You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

463 lines
14KB

  1. /*
  2. * Ut Video decoder
  3. * Copyright (c) 2011 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Ut Video decoder
  24. */
  25. #include <stdlib.h>
  26. #include "libavutil/intreadwrite.h"
  27. #include "avcodec.h"
  28. #include "bytestream.h"
  29. #include "get_bits.h"
  30. #include "dsputil.h"
  31. enum {
  32. PRED_NONE = 0,
  33. PRED_LEFT,
  34. PRED_GRADIENT,
  35. PRED_MEDIAN,
  36. };
  37. typedef struct UtvideoContext {
  38. AVCodecContext *avctx;
  39. AVFrame pic;
  40. DSPContext dsp;
  41. uint32_t frame_info_size, flags, frame_info;
  42. int planes;
  43. int slices;
  44. int compression;
  45. int interlaced;
  46. int frame_pred;
  47. uint8_t *slice_bits;
  48. int slice_bits_size;
  49. } UtvideoContext;
  50. typedef struct HuffEntry {
  51. uint8_t sym;
  52. uint8_t len;
  53. } HuffEntry;
  54. static int huff_cmp(const void *a, const void *b)
  55. {
  56. const HuffEntry *aa = a, *bb = b;
  57. return (aa->len - bb->len)*256 + aa->sym - bb->sym;
  58. }
  59. static int build_huff(const uint8_t *src, VLC *vlc)
  60. {
  61. int i;
  62. HuffEntry he[256];
  63. int last;
  64. uint32_t codes[256];
  65. uint8_t bits[256];
  66. uint8_t syms[256];
  67. uint32_t code;
  68. for (i = 0; i < 256; i++) {
  69. he[i].sym = i;
  70. he[i].len = *src++;
  71. }
  72. qsort(he, 256, sizeof(*he), huff_cmp);
  73. if (!he[0].len || he[0].len > 32)
  74. return -1;
  75. last = 255;
  76. while (he[last].len == 255 && last)
  77. last--;
  78. code = 1;
  79. for (i = last; i >= 0; i--) {
  80. codes[i] = code >> (32 - he[i].len);
  81. bits[i] = he[i].len;
  82. syms[i] = he[i].sym;
  83. code += 0x80000000u >> (he[i].len - 1);
  84. }
  85. return init_vlc_sparse(vlc, FFMIN(he[last].len, 9), last + 1,
  86. bits, sizeof(*bits), sizeof(*bits),
  87. codes, sizeof(*codes), sizeof(*codes),
  88. syms, sizeof(*syms), sizeof(*syms), 0);
  89. }
  90. static int decode_plane(UtvideoContext *c, int plane_no,
  91. uint8_t *dst, int step, int stride,
  92. int width, int height,
  93. const uint8_t *src, int src_size, int use_pred)
  94. {
  95. int i, j, slice, pix;
  96. int sstart, send;
  97. VLC vlc;
  98. GetBitContext gb;
  99. int prev;
  100. const int cmask = ~(!plane_no && c->avctx->pix_fmt == PIX_FMT_YUV420P);
  101. if (build_huff(src, &vlc)) {
  102. av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
  103. return AVERROR_INVALIDDATA;
  104. }
  105. src += 256;
  106. src_size -= 256;
  107. send = 0;
  108. for (slice = 0; slice < c->slices; slice++) {
  109. uint8_t *dest;
  110. int slice_data_start, slice_data_end, slice_size;
  111. sstart = send;
  112. send = (height * (slice + 1) / c->slices) & cmask;
  113. dest = dst + sstart * stride;
  114. // slice offset and size validation was done earlier
  115. slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
  116. slice_data_end = AV_RL32(src + slice * 4);
  117. slice_size = slice_data_end - slice_data_start;
  118. if (!slice_size) {
  119. for (j = sstart; j < send; j++) {
  120. for (i = 0; i < width * step; i += step)
  121. dest[i] = 0x80;
  122. dest += stride;
  123. }
  124. continue;
  125. }
