312. @item NB_SAMPLES
  2313. the number of samples in the current frame (only audio)
  2314. @item SAMPLE_RATE
  2315. audio sample rate
  2316. @item STARTPTS
  2317. the PTS of the first video frame
  2318. @item INTERLACED
  2319. tell if the current frame is interlaced
  2320. @item TB
  2321. the time base
  2322. @item POS
  2323. original position in the file of the frame, or undefined if undefined
  2324. for the current frame
  2325. @item PREV_INPTS
  2326. previous input PTS
  2327. @item PREV_OUTPTS
  2328. previous output PTS
  2329. @end table
  2330. Some examples follow:
  2331. @example
  2332. # start counting PTS from zero
  2333. setpts=PTS-STARTPTS
  2334. # fast motion
  2335. setpts=0.5*PTS
  2336. # slow motion
  2337. setpts=2.0*PTS
  2338. # fixed rate 25 fps
  2339. setpts=N/(25*TB)
  2340. # fixed rate 25 fps with some jitter
  2341. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  2342. # apply an offset of 10 seconds to the input PTS
  2343. setpts=PTS+10/TB
  2344. @end example
  2345. @section settb, asettb
  2346. Set the timebase to use for the output frames timestamps.
  2347. It is mainly useful for testing timebase configuration.
  2348. It accepts in input an arithmetic expression representing a rational.
  2349. The expression can contain the constants "AVTB" (the
  2350. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  2351. audio only).
  2352. The default value for the input is "intb".
  2353. Follow some examples.
  2354. @example
  2355. # set the timebase to 1/25
  2356. settb=1/25
  2357. # set the timebase to 1/10
  2358. settb=0.1
  2359. #set the timebase to 1001/1000
  2360. settb=1+0.001
  2361. #set the timebase to 2*intb
  2362. settb=2*intb
  2363. #set the default timebase value
  2364. settb=AVTB
  2365. @end example
  2366. @section showinfo
  2367. Show a line containing various information for each input video frame.
  2368. The input video is not modified.
  2369. The shown line contains a sequence of key/value pairs of the form
  2370. @var{key}:@var{value}.
  2371. A description of each shown parameter follows:
  2372. @table @option
  2373. @item n
  2374. sequential number of the input frame, starting from 0
  2375. @item pts
  2376. Presentation TimeStamp of the input frame, expressed as a number of
  2377. time base units. The time base unit depends on the filter input pad.
  2378. @item pts_time
  2379. Presentation TimeStamp of the input frame, expressed as a number of
  2380. seconds
  2381. @item pos
  2382. position of the frame in the input stream, -1 if this information in
  2383. unavailable and/or meaningless (for example in case of synthetic video)
  2384. @item fmt
  2385. pixel format name
  2386. @item sar
  2387. sample aspect ratio of the input frame, expressed in the form
  2388. @var{num}/@var{den}
  2389. @item s
  2390. size of the input frame, expressed in the form
  2391. @var{width}x@var{height}
  2392. @item i
  2393. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2394. for bottom field first)
  2395. @item iskey
  2396. 1 if the frame is a key frame, 0 otherwise
  2397. @item type
  2398. picture type of the input frame ("I" for an I-frame, "P" for a
  2399. P-frame, "B" for a B-frame, "?" for unknown type).
  2400. Check also the documentation of the @code{AVPictureType} enum and of
  2401. the @code{av_get_picture_type_char} function defined in
  2402. @file{libavutil/avutil.h}.
  2403. @item checksum
  2404. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2405. @item plane_checksum
  2406. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2407. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2408. @end table
  2409. @section slicify
  2410. Pass the images of input video on to next video filter as multiple
  2411. slices.
  2412. @example
  2413. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2414. @end example
  2415. The filter accepts the slice height as parameter. If the parameter is
  2416. not specified it will use the default value of 16.
  2417. Adding this in the beginning of filter chains should make filtering
  2418. faster due to better use of the memory cache.
  2419. @section split
  2420. Split input video into several identical outputs.
  2421. The filter accepts a single parameter which specifies the number of outputs. If
  2422. unspecified, it defaults to 2.
  2423. For example
  2424. @example
  2425. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2426. @end example
  2427. will create 5 copies of the input video.
  2428. For example:
  2429. @example
  2430. [in] split [splitout1][splitout2];
  2431. [splitout1] crop=100:100:0:0 [cropout];
  2432. [splitout2] pad=200:200:100:100 [padout];
  2433. @end example
  2434. will create two separate outputs from the same input, one cropped and
  2435. one padded.
