You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1800 lines
67KB

  1. \input texinfo @c -*- texinfo -*-
  2. @documentencoding UTF-8
  3. @settitle ffmpeg Documentation
  4. @titlepage
  5. @center @titlefont{ffmpeg Documentation}
  6. @end titlepage
  7. @top
  8. @contents
  9. @chapter Synopsis
  10. ffmpeg [@var{global_options}] @{[@var{input_file_options}] -i @file{input_url}@} ... @{[@var{output_file_options}] @file{output_url}@} ...
  11. @chapter Description
  12. @c man begin DESCRIPTION
  13. @command{ffmpeg} is a very fast video and audio converter that can also grab from
  14. a live audio/video source. It can also convert between arbitrary sample
  15. rates and resize video on the fly with a high quality polyphase filter.
  16. @command{ffmpeg} reads from an arbitrary number of input "files" (which can be regular
  17. files, pipes, network streams, grabbing devices, etc.), specified by the
  18. @code{-i} option, and writes to an arbitrary number of output "files", which are
  19. specified by a plain output url. Anything found on the command line which
  20. cannot be interpreted as an option is considered to be an output url.
  21. Each input or output url can, in principle, contain any number of streams of
  22. different types (video/audio/subtitle/attachment/data). The allowed number and/or
  23. types of streams may be limited by the container format. Selecting which
  24. streams from which inputs will go into which output is either done automatically
  25. or with the @code{-map} option (see the Stream selection chapter).
  26. To refer to input files in options, you must use their indices (0-based). E.g.
  27. the first input file is @code{0}, the second is @code{1}, etc. Similarly, streams
  28. within a file are referred to by their indices. E.g. @code{2:3} refers to the
  29. fourth stream in the third input file. Also see the Stream specifiers chapter.
  30. As a general rule, options are applied to the next specified
  31. file. Therefore, order is important, and you can have the same
  32. option on the command line multiple times. Each occurrence is
  33. then applied to the next input or output file.
  34. Exceptions from this rule are the global options (e.g. verbosity level),
  35. which should be specified first.
  36. Do not mix input and output files -- first specify all input files, then all
  37. output files. Also do not mix options which belong to different files. All
  38. options apply ONLY to the next input or output file and are reset between files.
  39. @itemize
  40. @item
  41. To set the video bitrate of the output file to 64 kbit/s:
  42. @example
  43. ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi
  44. @end example
  45. @item
  46. To force the frame rate of the output file to 24 fps:
  47. @example
  48. ffmpeg -i input.avi -r 24 output.avi
  49. @end example
  50. @item
  51. To force the frame rate of the input file (valid for raw formats only)
  52. to 1 fps and the frame rate of the output file to 24 fps:
  53. @example
  54. ffmpeg -r 1 -i input.m2v -r 24 output.avi
  55. @end example
  56. @end itemize
  57. The format option may be needed for raw input files.
  58. @c man end DESCRIPTION
  59. @chapter Detailed description
  60. @c man begin DETAILED DESCRIPTION
  61. The transcoding process in @command{ffmpeg} for each output can be described by
  62. the following diagram:
  63. @verbatim
  64. _______ ______________
  65. | | | |
  66. | input | demuxer | encoded data | decoder
  67. | file | ---------> | packets | -----+
  68. |_______| |______________| |
  69. v
  70. _________
  71. | |
  72. | decoded |
  73. | frames |
  74. |_________|
  75. ________ ______________ |
  76. | | | | |
  77. | output | <-------- | encoded data | <----+
  78. | file | muxer | packets | encoder
  79. |________| |______________|
  80. @end verbatim
  81. @command{ffmpeg} calls the libavformat library (containing demuxers) to read
  82. input files and get packets containing encoded data from them. When there are
  83. multiple input files, @command{ffmpeg} tries to keep them synchronized by
  84. tracking lowest timestamp on any active input stream.
  85. Encoded packets are then passed to the decoder (unless streamcopy is selected
  86. for the stream, see further for a description). The decoder produces
  87. uncompressed frames (raw video/PCM audio/...) which can be processed further by
  88. filtering (see next section). After filtering, the frames are passed to the
  89. encoder, which encodes them and outputs encoded packets. Finally those are
  90. passed to the muxer, which writes the encoded packets to the output file.
  91. @section Filtering
  92. Before encoding, @command{ffmpeg} can process raw audio and video frames using
  93. filters from the libavfilter library. Several chained filters form a filter
  94. graph. @command{ffmpeg} distinguishes between two types of filtergraphs:
  95. simple and complex.
