You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2439 lines
86KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_MMAP
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/aarch64/cpu.h"
  50. #include "libavutil/ppc/cpu.h"
  51. #include "libavutil/x86/asm.h"
  52. #include "libavutil/x86/cpu.h"
  53. // We have to implement deprecated functions until they are removed, this is the
  54. // simplest way to prevent warnings
  55. #undef attribute_deprecated
  56. #define attribute_deprecated
  57. #include "rgb2rgb.h"
  58. #include "swscale.h"
  59. #include "swscale_internal.h"
  60. #if !FF_API_SWS_VECTOR
  61. static SwsVector *sws_getIdentityVec(void);
  62. static void sws_addVec(SwsVector *a, SwsVector *b);
  63. static void sws_shiftVec(SwsVector *a, int shift);
  64. static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
  65. #endif
  66. static void handle_formats(SwsContext *c);
  67. unsigned swscale_version(void)
  68. {
  69. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  70. return LIBSWSCALE_VERSION_INT;
  71. }
  72. const char *swscale_configuration(void)
  73. {
  74. return FFMPEG_CONFIGURATION;
  75. }
  76. const char *swscale_license(void)
  77. {
  78. #define LICENSE_PREFIX "libswscale license: "
  79. return &LICENSE_PREFIX FFMPEG_LICENSE[sizeof(LICENSE_PREFIX) - 1];
  80. }
  81. typedef struct FormatEntry {
  82. uint8_t is_supported_in :1;
  83. uint8_t is_supported_out :1;
  84. uint8_t is_supported_endianness :1;
  85. } FormatEntry;
  86. static const FormatEntry format_entries[] = {
  87. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  88. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  89. [AV_PIX_FMT_RGB24] = { 1, 1 },
  90. [AV_PIX_FMT_BGR24] = { 1, 1 },
  91. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  92. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  93. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  94. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  95. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  96. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  97. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  98. [AV_PIX_FMT_PAL8] = { 1, 0 },
  99. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  103. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  104. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  105. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  106. [AV_PIX_FMT_BGR8] = { 1, 1 },
  107. [AV_PIX_FMT_BGR4] = { 0, 1 },
  108. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  109. [AV_PIX_FMT_RGB8] = { 1, 1 },
  110. [AV_PIX_FMT_RGB4] = { 0, 1 },
  111. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  112. [AV_PIX_FMT_NV12] = { 1, 1 },
  113. [AV_PIX_FMT_NV21] = { 1, 1 },
  114. [AV_PIX_FMT_ARGB] = { 1, 1 },
  115. [AV_PIX_FMT_RGBA] = { 1, 1 },
  116. [AV_PIX_FMT_ABGR] = { 1, 1 },
  117. [AV_PIX_FMT_BGRA] = { 1, 1 },
  118. [AV_PIX_FMT_0RGB] = { 1, 1 },
  119. [AV_PIX_FMT_RGB0] = { 1, 1 },
  120. [AV_PIX_FMT_0BGR] = { 1, 1 },
  121. [AV_PIX_FMT_BGR0] = { 1, 1 },
  122. [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
  123. [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
  124. [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
  125. [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
  126. [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
  127. [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
  128. [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
  129. [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
  130. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  131. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  133. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  134. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  139. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  140. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  141. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  148. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  149. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  150. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  151. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  152. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  153. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  154. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  155. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  156. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  157. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  158. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  159. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  160. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  161. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  162. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  163. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  164. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  165. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  166. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  167. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  168. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  169. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  170. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  177. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  178. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  179. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  180. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  181. [AV_PIX_FMT_YA8] = { 1, 1 },
  182. [AV_PIX_FMT_YA16BE] = { 1, 1 },
  183. [AV_PIX_FMT_YA16LE] = { 1, 1 },
  184. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  185. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  186. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  187. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  188. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  193. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  194. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  195. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  196. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  197. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  198. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  199. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  200. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  201. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  202. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  203. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  204. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  205. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  206. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  207. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  208. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  209. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  210. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  211. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  212. [AV_PIX_FMT_GBRP] = { 1, 1 },
  213. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  214. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  215. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  216. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  217. [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
  218. [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
  219. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  220. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  221. [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
  222. [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
  223. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  224. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  225. [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
  226. [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
  227. [AV_PIX_FMT_GBRPF32LE] = { 1, 1 },
  228. [AV_PIX_FMT_GBRPF32BE] = { 1, 1 },
  229. [AV_PIX_FMT_GBRAPF32LE] = { 1, 1 },
  230. [AV_PIX_FMT_GBRAPF32BE] = { 1, 1 },
  231. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  232. [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
  233. [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
  234. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  235. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  236. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  237. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  238. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  239. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  240. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  241. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  242. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  243. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  244. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  245. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  246. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  247. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  248. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  249. [AV_PIX_FMT_P010LE] = { 1, 1 },
  250. [AV_PIX_FMT_P010BE] = { 1, 1 },
  251. [AV_PIX_FMT_P016LE] = { 1, 1 },
  252. [AV_PIX_FMT_P016BE] = { 1, 1 },
  253. [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
  254. [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
  255. [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
  256. [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
  257. [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
  258. [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
  259. [AV_PIX_FMT_NV24] = { 1, 1 },
  260. [AV_PIX_FMT_NV42] = { 1, 1 },
  261. [AV_PIX_FMT_Y210LE] = { 1, 0 },
  262. };
  263. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  264. {
  265. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  266. format_entries[pix_fmt].is_supported_in : 0;
  267. }