  2436. @section super2xsai
  2437. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2438. Interpolate) pixel art scaling algorithm.
  2439. Useful for enlarging pixel art images without reducing sharpness.
  2440. @section swapuv
  2441. Swap U & V plane.
  2442. @section thumbnail
  2443. Select the most representative frame in a given sequence of consecutive frames.
  2444. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2445. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2446. the next batch of @var{N} frames until the end.
  2447. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2448. value will result in a higher memory usage, so a high value is not recommended.
  2449. The following example extract one picture each 50 frames:
  2450. @example
  2451. thumbnail=50
  2452. @end example
  2453. Complete example of a thumbnail creation with @command{ffmpeg}:
  2454. @example
  2455. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2456. @end example
  2457. @section tile
  2458. Tile several successive frames together.
  2459. It accepts as argument the tile size (i.e. the number of lines and columns)
  2460. in the form "@var{w}x@var{h}".
  2461. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2462. nokey}) in a movie:
  2463. @example
  2464. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2465. @end example
  2466. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2467. duplicating each output frame to accomodate the originally detected frame
  2468. rate.
  2469. @section tinterlace
  2470. Perform various types of temporal field interlacing.
  2471. Frames are counted starting from 1, so the first input frame is
  2472. considered odd.
  2473. This filter accepts a single parameter specifying the mode. Available
  2474. modes are:
  2475. @table @samp
  2476. @item merge, 0
  2477. Move odd frames into the upper field, even into the lower field,
  2478. generating a double height frame at half framerate.
  2479. @item drop_odd, 1
  2480. Only output even frames, odd frames are dropped, generating a frame with
  2481. unchanged height at half framerate.
  2482. @item drop_even, 2
  2483. Only output odd frames, even frames are dropped, generating a frame with
  2484. unchanged height at half framerate.
  2485. @item pad, 3
  2486. Expand each frame to full height, but pad alternate lines with black,
  2487. generating a frame with double height at the same input framerate.
  2488. @item interleave_top, 4
  2489. Interleave the upper field from odd frames with the lower field from
  2490. even frames, generating a frame with unchanged height at half framerate.
  2491. @item interleave_bottom, 5
  2492. Interleave the lower field from odd frames with the upper field from
  2493. even frames, generating a frame with unchanged height at half framerate.
  2494. @item interlacex2, 6
  2495. Double frame rate with unchanged height. Frames are inserted each
  2496. containing the second temporal field from the previous input frame and
  2497. the first temporal field from the next input frame. This mode relies on
  2498. the top_field_first flag. Useful for interlaced video displays with no
  2499. field synchronisation.
  2500. @end table
  2501. Numeric values are deprecated but are accepted for backward
  2502. compatibility reasons.
  2503. Default mode is @code{merge}.
  2504. @section transpose
  2505. Transpose rows with columns in the input video and optionally flip it.
  2506. It accepts a parameter representing an integer, which can assume the
  2507. values:
  2508. @table @samp
  2509. @item 0
  2510. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2511. @example
  2512. L.R L.l
  2513. . . -> . .
  2514. l.r R.r
  2515. @end example
  2516. @item 1
  2517. Rotate by 90 degrees clockwise, that is:
  2518. @example
  2519. L.R l.L
  2520. . . -> . .
  2521. l.r r.R
  2522. @end example
  2523. @item 2
  2524. Rotate by 90 degrees counterclockwise, that is:
  2525. @example
  2526. L.R R.r
  2527. . . -> . .
  2528. l.r L.l
  2529. @end example
  2530. @item 3
  2531. Rotate by 90 degrees clockwise and vertically flip, that is:
  2532. @example
  2533. L.R r.R
  2534. . . -> . .
  2535. l.r l.L
  2536. @end example
  2537. @end table
  2538. @section unsharp
  2539. Sharpen or blur the input video.
  2540. It accepts the following parameters:
  2541. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2542. Negative values for the amount will blur the input video, while positive
  2543. values will sharpen. All parameters are optional and default to the
  2544. equivalent of the string '5:5:1.0:5:5:0.0'.
  2545. @table @option
  2546. @item luma_msize_x
  2547. Set the luma matrix horizontal size. It can be an integer between 3
  2548. and 13, default value is 5.
  2549. @item luma_msize_y
  2550. Set the luma matrix vertical size. It can be an integer between 3
  2551. and 13, default value is 5.