  96. @subsection Simple filtergraphs
  97. Simple filtergraphs are those that have exactly one input and output, both of
  98. the same type. In the above diagram they can be represented by simply inserting
  99. an additional step between decoding and encoding:
  100. @verbatim
  101. _________ ______________
  102. | | | |
  103. | decoded | | encoded data |
  104. | frames |\ _ | packets |
  105. |_________| \ /||______________|
  106. \ __________ /
  107. simple _\|| | / encoder
  108. filtergraph | filtered |/
  109. | frames |
  110. |__________|
  111. @end verbatim
  112. Simple filtergraphs are configured with the per-stream @option{-filter} option
  113. (with @option{-vf} and @option{-af} aliases for video and audio respectively).
  114. A simple filtergraph for video can look for example like this:
  115. @verbatim
  116. _______ _____________ _______ ________
  117. | | | | | | | |
  118. | input | ---> | deinterlace | ---> | scale | ---> | output |
  119. |_______| |_____________| |_______| |________|
  120. @end verbatim
  121. Note that some filters change frame properties but not frame contents. E.g. the
  122. @code{fps} filter in the example above changes number of frames, but does not
  123. touch the frame contents. Another example is the @code{setpts} filter, which
  124. only sets timestamps and otherwise passes the frames unchanged.
  125. @subsection Complex filtergraphs
  126. Complex filtergraphs are those which cannot be described as simply a linear
  127. processing chain applied to one stream. This is the case, for example, when the graph has
  128. more than one input and/or output, or when output stream type is different from
  129. input. They can be represented with the following diagram:
  130. @verbatim
  131. _________
  132. | |
  133. | input 0 |\ __________
  134. |_________| \ | |
  135. \ _________ /| output 0 |
  136. \ | | / |__________|
  137. _________ \| complex | /
  138. | | | |/
  139. | input 1 |---->| filter |\
  140. |_________| | | \ __________
  141. /| graph | \ | |
  142. / | | \| output 1 |
  143. _________ / |_________| |__________|
  144. | | /
  145. | input 2 |/
  146. |_________|
  147. @end verbatim
  148. Complex filtergraphs are configured with the @option{-filter_complex} option.
  149. Note that this option is global, since a complex filtergraph, by its nature,
  150. cannot be unambiguously associated with a single stream or file.
  151. The @option{-lavfi} option is equivalent to @option{-filter_complex}.
  152. A trivial example of a complex filtergraph is the @code{overlay} filter, which
  153. has two video inputs and one video output, containing one video overlaid on top
  154. of the other. Its audio counterpart is the @code{amix} filter.
  155. @section Stream copy
  156. Stream copy is a mode selected by supplying the @code{copy} parameter to the
  157. @option{-codec} option. It makes @command{ffmpeg} omit the decoding and encoding
  158. step for the specified stream, so it does only demuxing and muxing. It is useful
  159. for changing the container format or modifying container-level metadata. The
  160. diagram above will, in this case, simplify to this:
  161. @verbatim
  162. _______ ______________ ________
  163. | | | | | |
  164. | input | demuxer | encoded data | muxer | output |
  165. | file | ---------> | packets | -------> | file |
  166. |_______| |______________| |________|
  167. @end verbatim
  168. Since there is no decoding or encoding, it is very fast and there is no quality
  169. loss. However, it might not work in some cases because of many factors. Applying
  170. filters is obviously also impossible, since filters work on uncompressed data.
  171. @c man end DETAILED DESCRIPTION
  172. @chapter Stream selection
  173. @c man begin STREAM SELECTION
  174. By default, @command{ffmpeg} includes only one stream of each type (video, audio, subtitle)
  175. present in the input files and adds them to each output file. It picks the
  176. "best" of each based upon the following criteria: for video, it is the stream
  177. with the highest resolution, for audio, it is the stream with the most channels, for
  178. subtitles, it is the first subtitle stream. In the case where several streams of
  179. the same type rate equally, the stream with the lowest index is chosen.
  180. You can disable some of those defaults by using the @code{-vn/-an/-sn/-dn} options. For
  181. full manual control, use the @code{-map} option, which disables the defaults just
  182. described.