  268. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  269. {
  270. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  271. format_entries[pix_fmt].is_supported_out : 0;
  272. }
  273. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  274. {
  275. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  276. format_entries[pix_fmt].is_supported_endianness : 0;
  277. }
  278. static double getSplineCoeff(double a, double b, double c, double d,
  279. double dist)
  280. {
  281. if (dist <= 1.0)
  282. return ((d * dist + c) * dist + b) * dist + a;
  283. else
  284. return getSplineCoeff(0.0,
  285. b + 2.0 * c + 3.0 * d,
  286. c + 3.0 * d,
  287. -b - 3.0 * c - 6.0 * d,
  288. dist - 1.0);
  289. }
  290. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  291. {
  292. if (pos == -1 || pos <= -513) {
  293. pos = (128 << chr_subsample) - 128;
  294. }
  295. pos += 128; // relative to ideal left edge
  296. return pos >> chr_subsample;
  297. }
  298. typedef struct {
  299. int flag; ///< flag associated to the algorithm
  300. const char *description; ///< human-readable description
  301. int size_factor; ///< size factor used when initing the filters
  302. } ScaleAlgorithm;
  303. static const ScaleAlgorithm scale_algorithms[] = {
  304. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  305. { SWS_BICUBIC, "bicubic", 4 },
  306. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  307. { SWS_BILINEAR, "bilinear", 2 },
  308. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  309. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  310. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  311. { SWS_POINT, "nearest neighbor / point", -1 },
  312. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  313. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  314. { SWS_X, "experimental", 8 },
  315. };
  316. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  317. int *outFilterSize, int xInc, int srcW,
  318. int dstW, int filterAlign, int one,
  319. int flags, int cpu_flags,
  320. SwsVector *srcFilter, SwsVector *dstFilter,
  321. double param[2], int srcPos, int dstPos)
  322. {
  323. int i;
  324. int filterSize;
  325. int filter2Size;
  326. int minFilterSize;
  327. int64_t *filter = NULL;
  328. int64_t *filter2 = NULL;
  329. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  330. int ret = -1;
  331. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  332. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  333. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  334. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  335. int i;
  336. filterSize = 1;
  337. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  338. dstW, sizeof(*filter) * filterSize, fail);
  339. for (i = 0; i < dstW; i++) {
  340. filter[i * filterSize] = fone;
  341. (*filterPos)[i] = i;
  342. }
  343. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  344. int i;
  345. int64_t xDstInSrc;
  346. filterSize = 1;
  347. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  348. dstW, sizeof(*filter) * filterSize, fail);
  349. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  350. for (i = 0; i < dstW; i++) {
  351. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  352. (*filterPos)[i] = xx;
  353. filter[i] = fone;
  354. xDstInSrc += xInc;
  355. }
  356. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  357. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  358. int i;
  359. int64_t xDstInSrc;
  360. filterSize = 2;
  361. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  362. dstW, sizeof(*filter) * filterSize, fail);
  363. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  364. for (i = 0; i < dstW; i++) {
  365. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  366. int j;
  367. (*filterPos)[i] = xx;
  368. // bilinear upscale / linear interpolate / area averaging
  369. for (j = 0; j < filterSize; j++) {
  370. int64_t coeff = fone - FFABS((int64_t)xx * (1 << 16) - xDstInSrc) * (fone >> 16);
  371. if (coeff < 0)
  372. coeff = 0;
  373. filter[i * filterSize + j] = coeff;
  374. xx++;
  375. }
  376. xDstInSrc += xInc;
  377. }
  378. } else {
  379. int64_t xDstInSrc;
  380. int sizeFactor = -1;
  381. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  382. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  383. sizeFactor = scale_algorithms[i].size_factor;
  384. break;
  385. }
  386. }
  387. if (flags & SWS_LANCZOS)
  388. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  389. av_assert0(sizeFactor > 0);
  390. if (xInc <= 1 << 16)
  391. filterSize = 1 + sizeFactor; // upscale
  392. else
  393. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  394. filterSize = FFMIN(filterSize, srcW - 2);
  395. filterSize = FFMAX(filterSize, 1);
  396. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  397. dstW, sizeof(*filter) * filterSize, fail);
  398. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  399. for (i = 0; i < dstW; i++) {
  400. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  401. int j;
  402. (*filterPos)[i] = xx;
  403. for (j = 0; j < filterSize; j++) {
  404. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  405. double floatd;
  406. int64_t coeff;
  407. if (xInc > 1 << 16)
  408. d = d * dstW / srcW;
  409. floatd = d * (1.0 / (1 << 30));
  410. if (flags & SWS_BICUBIC) {
  411. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  412. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  413. if (d >= 1LL << 31) {
  414. coeff = 0.0;
  415. } else {
  416. int64_t dd = (d * d) >> 30;
  417. int64_t ddd = (dd * d) >> 30;
  418. if (d < 1LL << 30)
  419. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  420. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  421. (6 * (1 << 24) - 2 * B) * (1 << 30);
  422. else
  423. coeff = (-B - 6 * C) * ddd +
  424. (6 * B + 30 * C) * dd +
  425. (-12 * B - 48 * C) * d +
  426. (8 * B + 24 * C) * (1 << 30);
  427. }
  428. coeff /= (1LL<<54)/fone;
  429. } else if (flags & SWS_X) {
  430. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  431. double c;
  432. if (floatd < 1.0)
  433. c = cos(floatd * M_PI);
  434. else
  435. c = -1.0;
  436. if (c < 0.0)
  437. c = -pow(-c, A);
  438. else
  439. c = pow(c, A);
  440. coeff = (c * 0.5 + 0.5) * fone;
  441. } else if (flags & SWS_AREA) {
  442. int64_t d2 = d - (1 << 29);
  443. if (d2 * xInc < -(1LL << (29 + 16)))
  444. coeff = 1.0 * (1LL << (30 + 16));
  445. else if (d2 * xInc < (1LL << (29 + 16)))
  446. coeff = -d2 * xInc + (1LL << (29 + 16));
  447. else
  448. coeff = 0.0;
  449. coeff *= fone >> (30 + 16);
  450. } else if (flags & SWS_GAUSS) {
  451. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  452. coeff = exp2(-p * floatd * floatd) * fone;
  453. } else if (flags & SWS_SINC) {
  454. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  455. } else if (flags & SWS_LANCZOS) {
  456. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  457. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  458. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  459. if (floatd > p)
  460. coeff = 0;
  461. } else if (flags & SWS_BILINEAR) {
  462. coeff = (1 << 30) - d;
  463. if (coeff < 0)
  464. coeff = 0;
  465. coeff *= fone >> 30;
  466. } else if (flags & SWS_SPLINE) {
  467. double p = -2.196152422706632;
  468. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  469. } else {
  470. av_assert0(0);
  471. }
  472. filter[i * filterSize + j] = coeff;
  473. xx++;
  474. }
  475. xDstInSrc += 2 * xInc;
  476. }
  477. }
  478. /* apply src & dst Filter to filter -> filter2
  479. * av_free(filter);
  480. */
  481. av_assert0(filterSize > 0);
  482. filter2Size = filterSize;
  483. if (srcFilter)
  484. filter2Size += srcFilter->length - 1;
  485. if (dstFilter)
  486. filter2Size += dstFilter->length - 1;
  487. av_assert0(filter2Size > 0);
  488. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  489. for (i = 0; i < dstW; i++) {
  490. int j, k;
  491. if (srcFilter) {
  492. for (k = 0; k < srcFilter->length; k++) {
  493. for (j = 0; j < filterSize; j++)
  494. filter2[i * filter2Size + k + j] +=
  495. srcFilter->coeff[k] * filter[i * filterSize + j];
  496. }
  497. } else {
  498. for (j = 0; j < filterSize; j++)
  499. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  500. }
  501. // FIXME dstFilter
  502. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  503. }
  504. av_freep(&filter);
  505. /* try to reduce the filter-size (step1 find size and shift left) */
  506. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  507. minFilterSize = 0;
  508. for (i = dstW - 1; i >= 0; i--) {
  509. int min = filter2Size;
  510. int j;
  511. int64_t cutOff = 0.0;
  512. /* get rid of near zero elements on the left by shifting left */
  513. for (j = 0; j < filter2Size; j++) {
  514. int k;
  515. cutOff += FFABS(filter2[i * filter2Size]);
  516. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  517. break;
  518. /* preserve monotonicity because the core can't handle the
  519. * filter otherwise */
  520. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  521. break;
  522. // move filter coefficients left
  523. for (k = 1; k < filter2Size; k++)
  524. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  525. filter2[i * filter2Size + k - 1] = 0;
  526. (*filterPos)[i]++;
  527. }
  528. cutOff = 0;
  529. /* count near zeros on the right */
  530. for (j = filter2Size - 1; j > 0; j--) {
  531. cutOff += FFABS(filter2[i * filter2Size + j]);
  532. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  533. break;
  534. min--;
  535. }
  536. if (min > minFilterSize)
  537. minFilterSize = min;
  538. }
  539. if (PPC_ALTIVEC(cpu_flags)) {
  540. // we can handle the special case 4, so we don't want to go the full 8
  541. if (minFilterSize < 5)
  542. filterAlign = 4;
  543. /* We really don't want to waste our time doing useless computation, so
  544. * fall back on the scalar C code for very small filters.