  2552. @item luma_amount
  2553. Set the luma effect strength. It can be a float number between -2.0
  2554. and 5.0, default value is 1.0.
  2555. @item chroma_msize_x
  2556. Set the chroma matrix horizontal size. It can be an integer between 3
  2557. and 13, default value is 5.
  2558. @item chroma_msize_y
  2559. Set the chroma matrix vertical size. It can be an integer between 3
  2560. and 13, default value is 5.
  2561. @item chroma_amount
  2562. Set the chroma effect strength. It can be a float number between -2.0
  2563. and 5.0, default value is 0.0.
  2564. @end table
  2565. @example
  2566. # Strong luma sharpen effect parameters
  2567. unsharp=7:7:2.5
  2568. # Strong blur of both luma and chroma parameters
  2569. unsharp=7:7:-2:7:7:-2
  2570. # Use the default values with @command{ffmpeg}
  2571. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2572. @end example
  2573. @section vflip
  2574. Flip the input video vertically.
  2575. @example
  2576. ffmpeg -i in.avi -vf "vflip" out.avi
  2577. @end example
  2578. @section yadif
  2579. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2580. filter").
  2581. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2582. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2583. following values:
  2584. @table @option
  2585. @item 0
  2586. output 1 frame for each frame
  2587. @item 1
  2588. output 1 frame for each field
  2589. @item 2
  2590. like 0 but skips spatial interlacing check
  2591. @item 3
  2592. like 1 but skips spatial interlacing check
  2593. @end table
  2594. Default value is 0.
  2595. @var{parity} specifies the picture field parity assumed for the input
  2596. interlaced video, accepts one of the following values:
  2597. @table @option
  2598. @item 0
  2599. assume top field first
  2600. @item 1
  2601. assume bottom field first
  2602. @item -1
  2603. enable automatic detection
  2604. @end table
  2605. Default value is -1.
  2606. If interlacing is unknown or decoder does not export this information,
  2607. top field first will be assumed.
  2608. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2609. and only deinterlace frames marked as interlaced
  2610. @table @option
  2611. @item 0
  2612. deinterlace all frames
  2613. @item 1
  2614. only deinterlace frames marked as interlaced
  2615. @end table
  2616. Default value is 0.
  2617. @c man end VIDEO FILTERS
  2618. @chapter Video Sources
  2619. @c man begin VIDEO SOURCES
  2620. Below is a description of the currently available video sources.
  2621. @section buffer
  2622. Buffer video frames, and make them available to the filter chain.
  2623. This source is mainly intended for a programmatic use, in particular
  2624. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2625. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2626. separated by ":". A descroption of the accepted options follows.
  2627. @table @option
  2628. @item video_size
  2629. Specify the size (width and height) of the buffered video frames.
  2630. @item pix_fmt
  2631. A string representing the pixel format of the buffered video frames.
  2632. It may be a number corresponding to a pixel format, or a pixel format
  2633. name.
  2634. @item time_base
  2635. Specify the timebase assumed by the timestamps of the buffered frames.
  2636. @item time_base
  2637. Specify the frame rate expected for the video stream.
  2638. @item pixel_aspect
  2639. Specify the sample aspect ratio assumed by the video frames.
  2640. @item sws_param
  2641. Specify the optional parameters to be used for the scale filter which
  2642. is automatically inserted when an input change is detected in the
  2643. input size or format.
  2644. @end table
  2645. For example:
  2646. @example
  2647. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  2648. @end example
  2649. will instruct the source to accept video frames with size 320x240 and
  2650. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2651. square pixels (1:1 sample aspect ratio).
  2652. Since the pixel format with name "yuv410p" corresponds to the number 6
  2653. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2654. this example corresponds to:
  2655. @example
  2656. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  2657. @end example
  2658. Alternatively, the options can be specified as a flat string, but this
  2659. syntax is deprecated:
  2660. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  2661. @section cellauto
  2662. Create a pattern generated by an elementary cellular automaton.
  2663. The initial state of the cellular automaton can be defined through the
  2664. @option{filename}, and @option{pattern} options. If such options are
  2665. not specified an initial state is created randomly.
  2666. At each new frame a new row in the video is filled with the result of
  2667. the cellular automaton next generation. The behavior when the whole
  2668. frame is filled is defined by the @option{scroll} option.
  2669. This source accepts a list of options in the form of
  2670. @var{key}=@var{value} pairs separated by ":". A description of the
  2671. accepted options follows.