  183. @c man end STREAM SELECTION
  184. @chapter Options
  185. @c man begin OPTIONS
  186. @include fftools-common-opts.texi
  187. @section Main options
  188. @table @option
  189. @item -f @var{fmt} (@emph{input/output})
  190. Force input or output file format. The format is normally auto detected for input
  191. files and guessed from the file extension for output files, so this option is not
  192. needed in most cases.
  193. @item -i @var{url} (@emph{input})
  194. input file url
  195. @item -y (@emph{global})
  196. Overwrite output files without asking.
  197. @item -n (@emph{global})
  198. Do not overwrite output files, and exit immediately if a specified
  199. output file already exists.
  200. @item -stream_loop @var{number} (@emph{input})
  201. Set number of times input stream shall be looped. Loop 0 means no loop,
  202. loop -1 means infinite loop.
  203. @item -c[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  204. @itemx -codec[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  205. Select an encoder (when used before an output file) or a decoder (when used
  206. before an input file) for one or more streams. @var{codec} is the name of a
  207. decoder/encoder or a special value @code{copy} (output only) to indicate that
  208. the stream is not to be re-encoded.
  209. For example
  210. @example
  211. ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT
  212. @end example
  213. encodes all video streams with libx264 and copies all audio streams.
  214. For each stream, the last matching @code{c} option is applied, so
  215. @example
  216. ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT
  217. @end example
  218. will copy all the streams except the second video, which will be encoded with
  219. libx264, and the 138th audio, which will be encoded with libvorbis.
  220. @item -t @var{duration} (@emph{input/output})
  221. When used as an input option (before @code{-i}), limit the @var{duration} of
  222. data read from the input file.
  223. When used as an output option (before an output url), stop writing the
  224. output after its duration reaches @var{duration}.
  225. @var{duration} must be a time duration specification,
  226. see @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  227. -to and -t are mutually exclusive and -t has priority.
  228. @item -to @var{position} (@emph{input/output})
  229. Stop writing the output or reading the input at @var{position}.
  230. @var{position} must be a time duration specification,
  231. see @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  232. -to and -t are mutually exclusive and -t has priority.
  233. @item -fs @var{limit_size} (@emph{output})
  234. Set the file size limit, expressed in bytes. No further chunk of bytes is written
  235. after the limit is exceeded. The size of the output file is slightly more than the
  236. requested file size.
  237. @item -ss @var{position} (@emph{input/output})
  238. When used as an input option (before @code{-i}), seeks in this input file to
  239. @var{position}. Note that in most formats it is not possible to seek exactly,
  240. so @command{ffmpeg} will seek to the closest seek point before @var{position}.
  241. When transcoding and @option{-accurate_seek} is enabled (the default), this
  242. extra segment between the seek point and @var{position} will be decoded and
  243. discarded. When doing stream copy or when @option{-noaccurate_seek} is used, it
  244. will be preserved.
  245. When used as an output option (before an output url), decodes but discards
  246. input until the timestamps reach @var{position}.
  247. @var{position} must be a time duration specification,
  248. see @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  249. @item -sseof @var{position} (@emph{input/output})
  250. Like the @code{-ss} option but relative to the "end of file". That is negative
  251. values are earlier in the file, 0 is at EOF.
  252. @item -itsoffset @var{offset} (@emph{input})
  253. Set the input time offset.
  254. @var{offset} must be a time duration specification,
  255. see @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  256. The offset is added to the timestamps of the input files. Specifying
  257. a positive offset means that the corresponding streams are delayed by
  258. the time duration specified in @var{offset}.
  259. @item -timestamp @var{date} (@emph{output})
  260. Set the recording timestamp in the container.
  261. @var{date} must be a date specification,
  262. see @ref{date syntax,,the Date section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  263. @item -metadata[:metadata_specifier] @var{key}=@var{value} (@emph{output,per-metadata})
  264. Set a metadata key/value pair.
  265. An optional @var{metadata_specifier} may be given to set metadata
  266. on streams, chapters or programs. See @code{-map_metadata}
  267. documentation for details.
  268. This option overrides metadata set with @code{-map_metadata}. It is
  269. also possible to delete metadata by using an empty value.
  270. For example, for setting the title in the output file:
  271. @example
  272. ffmpeg -i in.avi -metadata title="my title" out.flv
  273. @end example
  274. To set the language of the first audio stream:
  275. @example
  276. ffmpeg -i INPUT -metadata:s:a:0 language=eng OUTPUT
  277. @end example
  278. @item -disposition[:stream_specifier] @var{value} (@emph{output,per-stream})
  279. Sets the disposition for a stream.
  280. This option overrides the disposition copied from the input stream. It is also
  281. possible to delete the disposition by setting it to 0.