  545. * Vectorizing is worth it only if you have a decent-sized vector. */
  546. if (minFilterSize < 3)
  547. filterAlign = 1;
  548. }
  549. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  550. // special case for unscaled vertical filtering
  551. if (minFilterSize == 1 && filterAlign == 2)
  552. filterAlign = 1;
  553. }
  554. av_assert0(minFilterSize > 0);
  555. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  556. av_assert0(filterSize > 0);
  557. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  558. if (!filter)
  559. goto fail;
  560. if (filterSize >= MAX_FILTER_SIZE * 16 /
  561. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  562. ret = RETCODE_USE_CASCADE;
  563. goto fail;
  564. }
  565. *outFilterSize = filterSize;
  566. if (flags & SWS_PRINT_INFO)
  567. av_log(NULL, AV_LOG_VERBOSE,
  568. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  569. filter2Size, filterSize);
  570. /* try to reduce the filter-size (step2 reduce it) */
  571. for (i = 0; i < dstW; i++) {
  572. int j;
  573. for (j = 0; j < filterSize; j++) {
  574. if (j >= filter2Size)
  575. filter[i * filterSize + j] = 0;
  576. else
  577. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  578. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  579. filter[i * filterSize + j] = 0;
  580. }
  581. }
  582. // FIXME try to align filterPos if possible
  583. // fix borders
  584. for (i = 0; i < dstW; i++) {
  585. int j;
  586. if ((*filterPos)[i] < 0) {
  587. // move filter coefficients left to compensate for filterPos
  588. for (j = 1; j < filterSize; j++) {
  589. int left = FFMAX(j + (*filterPos)[i], 0);
  590. filter[i * filterSize + left] += filter[i * filterSize + j];
  591. filter[i * filterSize + j] = 0;
  592. }
  593. (*filterPos)[i]= 0;
  594. }
  595. if ((*filterPos)[i] + filterSize > srcW) {
  596. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  597. int64_t acc = 0;
  598. for (j = filterSize - 1; j >= 0; j--) {
  599. if ((*filterPos)[i] + j >= srcW) {
  600. acc += filter[i * filterSize + j];
  601. filter[i * filterSize + j] = 0;
  602. }
  603. }
  604. for (j = filterSize - 1; j >= 0; j--) {
  605. if (j < shift) {
  606. filter[i * filterSize + j] = 0;
  607. } else {
  608. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  609. }
  610. }
  611. (*filterPos)[i]-= shift;
  612. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  613. }
  614. av_assert0((*filterPos)[i] >= 0);
  615. av_assert0((*filterPos)[i] < srcW);
  616. if ((*filterPos)[i] + filterSize > srcW) {
  617. for (j = 0; j < filterSize; j++) {
  618. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  619. }
  620. }
  621. }
  622. // Note the +1 is for the MMX scaler which reads over the end
  623. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  624. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  625. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  626. /* normalize & store in outFilter */
  627. for (i = 0; i < dstW; i++) {
  628. int j;
  629. int64_t error = 0;
  630. int64_t sum = 0;
  631. for (j = 0; j < filterSize; j++) {
  632. sum += filter[i * filterSize + j];
  633. }
  634. sum = (sum + one / 2) / one;
  635. if (!sum) {
  636. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  637. sum = 1;
  638. }
  639. for (j = 0; j < *outFilterSize; j++) {
  640. int64_t v = filter[i * filterSize + j] + error;
  641. int intV = ROUNDED_DIV(v, sum);
  642. (*outFilter)[i * (*outFilterSize) + j] = intV;
  643. error = v - intV * sum;
  644. }
  645. }
  646. (*filterPos)[dstW + 0] =
  647. (*filterPos)[dstW + 1] =
  648. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  649. * read over the end */
  650. for (i = 0; i < *outFilterSize; i++) {
  651. int k = (dstW - 1) * (*outFilterSize) + i;
  652. (*outFilter)[k + 1 * (*outFilterSize)] =
  653. (*outFilter)[k + 2 * (*outFilterSize)] =
  654. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  655. }
  656. ret = 0;
  657. fail:
  658. if(ret < 0)
  659. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  660. av_free(filter);
  661. av_free(filter2);
  662. return ret;
  663. }
  664. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  665. {
  666. int64_t W, V, Z, Cy, Cu, Cv;
  667. int64_t vr = table[0];
  668. int64_t ub = table[1];
  669. int64_t ug = -table[2];
  670. int64_t vg = -table[3];
  671. int64_t ONE = 65536;
  672. int64_t cy = ONE;
  673. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  674. int i;
  675. static const int8_t map[] = {
  676. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  677. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  678. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  679. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  680. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  681. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  682. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  683. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  684. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  685. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  686. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  687. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  688. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  689. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  690. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  691. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  692. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  693. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  694. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  695. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  696. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  697. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  698. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  699. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  700. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  701. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  702. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  703. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  704. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  705. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  706. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  707. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  708. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  709. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  710. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  711. };
  712. dstRange = 0; //FIXME range = 1 is handled elsewhere
  713. if (!dstRange) {
  714. cy = cy * 255 / 219;
  715. } else {
  716. vr = vr * 224 / 255;
  717. ub = ub * 224 / 255;
  718. ug = ug * 224 / 255;
  719. vg = vg * 224 / 255;
  720. }
  721. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  722. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  723. Z = ONE*ONE-W-V;
  724. Cy = ROUNDED_DIV(cy*Z, ONE);
  725. Cu = ROUNDED_DIV(ub*Z, ONE);
  726. Cv = ROUNDED_DIV(vr*Z, ONE);
  727. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  728. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  729. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  730. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  731. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  732. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  733. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  734. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  735. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  736. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  737. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  738. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  739. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  740. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  741. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  742. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  743. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  744. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  745. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  746. }
  747. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  748. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  749. }
  750. static void fill_xyztables(struct SwsContext *c)
  751. {
  752. int i;
  753. double xyzgamma = XYZ_GAMMA;
  754. double rgbgamma = 1.0 / RGB_GAMMA;
  755. double xyzgammainv = 1.0 / XYZ_GAMMA;
  756. double rgbgammainv = RGB_GAMMA;
  757. static const int16_t xyz2rgb_matrix[3][4] = {
  758. {13270, -6295, -2041},
  759. {-3969, 7682, 170},
  760. { 228, -835, 4329} };
  761. static const int16_t rgb2xyz_matrix[3][4] = {
  762. {1689, 1464, 739},
  763. { 871, 2929, 296},
  764. { 79, 488, 3891} };
  765. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  766. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  767. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  768. c->xyzgamma = xyzgamma_tab;
  769. c->rgbgamma = rgbgamma_tab;
  770. c->xyzgammainv = xyzgammainv_tab;
  771. c->rgbgammainv = rgbgammainv_tab;
  772. if (rgbgamma_tab[4095])
  773. return;
  774. /* set gamma vectors */
  775. for (i = 0; i < 4096; i++) {
  776. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  777. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  778. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  779. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  780. }
  781. }
  782. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  783. int srcRange, const int table[4], int dstRange,
  784. int brightness, int contrast, int saturation)
  785. {
  786. const AVPixFmtDescriptor *desc_dst;
  787. const AVPixFmtDescriptor *desc_src;
  788. int need_reinit = 0;
  789. handle_formats(c);
  790. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  791. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  792. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  793. dstRange = 0;
  794. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  795. srcRange = 0;
  796. if (c->srcRange != srcRange ||
  797. c->dstRange != dstRange ||
  798. c->brightness != brightness ||
  799. c->contrast != contrast ||
  800. c->saturation != saturation ||
  801. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  802. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  803. )
  804. need_reinit = 1;
  805. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  806. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  807. c->brightness = brightness;
  808. c->contrast = contrast;
  809. c->saturation = saturation;
  810. c->srcRange = srcRange;
  811. c->dstRange = dstRange;
  812. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  813. //and what we have in ticket 2939 looks better with this check
  814. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  815. ff_sws_init_range_convert(c);
  816. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  817. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  818. if (c->cascaded_context[c->cascaded_mainindex])
  819. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  820. if (!need_reinit)
  821. return 0;
  822. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  823. if (!c->cascaded_context[0] &&
  824. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  825. c->srcW && c->srcH && c->dstW && c->dstH) {
  826. enum AVPixelFormat tmp_format;
  827. int tmp_width, tmp_height;
  828. int srcW = c->srcW;
  829. int srcH = c->srcH;
  830. int dstW = c->dstW;
  831. int dstH = c->dstH;
  832. int ret;