  126. memcpy(c->slice_bits, src + slice_data_start + c->slices * 4, slice_size);
  127. memset(c->slice_bits + slice_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  128. c->dsp.bswap_buf((uint32_t*)c->slice_bits, (uint32_t*)c->slice_bits,
  129. (slice_data_end - slice_data_start + 3) >> 2);
  130. init_get_bits(&gb, c->slice_bits, slice_size * 8);
  131. prev = 0x80;
  132. for (j = sstart; j < send; j++) {
  133. for (i = 0; i < width * step; i += step) {
  134. if (get_bits_left(&gb) <= 0) {
  135. av_log(c->avctx, AV_LOG_ERROR, "Slice decoding ran out of bits\n");
  136. goto fail;
  137. }
  138. pix = get_vlc2(&gb, vlc.table, vlc.bits, 4);
  139. if (pix < 0) {
  140. av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
  141. goto fail;
  142. }
  143. if (use_pred) {
  144. prev += pix;
  145. pix = prev;
  146. }
  147. dest[i] = pix;
  148. }
  149. dest += stride;
  150. }
  151. if (get_bits_left(&gb) > 32)
  152. av_log(c->avctx, AV_LOG_WARNING, "%d bits left after decoding slice\n",
  153. get_bits_left(&gb));
  154. }
  155. free_vlc(&vlc);
  156. return 0;
  157. fail:
  158. free_vlc(&vlc);
  159. return AVERROR_INVALIDDATA;
  160. }
  161. static const int rgb_order[4] = { 1, 2, 0, 3 };
  162. static void restore_rgb_planes(uint8_t *src, int step, int stride, int width, int height)
  163. {
  164. int i, j;
  165. uint8_t r, g, b;
  166. for (j = 0; j < height; j++) {
  167. for (i = 0; i < width * step; i += step) {
  168. r = src[i];
  169. g = src[i + 1];
  170. b = src[i + 2];
  171. src[i] = r + g - 0x80;
  172. src[i + 2] = b + g - 0x80;
  173. }
  174. src += stride;
  175. }
  176. }
  177. static void restore_median(uint8_t *src, int step, int stride,
  178. int width, int height, int slices, int rmode)
  179. {
  180. int i, j, slice;
  181. int A, B, C;
  182. uint8_t *bsrc;
  183. int slice_start, slice_height;
  184. const int cmask = ~rmode;
  185. for (slice = 0; slice < slices; slice++) {
  186. slice_start = ((slice * height) / slices) & cmask;
  187. slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start;
  188. bsrc = src + slice_start * stride;
  189. // first line - left neighbour prediction
  190. bsrc[0] += 0x80;
  191. A = bsrc[0];
  192. for (i = step; i < width * step; i += step) {
  193. bsrc[i] += A;
  194. A = bsrc[i];
  195. }
  196. bsrc += stride;
  197. if (slice_height == 1)
  198. continue;
  199. // second line - first element has top predition, the rest uses median
  200. C = bsrc[-stride];
  201. bsrc[0] += C;
  202. A = bsrc[0];
  203. for (i = step; i < width * step; i += step) {
  204. B = bsrc[i - stride];
  205. bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
  206. C = B;
  207. A = bsrc[i];
  208. }
  209. bsrc += stride;
  210. // the rest of lines use continuous median prediction
  211. for (j = 2; j < slice_height; j++) {
  212. for (i = 0; i < width * step; i += step) {
  213. B = bsrc[i - stride];
  214. bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
  215. C = B;
  216. A = bsrc[i];
  217. }
  218. bsrc += stride;
  219. }
  220. }
  221. }
  222. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt)
  223. {
  224. const uint8_t *buf = avpkt->data;
  225. int buf_size = avpkt->size;
  226. const uint8_t *buf_end = buf + buf_size;