  2672. @table @option
  2673. @item filename, f
  2674. Read the initial cellular automaton state, i.e. the starting row, from
  2675. the specified file.
  2676. In the file, each non-whitespace character is considered an alive
  2677. cell, a newline will terminate the row, and further characters in the
  2678. file will be ignored.
  2679. @item pattern, p
  2680. Read the initial cellular automaton state, i.e. the starting row, from
  2681. the specified string.
  2682. Each non-whitespace character in the string is considered an alive
  2683. cell, a newline will terminate the row, and further characters in the
  2684. string will be ignored.
  2685. @item rate, r
  2686. Set the video rate, that is the number of frames generated per second.
  2687. Default is 25.
  2688. @item random_fill_ratio, ratio
  2689. Set the random fill ratio for the initial cellular automaton row. It
  2690. is a floating point number value ranging from 0 to 1, defaults to
  2691. 1/PHI.
  2692. This option is ignored when a file or a pattern is specified.
  2693. @item random_seed, seed
  2694. Set the seed for filling randomly the initial row, must be an integer
  2695. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2696. set to -1, the filter will try to use a good random seed on a best
  2697. effort basis.
  2698. @item rule
  2699. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2700. Default value is 110.
  2701. @item size, s
  2702. Set the size of the output video.
  2703. If @option{filename} or @option{pattern} is specified, the size is set
  2704. by default to the width of the specified initial state row, and the
  2705. height is set to @var{width} * PHI.
  2706. If @option{size} is set, it must contain the width of the specified
  2707. pattern string, and the specified pattern will be centered in the
  2708. larger row.
  2709. If a filename or a pattern string is not specified, the size value
  2710. defaults to "320x518" (used for a randomly generated initial state).
  2711. @item scroll
  2712. If set to 1, scroll the output upward when all the rows in the output
  2713. have been already filled. If set to 0, the new generated row will be
  2714. written over the top row just after the bottom row is filled.
  2715. Defaults to 1.
  2716. @item start_full, full
  2717. If set to 1, completely fill the output with generated rows before
  2718. outputting the first frame.
  2719. This is the default behavior, for disabling set the value to 0.
  2720. @item stitch
  2721. If set to 1, stitch the left and right row edges together.
  2722. This is the default behavior, for disabling set the value to 0.
  2723. @end table
  2724. @subsection Examples
  2725. @itemize
  2726. @item
  2727. Read the initial state from @file{pattern}, and specify an output of
  2728. size 200x400.
  2729. @example
  2730. cellauto=f=pattern:s=200x400
  2731. @end example
  2732. @item
  2733. Generate a random initial row with a width of 200 cells, with a fill
  2734. ratio of 2/3:
  2735. @example
  2736. cellauto=ratio=2/3:s=200x200
  2737. @end example
  2738. @item
  2739. Create a pattern generated by rule 18 starting by a single alive cell
  2740. centered on an initial row with width 100:
  2741. @example
  2742. cellauto=p=@@:s=100x400:full=0:rule=18
  2743. @end example
  2744. @item
  2745. Specify a more elaborated initial pattern:
  2746. @example
  2747. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2748. @end example
  2749. @end itemize
  2750. @section mandelbrot
  2751. Generate a Mandelbrot set fractal, and progressively zoom towards the
  2752. point specified with @var{start_x} and @var{start_y}.
  2753. This source accepts a list of options in the form of
  2754. @var{key}=@var{value} pairs separated by ":". A description of the
  2755. accepted options follows.
  2756. @table @option
  2757. @item end_pts
  2758. Set the terminal pts value. Default value is 400.
  2759. @item end_scale
  2760. Set the terminal scale value.
  2761. Must be a floating point value. Default value is 0.3.
  2762. @item inner
  2763. Set the inner coloring mode, that is the algorithm used to draw the
  2764. Mandelbrot fractal internal region.
  2765. It shall assume one of the following values:
  2766. @table @option
  2767. @item black
  2768. Set black mode.
  2769. @item convergence
  2770. Show time until convergence.
  2771. @item mincol
  2772. Set color based on point closest to the origin of the iterations.
  2773. @item period
  2774. Set period mode.
  2775. @end table
  2776. Default value is @var{mincol}.
  2777. @item bailout
  2778. Set the bailout value. Default value is 10.0.
  2779. @item maxiter
  2780. Set the maximum of iterations performed by the rendering
  2781. algorithm. Default value is 7189.