  833. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  834. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  835. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  836. tmp_format = AV_PIX_FMT_BGRA64;
  837. } else {
  838. tmp_format = AV_PIX_FMT_BGR48;
  839. }
  840. } else {
  841. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  842. tmp_format = AV_PIX_FMT_BGRA;
  843. } else {
  844. tmp_format = AV_PIX_FMT_BGR24;
  845. }
  846. }
  847. if (srcW*srcH > dstW*dstH) {
  848. tmp_width = dstW;
  849. tmp_height = dstH;
  850. } else {
  851. tmp_width = srcW;
  852. tmp_height = srcH;
  853. }
  854. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  855. tmp_width, tmp_height, tmp_format, 64);
  856. if (ret < 0)
  857. return ret;
  858. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  859. tmp_width, tmp_height, tmp_format,
  860. c->flags, c->param);
  861. if (!c->cascaded_context[0])
  862. return -1;
  863. c->cascaded_context[0]->alphablend = c->alphablend;
  864. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  865. if (ret < 0)
  866. return ret;
  867. //we set both src and dst depending on that the RGB side will be ignored
  868. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  869. srcRange, table, dstRange,
  870. brightness, contrast, saturation);
  871. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  872. dstW, dstH, c->dstFormat,
  873. c->flags, NULL, NULL, c->param);
  874. if (!c->cascaded_context[1])
  875. return -1;
  876. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  877. srcRange, table, dstRange,
  878. 0, 1 << 16, 1 << 16);
  879. return 0;
  880. }
  881. return -1;
  882. }
  883. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  884. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  885. contrast, saturation);
  886. // FIXME factorize
  887. if (ARCH_PPC)
  888. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  889. contrast, saturation);
  890. }
  891. fill_rgb2yuv_table(c, table, dstRange);
  892. return 0;
  893. }
  894. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  895. int *srcRange, int **table, int *dstRange,
  896. int *brightness, int *contrast, int *saturation)
  897. {
  898. if (!c )
  899. return -1;
  900. *inv_table = c->srcColorspaceTable;
  901. *table = c->dstColorspaceTable;
  902. *srcRange = c->srcRange;
  903. *dstRange = c->dstRange;
  904. *brightness = c->brightness;
  905. *contrast = c->contrast;
  906. *saturation = c->saturation;
  907. return 0;
  908. }
  909. static int handle_jpeg(enum AVPixelFormat *format)
  910. {
  911. switch (*format) {
  912. case AV_PIX_FMT_YUVJ420P:
  913. *format = AV_PIX_FMT_YUV420P;
  914. return 1;
  915. case AV_PIX_FMT_YUVJ411P:
  916. *format = AV_PIX_FMT_YUV411P;
  917. return 1;
  918. case AV_PIX_FMT_YUVJ422P:
  919. *format = AV_PIX_FMT_YUV422P;
  920. return 1;
  921. case AV_PIX_FMT_YUVJ444P:
  922. *format = AV_PIX_FMT_YUV444P;
  923. return 1;
  924. case AV_PIX_FMT_YUVJ440P:
  925. *format = AV_PIX_FMT_YUV440P;
  926. return 1;
  927. case AV_PIX_FMT_GRAY8:
  928. case AV_PIX_FMT_YA8:
  929. case AV_PIX_FMT_GRAY9LE:
  930. case AV_PIX_FMT_GRAY9BE:
  931. case AV_PIX_FMT_GRAY10LE:
  932. case AV_PIX_FMT_GRAY10BE:
  933. case AV_PIX_FMT_GRAY12LE:
  934. case AV_PIX_FMT_GRAY12BE:
  935. case AV_PIX_FMT_GRAY14LE:
  936. case AV_PIX_FMT_GRAY14BE:
  937. case AV_PIX_FMT_GRAY16LE:
  938. case AV_PIX_FMT_GRAY16BE:
  939. case AV_PIX_FMT_YA16BE:
  940. case AV_PIX_FMT_YA16LE:
  941. return 1;
  942. default:
  943. return 0;
  944. }
  945. }
  946. static int handle_0alpha(enum AVPixelFormat *format)
  947. {
  948. switch (*format) {
  949. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  950. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  951. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  952. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  953. default: return 0;
  954. }
  955. }
  956. static int handle_xyz(enum AVPixelFormat *format)
  957. {
  958. switch (*format) {
  959. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  960. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  961. default: return 0;
  962. }
  963. }
  964. static void handle_formats(SwsContext *c)
  965. {
  966. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  967. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  968. c->srcXYZ |= handle_xyz(&c->srcFormat);
  969. c->dstXYZ |= handle_xyz(&c->dstFormat);
  970. if (c->srcXYZ || c->dstXYZ)
  971. fill_xyztables(c);
  972. }
  973. SwsContext *sws_alloc_context(void)
  974. {
  975. SwsContext *c = av_mallocz(sizeof(SwsContext));
  976. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  977. if (c) {
  978. c->av_class = &ff_sws_context_class;
  979. av_opt_set_defaults(c);
  980. }
  981. return c;
  982. }
  983. static uint16_t * alloc_gamma_tbl(double e)
  984. {
  985. int i = 0;
  986. uint16_t * tbl;
  987. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  988. if (!tbl)
  989. return NULL;
  990. for (i = 0; i < 65536; ++i) {
  991. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  992. }
  993. return tbl;
  994. }
  995. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  996. {
  997. switch(fmt) {
  998. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  999. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  1000. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  1001. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  1002. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  1003. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  1004. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  1005. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  1006. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  1007. case AV_PIX_FMT_GBRAP10LE: return AV_PIX_FMT_GBRP10;
  1008. case AV_PIX_FMT_GBRAP10BE: return AV_PIX_FMT_GBRP10;
  1009. case AV_PIX_FMT_GBRAP12LE: return AV_PIX_FMT_GBRP12;
  1010. case AV_PIX_FMT_GBRAP12BE: return AV_PIX_FMT_GBRP12;
  1011. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  1012. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  1013. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  1014. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  1015. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  1016. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  1017. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  1018. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  1019. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  1020. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  1021. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  1022. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  1023. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  1024. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  1025. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  1026. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  1027. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  1028. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  1029. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  1030. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  1031. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  1032. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  1033. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  1034. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  1035. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  1036. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  1037. // case AV_PIX_FMT_AYUV64LE:
  1038. // case AV_PIX_FMT_AYUV64BE:
  1039. // case AV_PIX_FMT_PAL8:
  1040. default: return AV_PIX_FMT_NONE;
  1041. }
  1042. }
  1043. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1044. SwsFilter *dstFilter)
  1045. {
  1046. int i;
  1047. int usesVFilter, usesHFilter;
  1048. int unscaled;
  1049. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1050. int srcW = c->srcW;
  1051. int srcH = c->srcH;
  1052. int dstW = c->dstW;
  1053. int dstH = c->dstH;
  1054. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1055. int flags, cpu_flags;
  1056. enum AVPixelFormat srcFormat = c->srcFormat;
  1057. enum AVPixelFormat dstFormat = c->dstFormat;
  1058. const AVPixFmtDescriptor *desc_src;
  1059. const AVPixFmtDescriptor *desc_dst;
  1060. int ret = 0;
  1061. enum AVPixelFormat tmpFmt;
  1062. static const float float_mult = 1.0f / 255.0f;
  1063. cpu_flags = av_get_cpu_flags();
  1064. flags = c->flags;
  1065. emms_c();
  1066. if (!rgb15to16)
  1067. ff_sws_rgb2rgb_init();
  1068. unscaled = (srcW == dstW && srcH == dstH);
  1069. c->srcRange |= handle_jpeg(&c->srcFormat);
  1070. c->dstRange |= handle_jpeg(&c->dstFormat);
  1071. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1072. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1073. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1074. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1075. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1076. c->dstRange, 0, 1 << 16, 1 << 16);
  1077. handle_formats(c);
  1078. srcFormat = c->srcFormat;
  1079. dstFormat = c->dstFormat;
  1080. desc_src = av_pix_fmt_desc_get(srcFormat);
  1081. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1082. // If the source has no alpha then disable alpha blendaway
  1083. if (c->src0Alpha)
  1084. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1085. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1086. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1087. if (!sws_isSupportedInput(srcFormat)) {
  1088. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1089. av_get_pix_fmt_name(srcFormat));
  1090. return AVERROR(EINVAL);
  1091. }
  1092. if (!sws_isSupportedOutput(dstFormat)) {
  1093. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1094. av_get_pix_fmt_name(dstFormat));
  1095. return AVERROR(EINVAL);
  1096. }
  1097. }
  1098. av_assert2(desc_src && desc_dst);
  1099. i = flags & (SWS_POINT |
  1100. SWS_AREA |
  1101. SWS_BILINEAR |
  1102. SWS_FAST_BILINEAR |
  1103. SWS_BICUBIC |
  1104. SWS_X |
  1105. SWS_GAUSS |
  1106. SWS_LANCZOS |
  1107. SWS_SINC |
  1108. SWS_SPLINE |
  1109. SWS_BICUBLIN);
  1110. /* provide a default scaler if not set by caller */
  1111. if (!i) {
  1112. if (dstW < srcW && dstH < srcH)
  1113. flags |= SWS_BICUBIC;
  1114. else if (dstW > srcW && dstH > srcH)
  1115. flags |= SWS_BICUBIC;
  1116. else
  1117. flags |= SWS_BICUBIC;
  1118. c->flags = flags;
  1119. } else if (i & (i - 1)) {
  1120. av_log(c, AV_LOG_ERROR,
  1121. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1122. return AVERROR(EINVAL);
  1123. }
  1124. /* sanity check */
  1125. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1126. /* FIXME check if these are enough and try to lower them after
  1127. * fixing the relevant parts of the code */
  1128. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1129. srcW, srcH, dstW, dstH);
  1130. return AVERROR(EINVAL);
  1131. }
  1132. if (flags & SWS_FAST_BILINEAR) {
  1133. if (srcW < 8 || dstW < 8) {
  1134. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1135. c->flags = flags;
  1136. }
  1137. }
  1138. if (!dstFilter)
  1139. dstFilter = &dummyFilter;
  1140. if (!srcFilter)
  1141. srcFilter = &dummyFilter;
  1142. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1143. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1144. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1145. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1146. c->vRounder = 4 * 0x0001000100010001ULL;