  227. UtvideoContext *c = avctx->priv_data;
  228. const uint8_t *ptr;
  229. int i, j;
  230. const uint8_t *plane_start[5];
  231. int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
  232. int ret;
  233. if (c->pic.data[0])
  234. avctx->release_buffer(avctx, &c->pic);
  235. c->pic.reference = 1;
  236. c->pic.buffer_hints = FF_BUFFER_HINTS_VALID;
  237. if ((ret = avctx->get_buffer(avctx, &c->pic)) < 0) {
  238. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  239. return ret;
  240. }
  241. /* parse plane structure to retrieve frame flags and validate slice offsets */
  242. ptr = buf;
  243. for (i = 0; i < c->planes; i++) {
  244. plane_start[i] = ptr;
  245. if (buf_end - ptr < 256 + 4 * c->slices) {
  246. av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
  247. return AVERROR_INVALIDDATA;
  248. }
  249. ptr += 256;
  250. slice_start = 0;
  251. slice_end = 0;
  252. for (j = 0; j < c->slices; j++) {
  253. slice_end = bytestream_get_le32(&ptr);
  254. slice_size = slice_end - slice_start;
  255. if (slice_size < 0) {
  256. av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
  257. return AVERROR_INVALIDDATA;
  258. }
  259. slice_start = slice_end;
  260. max_slice_size = FFMAX(max_slice_size, slice_size);
  261. }
  262. plane_size = slice_end;
  263. if (buf_end - ptr < plane_size) {
  264. av_log(avctx, AV_LOG_ERROR, "Plane size is bigger than available data\n");
  265. return AVERROR_INVALIDDATA;
  266. }
  267. ptr += plane_size;
  268. }
  269. plane_start[c->planes] = ptr;
  270. if (buf_end - ptr < c->frame_info_size) {
  271. av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
  272. return AVERROR_INVALIDDATA;
  273. }
  274. c->frame_info = AV_RL32(ptr);
  275. av_log(avctx, AV_LOG_DEBUG, "frame information flags %X\n", c->frame_info);
  276. c->frame_pred = (c->frame_info >> 8) & 3;
  277. if (c->frame_pred == PRED_GRADIENT) {
  278. av_log_ask_for_sample(avctx, "Frame uses gradient prediction\n");
  279. return AVERROR_PATCHWELCOME;
  280. }
  281. av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
  282. max_slice_size + FF_INPUT_BUFFER_PADDING_SIZE);
  283. if (!c->slice_bits) {
  284. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  285. return AVERROR(ENOMEM);
  286. }
  287. switch (c->avctx->pix_fmt) {
  288. case PIX_FMT_RGB24:
  289. case PIX_FMT_RGBA:
  290. for (i = 0; i < c->planes; i++) {
  291. ret = decode_plane(c, i, c->pic.data[0] + rgb_order[i], c->planes,
  292. c->pic.linesize[0], avctx->width, avctx->height,
  293. plane_start[i], plane_start[i + 1] - plane_start[i],
  294. c->frame_pred == PRED_LEFT);
  295. if (ret)
  296. return ret;
  297. if (c->frame_pred == PRED_MEDIAN)
  298. restore_median(c->pic.data[0] + rgb_order[i], c->planes,
  299. c->pic.linesize[0], avctx->width, avctx->height,
  300. c->slices, 0);
  301. }
  302. restore_rgb_planes(c->pic.data[0], c->planes, c->pic.linesize[0],
  303. avctx->width, avctx->height);
  304. break;
  305. case PIX_FMT_YUV420P:
  306. for (i = 0; i < 3; i++) {
  307. ret = decode_plane(c, i, c->pic.data[i], 1,
  308. c->pic.linesize[i], avctx->width >> !!i, avctx->height >> !!i,
  309. plane_start[i], plane_start[i + 1] - plane_start[i],
  310. c->frame_pred == PRED_LEFT);
  311. if (ret)