  2782. @item outer
  2783. Set outer coloring mode.
  2784. It shall assume one of following values:
  2785. @table @option
  2786. @item iteration_count
  2787. Set iteration cound mode.
  2788. @item normalized_iteration_count
  2789. set normalized iteration count mode.
  2790. @end table
  2791. Default value is @var{normalized_iteration_count}.
  2792. @item rate, r
  2793. Set frame rate, expressed as number of frames per second. Default
  2794. value is "25".
  2795. @item size, s
  2796. Set frame size. Default value is "640x480".
  2797. @item start_scale
  2798. Set the initial scale value. Default value is 3.0.
  2799. @item start_x
  2800. Set the initial x position. Must be a floating point value between
  2801. -100 and 100. Default value is -0.743643887037158704752191506114774.
  2802. @item start_y
  2803. Set the initial y position. Must be a floating point value between
  2804. -100 and 100. Default value is -0.131825904205311970493132056385139.
  2805. @end table
  2806. @section mptestsrc
  2807. Generate various test patterns, as generated by the MPlayer test filter.
  2808. The size of the generated video is fixed, and is 256x256.
  2809. This source is useful in particular for testing encoding features.
  2810. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2811. separated by ":". The description of the accepted options follows.
  2812. @table @option
  2813. @item rate, r
  2814. Specify the frame rate of the sourced video, as the number of frames
  2815. generated per second. It has to be a string in the format
  2816. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2817. number or a valid video frame rate abbreviation. The default value is
  2818. "25".
  2819. @item duration, d
  2820. Set the video duration of the sourced video. The accepted syntax is:
  2821. @example
  2822. [-]HH:MM:SS[.m...]
  2823. [-]S+[.m...]
  2824. @end example
  2825. See also the function @code{av_parse_time()}.
  2826. If not specified, or the expressed duration is negative, the video is
  2827. supposed to be generated forever.
  2828. @item test, t
  2829. Set the number or the name of the test to perform. Supported tests are:
  2830. @table @option
  2831. @item dc_luma
  2832. @item dc_chroma
  2833. @item freq_luma
  2834. @item freq_chroma
  2835. @item amp_luma
  2836. @item amp_chroma
  2837. @item cbp
  2838. @item mv
  2839. @item ring1
  2840. @item ring2
  2841. @item all
  2842. @end table
  2843. Default value is "all", which will cycle through the list of all tests.
  2844. @end table
  2845. For example the following:
  2846. @example
  2847. testsrc=t=dc_luma
  2848. @end example
  2849. will generate a "dc_luma" test pattern.
  2850. @section frei0r_src
  2851. Provide a frei0r source.
  2852. To enable compilation of this filter you need to install the frei0r
  2853. header and configure FFmpeg with @code{--enable-frei0r}.
  2854. The source supports the syntax:
  2855. @example
  2856. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2857. @end example
  2858. @var{size} is the size of the video to generate, may be a string of the
  2859. form @var{width}x@var{height} or a frame size abbreviation.
  2860. @var{rate} is the rate of the video to generate, may be a string of
  2861. the form @var{num}/@var{den} or a frame rate abbreviation.
  2862. @var{src_name} is the name to the frei0r source to load. For more
  2863. information regarding frei0r and how to set the parameters read the
  2864. section @ref{frei0r} in the description of the video filters.
  2865. For example, to generate a frei0r partik0l source with size 200x200
  2866. and frame rate 10 which is overlayed on the overlay filter main input:
  2867. @example
  2868. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2869. @end example
  2870. @section life
  2871. Generate a life pattern.
  2872. This source is based on a generalization of John Conway's life game.
  2873. The sourced input represents a life grid, each pixel represents a cell
  2874. which can be in one of two possible states, alive or dead. Every cell
  2875. interacts with its eight neighbours, which are the cells that are
  2876. horizontally, vertically, or diagonally adjacent.
  2877. At each interaction the grid evolves according to the adopted rule,
  2878. which specifies the number of neighbor alive cells which will make a
  2879. cell stay alive or born. The @option{rule} option allows to specify
  2880. the rule to adopt.
  2881. This source accepts a list of options in the form of
  2882. @var{key}=@var{value} pairs separated by ":". A description of the
  2883. accepted options follows.
  2884. @table @option
  2885. @item filename, f
  2886. Set the file from which to read the initial grid state. In the file,
  2887. each non-whitespace character is considered an alive cell, and newline
  2888. is used to delimit the end of each row.