  1147. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1148. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1149. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1150. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1151. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1152. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1153. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1154. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1155. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1156. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1157. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1158. if (dstW&1) {
  1159. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1160. flags |= SWS_FULL_CHR_H_INT;
  1161. c->flags = flags;
  1162. }
  1163. if ( c->chrSrcHSubSample == 0
  1164. && c->chrSrcVSubSample == 0
  1165. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1166. && !(c->flags & SWS_FAST_BILINEAR)
  1167. ) {
  1168. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1169. flags |= SWS_FULL_CHR_H_INT;
  1170. c->flags = flags;
  1171. }
  1172. }
  1173. if (c->dither == SWS_DITHER_AUTO) {
  1174. if (flags & SWS_ERROR_DIFFUSION)
  1175. c->dither = SWS_DITHER_ED;
  1176. }
  1177. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1178. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1179. dstFormat == AV_PIX_FMT_BGR8 ||
  1180. dstFormat == AV_PIX_FMT_RGB8) {
  1181. if (c->dither == SWS_DITHER_AUTO)
  1182. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1183. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1184. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1185. av_log(c, AV_LOG_DEBUG,
  1186. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1187. av_get_pix_fmt_name(dstFormat));
  1188. flags |= SWS_FULL_CHR_H_INT;
  1189. c->flags = flags;
  1190. }
  1191. }
  1192. if (flags & SWS_FULL_CHR_H_INT) {
  1193. if (c->dither == SWS_DITHER_BAYER) {
  1194. av_log(c, AV_LOG_DEBUG,
  1195. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1196. av_get_pix_fmt_name(dstFormat));
  1197. c->dither = SWS_DITHER_ED;
  1198. }
  1199. }
  1200. }
  1201. if (isPlanarRGB(dstFormat)) {
  1202. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1203. av_log(c, AV_LOG_DEBUG,
  1204. "%s output is not supported with half chroma resolution, switching to full\n",
  1205. av_get_pix_fmt_name(dstFormat));
  1206. flags |= SWS_FULL_CHR_H_INT;
  1207. c->flags = flags;
  1208. }
  1209. }
  1210. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1211. * chroma interpolation */
  1212. if (flags & SWS_FULL_CHR_H_INT &&
  1213. isAnyRGB(dstFormat) &&
  1214. !isPlanarRGB(dstFormat) &&
  1215. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1216. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1217. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1218. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1219. dstFormat != AV_PIX_FMT_RGB48LE &&
  1220. dstFormat != AV_PIX_FMT_RGB48BE &&
  1221. dstFormat != AV_PIX_FMT_BGR48LE &&
  1222. dstFormat != AV_PIX_FMT_BGR48BE &&
  1223. dstFormat != AV_PIX_FMT_RGBA &&
  1224. dstFormat != AV_PIX_FMT_ARGB &&
  1225. dstFormat != AV_PIX_FMT_BGRA &&
  1226. dstFormat != AV_PIX_FMT_ABGR &&
  1227. dstFormat != AV_PIX_FMT_RGB24 &&
  1228. dstFormat != AV_PIX_FMT_BGR24 &&
  1229. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1230. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1231. dstFormat != AV_PIX_FMT_BGR8 &&
  1232. dstFormat != AV_PIX_FMT_RGB8
  1233. ) {
  1234. av_log(c, AV_LOG_WARNING,
  1235. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1236. av_get_pix_fmt_name(dstFormat));
  1237. flags &= ~SWS_FULL_CHR_H_INT;
  1238. c->flags = flags;
  1239. }
  1240. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1241. c->chrDstHSubSample = 1;
  1242. // drop some chroma lines if the user wants it
  1243. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1244. SWS_SRC_V_CHR_DROP_SHIFT;
  1245. c->chrSrcVSubSample += c->vChrDrop;
  1246. /* drop every other pixel for chroma calculation unless user
  1247. * wants full chroma */
  1248. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1249. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1250. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1251. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1252. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1253. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1254. srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
  1255. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1256. srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
  1257. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1258. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1259. srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
  1260. srcFormat != AV_PIX_FMT_GBRPF32BE && srcFormat != AV_PIX_FMT_GBRPF32LE &&
  1261. srcFormat != AV_PIX_FMT_GBRAPF32BE && srcFormat != AV_PIX_FMT_GBRAPF32LE &&
  1262. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1263. (flags & SWS_FAST_BILINEAR)))
  1264. c->chrSrcHSubSample = 1;
  1265. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  1266. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1267. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1268. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1269. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1270. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1271. c->srcBpc = desc_src->comp[0].depth;
  1272. if (c->srcBpc < 8)
  1273. c->srcBpc = 8;
  1274. c->dstBpc = desc_dst->comp[0].depth;
  1275. if (c->dstBpc < 8)
  1276. c->dstBpc = 8;
  1277. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1278. c->srcBpc = 16;
  1279. if (c->dstBpc == 16)
  1280. dst_stride <<= 1;
  1281. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1282. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1283. c->chrDstW >= c->chrSrcW &&
  1284. (srcW & 15) == 0;
  1285. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1286. && (flags & SWS_FAST_BILINEAR)) {
  1287. if (flags & SWS_PRINT_INFO)
  1288. av_log(c, AV_LOG_INFO,
  1289. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1290. }
  1291. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1292. c->canMMXEXTBeUsed = 0;
  1293. } else
  1294. c->canMMXEXTBeUsed = 0;
  1295. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1296. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1297. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1298. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1299. * correct scaling.
  1300. * n-2 is the last chrominance sample available.
  1301. * This is not perfect, but no one should notice the difference, the more
  1302. * correct variant would be like the vertical one, but that would require
  1303. * some special code for the first and last pixel */
  1304. if (flags & SWS_FAST_BILINEAR) {
  1305. if (c->canMMXEXTBeUsed) {
  1306. c->lumXInc += 20;
  1307. c->chrXInc += 20;
  1308. }
  1309. // we don't use the x86 asm scaler if MMX is available
  1310. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1311. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1312. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1313. }
  1314. }
  1315. // hardcoded for now
  1316. c->gamma_value = 2.2;
  1317. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1318. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1319. SwsContext *c2;
  1320. c->cascaded_context[0] = NULL;
  1321. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1322. srcW, srcH, tmpFmt, 64);
  1323. if (ret < 0)
  1324. return ret;
  1325. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1326. srcW, srcH, tmpFmt,
  1327. flags, NULL, NULL, c->param);
  1328. if (!c->cascaded_context[0]) {
  1329. return -1;
  1330. }
  1331. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1332. dstW, dstH, tmpFmt,
  1333. flags, srcFilter, dstFilter, c->param);
  1334. if (!c->cascaded_context[1])
  1335. return -1;
  1336. c2 = c->cascaded_context[1];
  1337. c2->is_internal_gamma = 1;
  1338. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1339. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1340. if (!c2->gamma || !c2->inv_gamma)
  1341. return AVERROR(ENOMEM);
  1342. // is_internal_flag is set after creating the context
  1343. // to properly create the gamma convert FilterDescriptor
  1344. // we have to re-initialize it
  1345. ff_free_filters(c2);
  1346. if (ff_init_filters(c2) < 0) {
  1347. sws_freeContext(c2);
  1348. c->cascaded_context[1] = NULL;
  1349. return -1;
  1350. }
  1351. c->cascaded_context[2] = NULL;
  1352. if (dstFormat != tmpFmt) {
  1353. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1354. dstW, dstH, tmpFmt, 64);
  1355. if (ret < 0)
  1356. return ret;
  1357. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1358. dstW, dstH, dstFormat,
  1359. flags, NULL, NULL, c->param);
  1360. if (!c->cascaded_context[2])
  1361. return -1;
  1362. }
  1363. return 0;
  1364. }
  1365. if (isBayer(srcFormat)) {
  1366. if (!unscaled ||
  1367. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1368. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1369. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1370. srcW, srcH, tmpFormat, 64);
  1371. if (ret < 0)
  1372. return ret;
  1373. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1374. srcW, srcH, tmpFormat,
  1375. flags, srcFilter, NULL, c->param);
  1376. if (!c->cascaded_context[0])
  1377. return -1;
  1378. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1379. dstW, dstH, dstFormat,
  1380. flags, NULL, dstFilter, c->param);
  1381. if (!c->cascaded_context[1])
  1382. return -1;
  1383. return 0;
  1384. }
  1385. }
  1386. if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
  1387. for (i = 0; i < 256; ++i){
  1388. c->uint2float_lut[i] = (float)i * float_mult;
  1389. }
  1390. }
  1391. // float will be converted to uint16_t
  1392. if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
  1393. (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
  1394. dstFormat != AV_PIX_FMT_GRAY8))){
  1395. c->srcBpc = 16;
  1396. }
  1397. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1398. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1399. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1400. if (!unscaled ||
  1401. dstFormat != tmpFormat ||
  1402. usesHFilter || usesVFilter ||
  1403. c->srcRange != c->dstRange
  1404. ) {
  1405. c->cascaded_mainindex = 1;
  1406. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1407. srcW, srcH, tmpFormat, 64);
  1408. if (ret < 0)
  1409. return ret;
  1410. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1411. srcW, srcH, tmpFormat,
  1412. flags, c->param);
  1413. if (!c->cascaded_context[0])
  1414. return -1;
  1415. c->cascaded_context[0]->alphablend = c->alphablend;
  1416. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1417. if (ret < 0)
  1418. return ret;
  1419. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1420. dstW, dstH, dstFormat,
  1421. flags, c->param);
  1422. if (!c->cascaded_context[1])
  1423. return -1;
  1424. c->cascaded_context[1]->srcRange = c->srcRange;
  1425. c->cascaded_context[1]->dstRange = c->dstRange;
  1426. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1427. if (ret < 0)
  1428. return ret;
  1429. return 0;
  1430. }
  1431. }
  1432. #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
  1433. #define USE_MMAP 1
  1434. #else
  1435. #define USE_MMAP 0
  1436. #endif
  1437. /* precalculate horizontal scaler filter coefficients */
  1438. {
  1439. #if HAVE_MMXEXT_INLINE
  1440. // can't downscale !!!