  312. return ret;
  313. if (c->frame_pred == PRED_MEDIAN)
  314. restore_median(c->pic.data[i], 1, c->pic.linesize[i],
  315. avctx->width >> !!i, avctx->height >> !!i,
  316. c->slices, !i);
  317. }
  318. break;
  319. case PIX_FMT_YUV422P:
  320. for (i = 0; i < 3; i++) {
  321. ret = decode_plane(c, i, c->pic.data[i], 1,
  322. c->pic.linesize[i], avctx->width >> !!i, avctx->height,
  323. plane_start[i], plane_start[i + 1] - plane_start[i],
  324. c->frame_pred == PRED_LEFT);
  325. if (ret)
  326. return ret;
  327. if (c->frame_pred == PRED_MEDIAN)
  328. restore_median(c->pic.data[i], 1, c->pic.linesize[i],
  329. avctx->width >> !!i, avctx->height, c->slices, 0);
  330. }
  331. break;
  332. }
  333. *data_size = sizeof(AVFrame);
  334. *(AVFrame*)data = c->pic;
  335. /* always report that the buffer was completely consumed */
  336. return buf_size;
  337. }
  338. static av_cold int decode_init(AVCodecContext *avctx)
  339. {
  340. UtvideoContext * const c = avctx->priv_data;
  341. c->avctx = avctx;
  342. dsputil_init(&c->dsp, avctx);
  343. if (avctx->extradata_size < 16) {
  344. av_log(avctx, AV_LOG_ERROR, "Insufficient extradata size %d, should be at least 16\n",
  345. avctx->extradata_size);
  346. return AVERROR_INVALIDDATA;
  347. }
  348. av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
  349. avctx->extradata[3], avctx->extradata[2],
  350. avctx->extradata[1], avctx->extradata[0]);
  351. av_log(avctx, AV_LOG_DEBUG, "Original format %X\n", AV_RB32(avctx->extradata + 4));
  352. c->frame_info_size = AV_RL32(avctx->extradata + 8);
  353. c->flags = AV_RL32(avctx->extradata + 12);
  354. if (c->frame_info_size != 4)
  355. av_log_ask_for_sample(avctx, "Frame info is not 4 bytes\n");
  356. av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08X\n", c->flags);
  357. c->slices = (c->flags >> 24) + 1;
  358. c->compression = c->flags & 1;
  359. c->interlaced = c->flags & 0x800;
  360. c->slice_bits_size = 0;
  361. switch (avctx->codec_tag) {
  362. case MKTAG('U', 'L', 'R', 'G'):
  363. c->planes = 3;
  364. avctx->pix_fmt = PIX_FMT_RGB24;
  365. break;
  366. case MKTAG('U', 'L', 'R', 'A'):
  367. c->planes = 4;
  368. avctx->pix_fmt = PIX_FMT_RGBA;
  369. break;
  370. case MKTAG('U', 'L', 'Y', '0'):
  371. c->planes = 3;
  372. avctx->pix_fmt = PIX_FMT_YUV420P;
  373. break;
  374. case MKTAG('U', 'L', 'Y', '2'):
  375. c->planes = 3;
  376. avctx->pix_fmt = PIX_FMT_YUV422P;
  377. break;
  378. default:
  379. av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
  380. avctx->codec_tag);
  381. return AVERROR_INVALIDDATA;
  382. }
  383. return 0;
  384. }
  385. static av_cold int decode_end(AVCodecContext *avctx)
  386. {
  387. UtvideoContext * const c = avctx->priv_data;
  388. if (c->pic.data[0])
  389. avctx->release_buffer(avctx, &c->pic);
  390. av_freep(&c->slice_bits);
  391. return 0;
  392. }
  393. AVCodec ff_utvideo_decoder = {
  394. .name = "utvideo",
  395. .type = AVMEDIA_TYPE_VIDEO,
  396. .id = CODEC_ID_UTVIDEO,
  397. .priv_data_size = sizeof(UtvideoContext),
  398. .init = decode_init,
  399. .close = decode_end,
  400. .decode = decode_frame,
  401. .capabilities = CODEC_CAP_DR1,
  402. .long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
  403. };