  2889. If this option is not specified, the initial grid is generated
  2890. randomly.
  2891. @item rate, r
  2892. Set the video rate, that is the number of frames generated per second.
  2893. Default is 25.
  2894. @item random_fill_ratio, ratio
  2895. Set the random fill ratio for the initial random grid. It is a
  2896. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2897. It is ignored when a file is specified.
  2898. @item random_seed, seed
  2899. Set the seed for filling the initial random grid, must be an integer
  2900. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2901. set to -1, the filter will try to use a good random seed on a best
  2902. effort basis.
  2903. @item rule
  2904. Set the life rule.
  2905. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2906. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2907. @var{NS} specifies the number of alive neighbor cells which make a
  2908. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2909. which make a dead cell to become alive (i.e. to "born").
  2910. "s" and "b" can be used in place of "S" and "B", respectively.
  2911. Alternatively a rule can be specified by an 18-bits integer. The 9
  2912. high order bits are used to encode the next cell state if it is alive
  2913. for each number of neighbor alive cells, the low order bits specify
  2914. the rule for "borning" new cells. Higher order bits encode for an
  2915. higher number of neighbor cells.
  2916. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2917. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2918. Default value is "S23/B3", which is the original Conway's game of life
  2919. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2920. cells, and will born a new cell if there are three alive cells around
  2921. a dead cell.
  2922. @item size, s
  2923. Set the size of the output video.
  2924. If @option{filename} is specified, the size is set by default to the
  2925. same size of the input file. If @option{size} is set, it must contain
  2926. the size specified in the input file, and the initial grid defined in
  2927. that file is centered in the larger resulting area.
  2928. If a filename is not specified, the size value defaults to "320x240"
  2929. (used for a randomly generated initial grid).
  2930. @item stitch
  2931. If set to 1, stitch the left and right grid edges together, and the
  2932. top and bottom edges also. Defaults to 1.
  2933. @item mold
  2934. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2935. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2936. value from 0 to 255.
  2937. @item life_color
  2938. Set the color of living (or new born) cells.
  2939. @item death_color
  2940. Set the color of dead cells. If @option{mold} is set, this is the first color
  2941. used to represent a dead cell.
  2942. @item mold_color
  2943. Set mold color, for definitely dead and moldy cells.
  2944. @end table
  2945. @subsection Examples
  2946. @itemize
  2947. @item
  2948. Read a grid from @file{pattern}, and center it on a grid of size
  2949. 300x300 pixels:
  2950. @example
  2951. life=f=pattern:s=300x300
  2952. @end example
  2953. @item
  2954. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2955. @example
  2956. life=ratio=2/3:s=200x200
  2957. @end example
  2958. @item
  2959. Specify a custom rule for evolving a randomly generated grid:
  2960. @example
  2961. life=rule=S14/B34
  2962. @end example
  2963. @item
  2964. Full example with slow death effect (mold) using @command{ffplay}:
  2965. @example
  2966. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2967. @end example
  2968. @end itemize
  2969. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  2970. The @code{color} source provides an uniformly colored input.
  2971. The @code{nullsrc} source returns unprocessed video frames. It is
  2972. mainly useful to be employed in analysis / debugging tools, or as the
  2973. source for filters which ignore the input data.
  2974. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2975. detecting RGB vs BGR issues. You should see a red, green and blue
  2976. stripe from top to bottom.
  2977. The @code{smptebars} source generates a color bars pattern, based on
  2978. the SMPTE Engineering Guideline EG 1-1990.
  2979. The @code{testsrc} source generates a test video pattern, showing a
  2980. color pattern, a scrolling gradient and a timestamp. This is mainly
  2981. intended for testing purposes.
  2982. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2983. separated by ":". The description of the accepted options follows.
  2984. @table @option
  2985. @item color, c
  2986. Specify the color of the source, only used in the @code{color}
  2987. source. It can be the name of a color (case insensitive match) or a
  2988. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  2989. default value is "black".
  2990. @item size, s
  2991. Specify the size of the sourced video, it may be a string of the form
  2992. @var{width}x@var{height}, or the name of a size abbreviation. The
  2993. default value is "320x240".
  2994. @item rate, r
  2995. Specify the frame rate of the sourced video, as the number of frames
  2996. generated per second. It has to be a string in the format
  2997. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2998. number or a valid video frame rate abbreviation. The default value is
  2999. "25".