  1441. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1442. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1443. NULL, NULL, 8);
  1444. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1445. NULL, NULL, NULL, 4);
  1446. #if USE_MMAP
  1447. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1448. PROT_READ | PROT_WRITE,
  1449. MAP_PRIVATE | MAP_ANONYMOUS,
  1450. -1, 0);
  1451. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1452. PROT_READ | PROT_WRITE,
  1453. MAP_PRIVATE | MAP_ANONYMOUS,
  1454. -1, 0);
  1455. #elif HAVE_VIRTUALALLOC
  1456. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1457. c->lumMmxextFilterCodeSize,
  1458. MEM_COMMIT,
  1459. PAGE_EXECUTE_READWRITE);
  1460. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1461. c->chrMmxextFilterCodeSize,
  1462. MEM_COMMIT,
  1463. PAGE_EXECUTE_READWRITE);
  1464. #else
  1465. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1466. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1467. #endif
  1468. #ifdef MAP_ANONYMOUS
  1469. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1470. #else
  1471. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1472. #endif
  1473. {
  1474. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1475. return AVERROR(ENOMEM);
  1476. }
  1477. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1478. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1479. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1480. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1481. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1482. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1483. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1484. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1485. #if USE_MMAP
  1486. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1487. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1488. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1489. goto fail;
  1490. }
  1491. #endif
  1492. } else
  1493. #endif /* HAVE_MMXEXT_INLINE */
  1494. {
  1495. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1496. PPC_ALTIVEC(cpu_flags) ? 8 :
  1497. have_neon(cpu_flags) ? 8 : 1;
  1498. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1499. &c->hLumFilterSize, c->lumXInc,
  1500. srcW, dstW, filterAlign, 1 << 14,
  1501. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1502. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1503. c->param,
  1504. get_local_pos(c, 0, 0, 0),
  1505. get_local_pos(c, 0, 0, 0))) < 0)
  1506. goto fail;
  1507. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1508. &c->hChrFilterSize, c->chrXInc,
  1509. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1510. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1511. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1512. c->param,
  1513. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1514. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1515. goto fail;
  1516. }
  1517. } // initialize horizontal stuff
  1518. /* precalculate vertical scaler filter coefficients */
  1519. {
  1520. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1521. PPC_ALTIVEC(cpu_flags) ? 8 :
  1522. have_neon(cpu_flags) ? 2 : 1;
  1523. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1524. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1525. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1526. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1527. c->param,
  1528. get_local_pos(c, 0, 0, 1),
  1529. get_local_pos(c, 0, 0, 1))) < 0)
  1530. goto fail;
  1531. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1532. c->chrYInc, c->chrSrcH, c->chrDstH,
  1533. filterAlign, (1 << 12),
  1534. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1535. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1536. c->param,
  1537. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1538. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1539. goto fail;
  1540. #if HAVE_ALTIVEC
  1541. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1542. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1543. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1544. int j;
  1545. short *p = (short *)&c->vYCoeffsBank[i];
  1546. for (j = 0; j < 8; j++)
  1547. p[j] = c->vLumFilter[i];
  1548. }
  1549. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1550. int j;
  1551. short *p = (short *)&c->vCCoeffsBank[i];
  1552. for (j = 0; j < 8; j++)
  1553. p[j] = c->vChrFilter[i];
  1554. }
  1555. #endif
  1556. }
  1557. for (i = 0; i < 4; i++)
  1558. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1559. c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
  1560. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1561. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1562. c->uv_offx2 = dst_stride + 16;
  1563. av_assert0(c->chrDstH <= dstH);
  1564. if (flags & SWS_PRINT_INFO) {
  1565. const char *scaler = NULL, *cpucaps;
  1566. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1567. if (flags & scale_algorithms[i].flag) {
  1568. scaler = scale_algorithms[i].description;
  1569. break;
  1570. }
  1571. }
  1572. if (!scaler)
  1573. scaler = "ehh flags invalid?!";
  1574. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1575. scaler,
  1576. av_get_pix_fmt_name(srcFormat),
  1577. #ifdef DITHER1XBPP
  1578. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1579. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1580. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1581. "dithered " : "",
  1582. #else
  1583. "",
  1584. #endif
  1585. av_get_pix_fmt_name(dstFormat));
  1586. if (INLINE_MMXEXT(cpu_flags))
  1587. cpucaps = "MMXEXT";
  1588. else if (INLINE_AMD3DNOW(cpu_flags))
  1589. cpucaps = "3DNOW";
  1590. else if (INLINE_MMX(cpu_flags))
  1591. cpucaps = "MMX";
  1592. else if (PPC_ALTIVEC(cpu_flags))
  1593. cpucaps = "AltiVec";
  1594. else
  1595. cpucaps = "C";
  1596. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1597. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1598. av_log(c, AV_LOG_DEBUG,
  1599. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1600. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1601. av_log(c, AV_LOG_DEBUG,
  1602. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1603. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1604. c->chrXInc, c->chrYInc);
  1605. }
  1606. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1607. if (unscaled && !usesHFilter && !usesVFilter &&
  1608. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1609. isALPHA(srcFormat) &&
  1610. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1611. alphaless_fmt(srcFormat) == dstFormat
  1612. ) {
  1613. c->swscale = ff_sws_alphablendaway;
  1614. if (flags & SWS_PRINT_INFO)
  1615. av_log(c, AV_LOG_INFO,
  1616. "using alpha blendaway %s -> %s special converter\n",
  1617. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1618. return 0;
  1619. }