  282. The following dispositions are recognized:
  283. @table @option
  284. @item default
  285. @item dub
  286. @item original
  287. @item comment
  288. @item lyrics
  289. @item karaoke
  290. @item forced
  291. @item hearing_impaired
  292. @item visual_impaired
  293. @item clean_effects
  294. @item captions
  295. @item descriptions
  296. @item metadata
  297. @end table
  298. For example, to make the second audio stream the default stream:
  299. @example
  300. ffmpeg -i in.mkv -disposition:a:1 default out.mkv
  301. @end example
  302. To make the second subtitle stream the default stream and remove the default
  303. disposition from the first subtitle stream:
  304. @example
  305. ffmpeg -i INPUT -disposition:s:0 0 -disposition:s:1 default OUTPUT
  306. @end example
  307. @item -program [title=@var{title}:][program_num=@var{program_num}:]st=@var{stream}[:st=@var{stream}...] (@emph{output})
  308. Creates a program with the specified @var{title}, @var{program_num} and adds the specified
  309. @var{stream}(s) to it.
  310. @item -target @var{type} (@emph{output})
  311. Specify target file type (@code{vcd}, @code{svcd}, @code{dvd}, @code{dv},
  312. @code{dv50}). @var{type} may be prefixed with @code{pal-}, @code{ntsc-} or
  313. @code{film-} to use the corresponding standard. All the format options
  314. (bitrate, codecs, buffer sizes) are then set automatically. You can just type:
  315. @example
  316. ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg
  317. @end example
  318. Nevertheless you can specify additional options as long as you know
  319. they do not conflict with the standard, as in:
  320. @example
  321. ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg
  322. @end example
  323. @item -dframes @var{number} (@emph{output})
  324. Set the number of data frames to output. This is an obsolete alias for
  325. @code{-frames:d}, which you should use instead.
  326. @item -frames[:@var{stream_specifier}] @var{framecount} (@emph{output,per-stream})
  327. Stop writing to the stream after @var{framecount} frames.
  328. @item -q[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  329. @itemx -qscale[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  330. Use fixed quality scale (VBR). The meaning of @var{q}/@var{qscale} is
  331. codec-dependent.
  332. If @var{qscale} is used without a @var{stream_specifier} then it applies only
  333. to the video stream, this is to maintain compatibility with previous behavior
  334. and as specifying the same codec specific value to 2 different codecs that is
  335. audio and video generally is not what is intended when no stream_specifier is
  336. used.
  337. @anchor{filter_option}
  338. @item -filter[:@var{stream_specifier}] @var{filtergraph} (@emph{output,per-stream})
  339. Create the filtergraph specified by @var{filtergraph} and use it to
  340. filter the stream.
  341. @var{filtergraph} is a description of the filtergraph to apply to
  342. the stream, and must have a single input and a single output of the
  343. same type of the stream. In the filtergraph, the input is associated
  344. to the label @code{in}, and the output to the label @code{out}. See
  345. the ffmpeg-filters manual for more information about the filtergraph
  346. syntax.
  347. See the @ref{filter_complex_option,,-filter_complex option} if you
  348. want to create filtergraphs with multiple inputs and/or outputs.
  349. @item -filter_script[:@var{stream_specifier}] @var{filename} (@emph{output,per-stream})
  350. This option is similar to @option{-filter}, the only difference is that its
  351. argument is the name of the file from which a filtergraph description is to be
  352. read.
  353. @item -filter_threads @var{nb_threads} (@emph{global})
  354. Defines how many threads are used to process a filter pipeline. Each pipeline
  355. will produce a thread pool with this many threads available for parallel processing.
  356. The default is the number of available CPUs.
  357. @item -pre[:@var{stream_specifier}] @var{preset_name} (@emph{output,per-stream})
  358. Specify the preset for matching stream(s).
  359. @item -stats (@emph{global})
  360. Print encoding progress/statistics. It is on by default, to explicitly
  361. disable it you need to specify @code{-nostats}.
  362. @item -progress @var{url} (@emph{global})
  363. Send program-friendly progress information to @var{url}.
  364. Progress information is written approximately every second and at the end of
  365. the encoding process. It is made of "@var{key}=@var{value}" lines. @var{key}
  366. consists of only alphanumeric characters. The last key of a sequence of
  367. progress information is always "progress".