  3000. @item sar
  3001. Set the sample aspect ratio of the sourced video.
  3002. @item duration, d
  3003. Set the video duration of the sourced video. The accepted syntax is:
  3004. @example
  3005. [-]HH[:MM[:SS[.m...]]]
  3006. [-]S+[.m...]
  3007. @end example
  3008. See also the function @code{av_parse_time()}.
  3009. If not specified, or the expressed duration is negative, the video is
  3010. supposed to be generated forever.
  3011. @item decimals, n
  3012. Set the number of decimals to show in the timestamp, only used in the
  3013. @code{testsrc} source.
  3014. The displayed timestamp value will correspond to the original
  3015. timestamp value multiplied by the power of 10 of the specified
  3016. value. Default value is 0.
  3017. @end table
  3018. For example the following:
  3019. @example
  3020. testsrc=duration=5.3:size=qcif:rate=10
  3021. @end example
  3022. will generate a video with a duration of 5.3 seconds, with size
  3023. 176x144 and a frame rate of 10 frames per second.
  3024. The following graph description will generate a red source
  3025. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3026. frames per second.
  3027. @example
  3028. color=c=red@@0.2:s=qcif:r=10
  3029. @end example
  3030. If the input content is to be ignored, @code{nullsrc} can be used. The
  3031. following command generates noise in the luminance plane by employing
  3032. the @code{mp=geq} filter:
  3033. @example
  3034. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  3035. @end example
  3036. @c man end VIDEO SOURCES
  3037. @chapter Video Sinks
  3038. @c man begin VIDEO SINKS
  3039. Below is a description of the currently available video sinks.
  3040. @section buffersink
  3041. Buffer video frames, and make them available to the end of the filter
  3042. graph.
  3043. This sink is mainly intended for a programmatic use, in particular
  3044. through the interface defined in @file{libavfilter/buffersink.h}.
  3045. It does not require a string parameter in input, but you need to
  3046. specify a pointer to a list of supported pixel formats terminated by
  3047. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3048. when initializing this sink.
  3049. @section nullsink
  3050. Null video sink, do absolutely nothing with the input video. It is
  3051. mainly useful as a template and to be employed in analysis / debugging
  3052. tools.
  3053. @c man end VIDEO SINKS
  3054. @chapter Multimedia Filters
  3055. @c man begin MULTIMEDIA FILTERS
  3056. Below is a description of the currently available multimedia filters.
  3057. @section concat
  3058. Concatenate audio and video streams, joining them together one after the
  3059. other.
  3060. The filter works on segments of synchronized video and audio streams. All
  3061. segments must have the same number of streams of each type, and that will
  3062. also be the number of streams at output.
  3063. The filter accepts the following named parameters:
  3064. @table @option
  3065. @item n
  3066. Set the number of segments. Default is 2.
  3067. @item v
  3068. Set the number of output video streams, that is also the number of video
  3069. streams in each segment. Default is 1.
  3070. @item a
  3071. Set the number of output audio streams, that is also the number of video
  3072. streams in each segment. Default is 0.
  3073. @end table
  3074. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3075. @var{a} audio outputs.
  3076. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3077. segment, in the same order as the outputs, then the inputs for the second
  3078. segment, etc.
  3079. Related streams do not always have exactly the same duration, for various
  3080. reasons including codec frame size or sloppy authoring. For that reason,
  3081. related synchronized streams (e.g. a video and its audio track) should be
  3082. concatenated at once. The concat filter will use the duration of the longest
  3083. stream in each segment (except the last one), and if necessary pad shorter
  3084. audio streams with silence.
  3085. For this filter to work correctly, all segments must start at timestamp 0.
  3086. All corresponding streams must have the same parameters in all segments; the
  3087. filtering system will automatically select a common pixel format for video
  3088. streams, and a common sample format, sample rate and channel layout for
  3089. audio streams, but other settings, such as resolution, must be converted
  3090. explicitly by the user.
  3091. Different frame rates are acceptable but will result in variable frame rate
  3092. at output; be sure to configure the output file to handle it.
  3093. Examples:
  3094. @itemize
  3095. @item
  3096. Concatenate an opening, an episode and an ending, all in bilingual version
  3097. (video in stream 0, audio in streams 1 and 2):
  3098. @example
  3099. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3100. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3101. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3102. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3103. @end example
  3104. @item
  3105. Concatenate two parts, handling audio and video separately, using the
  3106. (a)movie sources, and adjusting the resolution:
  3107. @example
  3108. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3109. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3110. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3111. @end example
  3112. Note that a desync will happen at the stitch if the audio and video streams
  3113. do not have exactly the same duration in the first file.