  1620. /* unscaled special cases */
  1621. if (unscaled && !usesHFilter && !usesVFilter &&
  1622. (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
  1623. isFloat(srcFormat) || isFloat(dstFormat))){
  1624. ff_get_unscaled_swscale(c);
  1625. if (c->swscale) {
  1626. if (flags & SWS_PRINT_INFO)
  1627. av_log(c, AV_LOG_INFO,
  1628. "using unscaled %s -> %s special converter\n",
  1629. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1630. return 0;
  1631. }
  1632. }
  1633. c->swscale = ff_getSwsFunc(c);
  1634. return ff_init_filters(c);
  1635. fail: // FIXME replace things by appropriate error codes
  1636. if (ret == RETCODE_USE_CASCADE) {
  1637. int tmpW = sqrt(srcW * (int64_t)dstW);
  1638. int tmpH = sqrt(srcH * (int64_t)dstH);
  1639. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1640. if (isALPHA(srcFormat))
  1641. tmpFormat = AV_PIX_FMT_YUVA420P;
  1642. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1643. return AVERROR(EINVAL);
  1644. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1645. tmpW, tmpH, tmpFormat, 64);
  1646. if (ret < 0)
  1647. return ret;
  1648. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1649. tmpW, tmpH, tmpFormat,
  1650. flags, srcFilter, NULL, c->param);
  1651. if (!c->cascaded_context[0])
  1652. return -1;
  1653. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1654. dstW, dstH, dstFormat,
  1655. flags, NULL, dstFilter, c->param);
  1656. if (!c->cascaded_context[1])
  1657. return -1;
  1658. return 0;
  1659. }
  1660. return -1;
  1661. }
  1662. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1663. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1664. int flags, const double *param)
  1665. {
  1666. SwsContext *c;
  1667. if (!(c = sws_alloc_context()))
  1668. return NULL;
  1669. c->flags = flags;
  1670. c->srcW = srcW;
  1671. c->srcH = srcH;
  1672. c->dstW = dstW;
  1673. c->dstH = dstH;
  1674. c->srcFormat = srcFormat;
  1675. c->dstFormat = dstFormat;
  1676. if (param) {
  1677. c->param[0] = param[0];
  1678. c->param[1] = param[1];
  1679. }
  1680. return c;
  1681. }
  1682. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1683. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1684. int flags, SwsFilter *srcFilter,
  1685. SwsFilter *dstFilter, const double *param)
  1686. {
  1687. SwsContext *c;
  1688. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1689. dstW, dstH, dstFormat,
  1690. flags, param);
  1691. if (!c)
  1692. return NULL;
  1693. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1694. sws_freeContext(c);
  1695. return NULL;
  1696. }
  1697. return c;
  1698. }
  1699. static int isnan_vec(SwsVector *a)
  1700. {
  1701. int i;
  1702. for (i=0; i<a->length; i++)
  1703. if (isnan(a->coeff[i]))
  1704. return 1;
  1705. return 0;
  1706. }
  1707. static void makenan_vec(SwsVector *a)
  1708. {
  1709. int i;
  1710. for (i=0; i<a->length; i++)
  1711. a->coeff[i] = NAN;
  1712. }
  1713. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1714. float lumaSharpen, float chromaSharpen,
  1715. float chromaHShift, float chromaVShift,
  1716. int verbose)
  1717. {
  1718. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1719. if (!filter)
  1720. return NULL;
  1721. if (lumaGBlur != 0.0) {
  1722. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1723. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1724. } else {
  1725. filter->lumH = sws_getIdentityVec();
  1726. filter->lumV = sws_getIdentityVec();
  1727. }
  1728. if (chromaGBlur != 0.0) {
  1729. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1730. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1731. } else {
  1732. filter->chrH = sws_getIdentityVec();
  1733. filter->chrV = sws_getIdentityVec();
  1734. }
  1735. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1736. goto fail;
  1737. if (chromaSharpen != 0.0) {
  1738. SwsVector *id = sws_getIdentityVec();
  1739. if (!id)
  1740. goto fail;
  1741. sws_scaleVec(filter->chrH, -chromaSharpen);
  1742. sws_scaleVec(filter->chrV, -chromaSharpen);
  1743. sws_addVec(filter->chrH, id);
  1744. sws_addVec(filter->chrV, id);
  1745. sws_freeVec(id);
  1746. }
  1747. if (lumaSharpen != 0.0) {
  1748. SwsVector *id = sws_getIdentityVec();
  1749. if (!id)
  1750. goto fail;
  1751. sws_scaleVec(filter->lumH, -lumaSharpen);
  1752. sws_scaleVec(filter->lumV, -lumaSharpen);
  1753. sws_addVec(filter->lumH, id);
  1754. sws_addVec(filter->lumV, id);
  1755. sws_freeVec(id);
  1756. }
  1757. if (chromaHShift != 0.0)
  1758. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1759. if (chromaVShift != 0.0)
  1760. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1761. sws_normalizeVec(filter->chrH, 1.0);
  1762. sws_normalizeVec(filter->chrV, 1.0);
  1763. sws_normalizeVec(filter->lumH, 1.0);
  1764. sws_normalizeVec(filter->lumV, 1.0);
  1765. if (isnan_vec(filter->chrH) ||
  1766. isnan_vec(filter->chrV) ||
  1767. isnan_vec(filter->lumH) ||
  1768. isnan_vec(filter->lumV))
  1769. goto fail;
  1770. if (verbose)
  1771. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1772. if (verbose)
  1773. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1774. return filter;
  1775. fail:
  1776. sws_freeVec(filter->lumH);
  1777. sws_freeVec(filter->lumV);
  1778. sws_freeVec(filter->chrH);
  1779. sws_freeVec(filter->chrV);
  1780. av_freep(&filter);
  1781. return NULL;
  1782. }
  1783. SwsVector *sws_allocVec(int length)
  1784. {
  1785. SwsVector *vec;
  1786. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1787. return NULL;
  1788. vec = av_malloc(sizeof(SwsVector));
  1789. if (!vec)
  1790. return NULL;
  1791. vec->length = length;
  1792. vec->coeff = av_malloc(sizeof(double) * length);
  1793. if (!vec->coeff)
  1794. av_freep(&vec);
  1795. return vec;
  1796. }
  1797. SwsVector *sws_getGaussianVec(double variance, double quality)
  1798. {
  1799. const int length = (int)(variance * quality + 0.5) | 1;
  1800. int i;
  1801. double middle = (length - 1) * 0.5;
  1802. SwsVector *vec;
  1803. if(variance < 0 || quality < 0)
  1804. return NULL;
  1805. vec = sws_allocVec(length);
  1806. if (!vec)
  1807. return NULL;
  1808. for (i = 0; i < length; i++) {
  1809. double dist = i - middle;
  1810. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1811. sqrt(2 * variance * M_PI);
  1812. }
  1813. sws_normalizeVec(vec, 1.0);
  1814. return vec;
  1815. }
  1816. /**
  1817. * Allocate and return a vector with length coefficients, all
  1818. * with the same value c.
  1819. */
  1820. #if !FF_API_SWS_VECTOR
  1821. static
  1822. #endif
  1823. SwsVector *sws_getConstVec(double c, int length)
  1824. {
  1825. int i;
  1826. SwsVector *vec = sws_allocVec(length);
  1827. if (!vec)
  1828. return NULL;
  1829. for (i = 0; i < length; i++)
  1830. vec->coeff[i] = c;
  1831. return vec;
  1832. }
  1833. /**
  1834. * Allocate and return a vector with just one coefficient, with
  1835. * value 1.0.