  368. @anchor{stdin option}
  369. @item -stdin
  370. Enable interaction on standard input. On by default unless standard input is
  371. used as an input. To explicitly disable interaction you need to specify
  372. @code{-nostdin}.
  373. Disabling interaction on standard input is useful, for example, if
  374. ffmpeg is in the background process group. Roughly the same result can
  375. be achieved with @code{ffmpeg ... < /dev/null} but it requires a
  376. shell.
  377. @item -debug_ts (@emph{global})
  378. Print timestamp information. It is off by default. This option is
  379. mostly useful for testing and debugging purposes, and the output
  380. format may change from one version to another, so it should not be
  381. employed by portable scripts.
  382. See also the option @code{-fdebug ts}.
  383. @item -attach @var{filename} (@emph{output})
  384. Add an attachment to the output file. This is supported by a few formats
  385. like Matroska for e.g. fonts used in rendering subtitles. Attachments
  386. are implemented as a specific type of stream, so this option will add
  387. a new stream to the file. It is then possible to use per-stream options
  388. on this stream in the usual way. Attachment streams created with this
  389. option will be created after all the other streams (i.e. those created
  390. with @code{-map} or automatic mappings).
  391. Note that for Matroska you also have to set the mimetype metadata tag:
  392. @example
  393. ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv
  394. @end example
  395. (assuming that the attachment stream will be third in the output file).
  396. @item -dump_attachment[:@var{stream_specifier}] @var{filename} (@emph{input,per-stream})
  397. Extract the matching attachment stream into a file named @var{filename}. If
  398. @var{filename} is empty, then the value of the @code{filename} metadata tag
  399. will be used.
  400. E.g. to extract the first attachment to a file named 'out.ttf':
  401. @example
  402. ffmpeg -dump_attachment:t:0 out.ttf -i INPUT
  403. @end example
  404. To extract all attachments to files determined by the @code{filename} tag:
  405. @example
  406. ffmpeg -dump_attachment:t "" -i INPUT
  407. @end example
  408. Technical note -- attachments are implemented as codec extradata, so this
  409. option can actually be used to extract extradata from any stream, not just
  410. attachments.
  411. @item -noautorotate
  412. Disable automatically rotating video based on file metadata.
  413. @end table
  414. @section Video Options
  415. @table @option
  416. @item -vframes @var{number} (@emph{output})
  417. Set the number of video frames to output. This is an obsolete alias for
  418. @code{-frames:v}, which you should use instead.
  419. @item -r[:@var{stream_specifier}] @var{fps} (@emph{input/output,per-stream})
  420. Set frame rate (Hz value, fraction or abbreviation).
  421. As an input option, ignore any timestamps stored in the file and instead
  422. generate timestamps assuming constant frame rate @var{fps}.
  423. This is not the same as the @option{-framerate} option used for some input formats
  424. like image2 or v4l2 (it used to be the same in older versions of FFmpeg).
  425. If in doubt use @option{-framerate} instead of the input option @option{-r}.
  426. As an output option, duplicate or drop input frames to achieve constant output
  427. frame rate @var{fps}.
  428. @item -s[:@var{stream_specifier}] @var{size} (@emph{input/output,per-stream})
  429. Set frame size.
  430. As an input option, this is a shortcut for the @option{video_size} private
  431. option, recognized by some demuxers for which the frame size is either not
  432. stored in the file or is configurable -- e.g. raw video or video grabbers.
  433. As an output option, this inserts the @code{scale} video filter to the
  434. @emph{end} of the corresponding filtergraph. Please use the @code{scale} filter
  435. directly to insert it at the beginning or some other place.
  436. The format is @samp{wxh} (default - same as source).
  437. @item -aspect[:@var{stream_specifier}] @var{aspect} (@emph{output,per-stream})
  438. Set the video display aspect ratio specified by @var{aspect}.
  439. @var{aspect} can be a floating point number string, or a string of the
  440. form @var{num}:@var{den}, where @var{num} and @var{den} are the
  441. numerator and denominator of the aspect ratio. For example "4:3",
  442. "16:9", "1.3333", and "1.7777" are valid argument values.
  443. If used together with @option{-vcodec copy}, it will affect the aspect ratio
  444. stored at container level, but not the aspect ratio stored in encoded
  445. frames, if it exists.