  3114. @end itemize
  3115. @section showwaves
  3116. Convert input audio to a video output, representing the samples waves.
  3117. The filter accepts the following named parameters:
  3118. @table @option
  3119. @item n
  3120. Set the number of samples which are printed on the same column. A
  3121. larger value will decrease the frame rate. Must be a positive
  3122. integer. This option can be set only if the value for @var{rate}
  3123. is not explicitly specified.
  3124. @item rate, r
  3125. Set the (approximate) output frame rate. This is done by setting the
  3126. option @var{n}. Default value is "25".
  3127. @item size, s
  3128. Specify the video size for the output. Default value is "600x240".
  3129. @end table
  3130. Some examples follow.
  3131. @itemize
  3132. @item
  3133. Output the input file audio and the corresponding video representation
  3134. at the same time:
  3135. @example
  3136. amovie=a.mp3,asplit[out0],showwaves[out1]
  3137. @end example
  3138. @item
  3139. Create a synthetic signal and show it with showwaves, forcing a
  3140. framerate of 30 frames per second:
  3141. @example
  3142. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3143. @end example
  3144. @end itemize
  3145. @c man end MULTIMEDIA FILTERS
  3146. @chapter Multimedia Sources
  3147. @c man begin MULTIMEDIA SOURCES
  3148. Below is a description of the currently available multimedia sources.
  3149. @section amovie
  3150. This is the same as @ref{src_movie} source, except it selects an audio
  3151. stream by default.
  3152. @anchor{src_movie}
  3153. @section movie
  3154. Read audio and/or video stream(s) from a movie container.
  3155. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3156. @var{movie_name} is the name of the resource to read (not necessarily
  3157. a file but also a device or a stream accessed through some protocol),
  3158. and @var{options} is an optional sequence of @var{key}=@var{value}
  3159. pairs, separated by ":".
  3160. The description of the accepted options follows.
  3161. @table @option
  3162. @item format_name, f
  3163. Specifies the format assumed for the movie to read, and can be either
  3164. the name of a container or an input device. If not specified the
  3165. format is guessed from @var{movie_name} or by probing.
  3166. @item seek_point, sp
  3167. Specifies the seek point in seconds, the frames will be output
  3168. starting from this seek point, the parameter is evaluated with
  3169. @code{av_strtod} so the numerical value may be suffixed by an IS
  3170. postfix. Default value is "0".
  3171. @item streams, s
  3172. Specifies the streams to read. Several streams can be specified, separated
  3173. by "+". The source will then have as many outputs, in the same order. The
  3174. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3175. names, "dv" and "da" specify respectively the default (best suited) video
  3176. and audio stream. Default is "dv", or "da" if the filter is called as
  3177. "amovie".
  3178. @item stream_index, si
  3179. Specifies the index of the video stream to read. If the value is -1,
  3180. the best suited video stream will be automatically selected. Default
  3181. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3182. audio instead of video.
  3183. @item loop
  3184. Specifies how many times to read the stream in sequence.
  3185. If the value is less than 1, the stream will be read again and again.
  3186. Default value is "1".
  3187. Note that when the movie is looped the source timestamps are not
  3188. changed, so it will generate non monotonically increasing timestamps.
  3189. @end table
  3190. This filter allows to overlay a second video on top of main input of
  3191. a filtergraph as shown in this graph:
  3192. @example
  3193. input -----------> deltapts0 --> overlay --> output
  3194. ^
  3195. |
  3196. movie --> scale--> deltapts1 -------+
  3197. @end example
  3198. Some examples follow.
  3199. @itemize
  3200. @item
  3201. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3202. on top of the input labelled as "in":
  3203. @example
  3204. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3205. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3206. @end example
  3207. @item
  3208. Read from a video4linux2 device, and overlay it on top of the input
  3209. labelled as "in":
  3210. @example
  3211. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3212. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3213. @end example
  3214. @item
  3215. Read the first video stream and the audio stream with id 0x81 from
  3216. dvd.vob; the video is connected to the pad named "video" and the audio is
  3217. connected to the pad named "audio":
  3218. @example
  3219. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3220. @end example
  3221. @end itemize
  3222. @c man end MULTIMEDIA SOURCES