  1836. */
  1837. #if !FF_API_SWS_VECTOR
  1838. static
  1839. #endif
  1840. SwsVector *sws_getIdentityVec(void)
  1841. {
  1842. return sws_getConstVec(1.0, 1);
  1843. }
  1844. static double sws_dcVec(SwsVector *a)
  1845. {
  1846. int i;
  1847. double sum = 0;
  1848. for (i = 0; i < a->length; i++)
  1849. sum += a->coeff[i];
  1850. return sum;
  1851. }
  1852. void sws_scaleVec(SwsVector *a, double scalar)
  1853. {
  1854. int i;
  1855. for (i = 0; i < a->length; i++)
  1856. a->coeff[i] *= scalar;
  1857. }
  1858. void sws_normalizeVec(SwsVector *a, double height)
  1859. {
  1860. sws_scaleVec(a, height / sws_dcVec(a));
  1861. }
  1862. #if FF_API_SWS_VECTOR
  1863. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1864. {
  1865. int length = a->length + b->length - 1;
  1866. int i, j;
  1867. SwsVector *vec = sws_getConstVec(0.0, length);
  1868. if (!vec)
  1869. return NULL;
  1870. for (i = 0; i < a->length; i++) {
  1871. for (j = 0; j < b->length; j++) {
  1872. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1873. }
  1874. }
  1875. return vec;
  1876. }
  1877. #endif
  1878. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1879. {
  1880. int length = FFMAX(a->length, b->length);
  1881. int i;
  1882. SwsVector *vec = sws_getConstVec(0.0, length);
  1883. if (!vec)
  1884. return NULL;
  1885. for (i = 0; i < a->length; i++)
  1886. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1887. for (i = 0; i < b->length; i++)
  1888. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1889. return vec;
  1890. }
  1891. #if FF_API_SWS_VECTOR
  1892. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1893. {
  1894. int length = FFMAX(a->length, b->length);
  1895. int i;
  1896. SwsVector *vec = sws_getConstVec(0.0, length);
  1897. if (!vec)
  1898. return NULL;
  1899. for (i = 0; i < a->length; i++)
  1900. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1901. for (i = 0; i < b->length; i++)
  1902. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1903. return vec;
  1904. }
  1905. #endif
  1906. /* shift left / or right if "shift" is negative */
  1907. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1908. {
  1909. int length = a->length + FFABS(shift) * 2;
  1910. int i;
  1911. SwsVector *vec = sws_getConstVec(0.0, length);
  1912. if (!vec)
  1913. return NULL;
  1914. for (i = 0; i < a->length; i++) {
  1915. vec->coeff[i + (length - 1) / 2 -
  1916. (a->length - 1) / 2 - shift] = a->coeff[i];
  1917. }
  1918. return vec;
  1919. }
  1920. #if !FF_API_SWS_VECTOR
  1921. static
  1922. #endif
  1923. void sws_shiftVec(SwsVector *a, int shift)
  1924. {
  1925. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1926. if (!shifted) {
  1927. makenan_vec(a);
  1928. return;
  1929. }
  1930. av_free(a->coeff);
  1931. a->coeff = shifted->coeff;
  1932. a->length = shifted->length;
  1933. av_free(shifted);
  1934. }
  1935. #if !FF_API_SWS_VECTOR
  1936. static
  1937. #endif
  1938. void sws_addVec(SwsVector *a, SwsVector *b)
  1939. {
  1940. SwsVector *sum = sws_sumVec(a, b);
  1941. if (!sum) {
  1942. makenan_vec(a);
  1943. return;
  1944. }
  1945. av_free(a->coeff);
  1946. a->coeff = sum->coeff;
  1947. a->length = sum->length;
  1948. av_free(sum);
  1949. }
  1950. #if FF_API_SWS_VECTOR
  1951. void sws_subVec(SwsVector *a, SwsVector *b)
  1952. {
  1953. SwsVector *diff = sws_diffVec(a, b);
  1954. if (!diff) {
  1955. makenan_vec(a);
  1956. return;
  1957. }
  1958. av_free(a->coeff);
  1959. a->coeff = diff->coeff;
  1960. a->length = diff->length;
  1961. av_free(diff);
  1962. }
  1963. void sws_convVec(SwsVector *a, SwsVector *b)
  1964. {
  1965. SwsVector *conv = sws_getConvVec(a, b);
  1966. if (!conv) {
  1967. makenan_vec(a);
  1968. return;
  1969. }
  1970. av_free(a->coeff);
  1971. a->coeff = conv->coeff;
  1972. a->length = conv->length;
  1973. av_free(conv);
  1974. }
  1975. SwsVector *sws_cloneVec(SwsVector *a)
  1976. {
  1977. SwsVector *vec = sws_allocVec(a->length);
  1978. if (!vec)
  1979. return NULL;
  1980. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1981. return vec;
  1982. }
  1983. #endif
  1984. /**
  1985. * Print with av_log() a textual representation of the vector a
  1986. * if log_level <= av_log_level.
  1987. */
  1988. #if !FF_API_SWS_VECTOR
  1989. static
  1990. #endif
  1991. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1992. {
  1993. int i;
  1994. double max = 0;
  1995. double min = 0;
  1996. double range;
  1997. for (i = 0; i < a->length; i++)
  1998. if (a->coeff[i] > max)
  1999. max = a->coeff[i];
  2000. for (i = 0; i < a->length; i++)
  2001. if (a->coeff[i] < min)
  2002. min = a->coeff[i];
  2003. range = max - min;
  2004. for (i = 0; i < a->length; i++) {
  2005. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  2006. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  2007. for (; x > 0; x--)
  2008. av_log(log_ctx, log_level, " ");
  2009. av_log(log_ctx, log_level, "|\n");
  2010. }
  2011. }
  2012. void sws_freeVec(SwsVector *a)
  2013. {
  2014. if (!a)
  2015. return;
  2016. av_freep(&a->coeff);
  2017. a->length = 0;
  2018. av_free(a);
  2019. }
  2020. void sws_freeFilter(SwsFilter *filter)
  2021. {
  2022. if (!filter)
  2023. return;
  2024. sws_freeVec(filter->lumH);
  2025. sws_freeVec(filter->lumV);
  2026. sws_freeVec(filter->chrH);
  2027. sws_freeVec(filter->chrV);
  2028. av_free(filter);
  2029. }
  2030. void sws_freeContext(SwsContext *c)
  2031. {
  2032. int i;
  2033. if (!c)
  2034. return;
  2035. for (i = 0; i < 4; i++)
  2036. av_freep(&c->dither_error[i]);
  2037. av_freep(&c->vLumFilter);
  2038. av_freep(&c->vChrFilter);
  2039. av_freep(&c->hLumFilter);
  2040. av_freep(&c->hChrFilter);
  2041. #if HAVE_ALTIVEC
  2042. av_freep(&c->vYCoeffsBank);
  2043. av_freep(&c->vCCoeffsBank);
  2044. #endif
  2045. av_freep(&c->vLumFilterPos);
  2046. av_freep(&c->vChrFilterPos);
  2047. av_freep(&c->hLumFilterPos);
  2048. av_freep(&c->hChrFilterPos);
  2049. #if HAVE_MMX_INLINE
  2050. #if USE_MMAP
  2051. if (c->lumMmxextFilterCode)
  2052. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2053. if (c->chrMmxextFilterCode)
  2054. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2055. #elif HAVE_VIRTUALALLOC
  2056. if (c->lumMmxextFilterCode)
  2057. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2058. if (c->chrMmxextFilterCode)
  2059. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2060. #else
  2061. av_free(c->lumMmxextFilterCode);
  2062. av_free(c->chrMmxextFilterCode);
  2063. #endif
  2064. c->lumMmxextFilterCode = NULL;
  2065. c->chrMmxextFilterCode = NULL;
  2066. #endif /* HAVE_MMX_INLINE */
  2067. av_freep(&c->yuvTable);
  2068. av_freep(&c->formatConvBuffer);
  2069. sws_freeContext(c->cascaded_context[0]);
  2070. sws_freeContext(c->cascaded_context[1]);
  2071. sws_freeContext(c->cascaded_context[2]);
  2072. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2073. av_freep(&c->cascaded_tmp[0]);
  2074. av_freep(&c->cascaded1_tmp[0]);
  2075. av_freep(&c->gamma);
  2076. av_freep(&c->inv_gamma);
  2077. ff_free_filters(c);
  2078. av_free(c);
  2079. }
  2080. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2081. int srcH, enum AVPixelFormat srcFormat,
  2082. int dstW, int dstH,
  2083. enum AVPixelFormat dstFormat, int flags,
  2084. SwsFilter *srcFilter,
  2085. SwsFilter *dstFilter,
  2086. const double *param)
  2087. {
  2088. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2089. SWS_PARAM_DEFAULT };
  2090. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2091. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2092. if (!param)
  2093. param = default_param;
  2094. if (context &&
  2095. (context->srcW != srcW ||
  2096. context->srcH != srcH ||
  2097. context->srcFormat != srcFormat ||
  2098. context->dstW != dstW ||
  2099. context->dstH != dstH ||
  2100. context->dstFormat != dstFormat ||
  2101. context->flags != flags ||
  2102. context->param[0] != param[0] ||
  2103. context->param[1] != param[1])) {
  2104. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2105. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2106. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2107. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2108. sws_freeContext(context);
  2109. context = NULL;
  2110. }
  2111. if (!context) {
  2112. if (!(context = sws_alloc_context()))
  2113. return NULL;
  2114. context->srcW = srcW;
  2115. context->srcH = srcH;
  2116. context->srcFormat = srcFormat;
  2117. context->dstW = dstW;
  2118. context->dstH = dstH;
  2119. context->dstFormat = dstFormat;
  2120. context->flags = flags;
  2121. context->param[0] = param[0];
  2122. context->param[1] = param[1];
  2123. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2124. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2125. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2126. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2127. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2128. sws_freeContext(context);
  2129. return NULL;
  2130. }
  2131. }
  2132. return context;
  2133. }