  446. @item -vn (@emph{output})
  447. Disable video recording.
  448. @item -vcodec @var{codec} (@emph{output})
  449. Set the video codec. This is an alias for @code{-codec:v}.
  450. @item -pass[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  451. Select the pass number (1 or 2). It is used to do two-pass
  452. video encoding. The statistics of the video are recorded in the first
  453. pass into a log file (see also the option -passlogfile),
  454. and in the second pass that log file is used to generate the video
  455. at the exact requested bitrate.
  456. On pass 1, you may just deactivate audio and set output to null,
  457. examples for Windows and Unix:
  458. @example
  459. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL
  460. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null
  461. @end example
  462. @item -passlogfile[:@var{stream_specifier}] @var{prefix} (@emph{output,per-stream})
  463. Set two-pass log file name prefix to @var{prefix}, the default file name
  464. prefix is ``ffmpeg2pass''. The complete file name will be
  465. @file{PREFIX-N.log}, where N is a number specific to the output
  466. stream
  467. @item -vf @var{filtergraph} (@emph{output})
  468. Create the filtergraph specified by @var{filtergraph} and use it to
  469. filter the stream.
  470. This is an alias for @code{-filter:v}, see the @ref{filter_option,,-filter option}.
  471. @end table
  472. @section Advanced Video options
  473. @table @option
  474. @item -pix_fmt[:@var{stream_specifier}] @var{format} (@emph{input/output,per-stream})
  475. Set pixel format. Use @code{-pix_fmts} to show all the supported
  476. pixel formats.
  477. If the selected pixel format can not be selected, ffmpeg will print a
  478. warning and select the best pixel format supported by the encoder.
  479. If @var{pix_fmt} is prefixed by a @code{+}, ffmpeg will exit with an error
  480. if the requested pixel format can not be selected, and automatic conversions
  481. inside filtergraphs are disabled.
  482. If @var{pix_fmt} is a single @code{+}, ffmpeg selects the same pixel format
  483. as the input (or graph output) and automatic conversions are disabled.
  484. @item -sws_flags @var{flags} (@emph{input/output})
  485. Set SwScaler flags.
  486. @item -vdt @var{n}
  487. Discard threshold.
  488. @item -rc_override[:@var{stream_specifier}] @var{override} (@emph{output,per-stream})
  489. Rate control override for specific intervals, formatted as "int,int,int"
  490. list separated with slashes. Two first values are the beginning and
  491. end frame numbers, last one is quantizer to use if positive, or quality
  492. factor if negative.
  493. @item -ilme
  494. Force interlacing support in encoder (MPEG-2 and MPEG-4 only).
  495. Use this option if your input file is interlaced and you want
  496. to keep the interlaced format for minimum losses.
  497. The alternative is to deinterlace the input stream with
  498. @option{-deinterlace}, but deinterlacing introduces losses.
  499. @item -psnr
  500. Calculate PSNR of compressed frames.
  501. @item -vstats
  502. Dump video coding statistics to @file{vstats_HHMMSS.log}.
  503. @item -vstats_file @var{file}
  504. Dump video coding statistics to @var{file}.
  505. @item -vstats_version @var{file}
  506. Specifies which version of the vstats format to use. Default is 2.
  507. version = 1 :
  508. @code{frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s}
  509. version > 1:
  510. @code{out= %2d st= %2d frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s}
  511. @item -top[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  512. top=1/bottom=0/auto=-1 field first
  513. @item -dc @var{precision}
  514. Intra_dc_precision.
  515. @item -vtag @var{fourcc/tag} (@emph{output})
  516. Force video tag/fourcc. This is an alias for @code{-tag:v}.
  517. @item -qphist (@emph{global})
  518. Show QP histogram
  519. @item -vbsf @var{bitstream_filter}
  520. Deprecated see -bsf
  521. @item -force_key_frames[:@var{stream_specifier}] @var{time}[,@var{time}...] (@emph{output,per-stream})
  522. @item -force_key_frames[:@var{stream_specifier}] expr:@var{expr} (@emph{output,per-stream})
  523. Force key frames at the specified timestamps, more precisely at the first
  524. frames after each specified time.
  525. If the argument is prefixed with @code{expr:}, the string @var{expr}
  526. is interpreted like an expression and is evaluated for each frame. A
  527. key frame is forced in case the evaluation is non-zero.
  528. If one of the times is "@code{chapters}[@var{delta}]", it is expanded into
  529. the time of the beginning of all chapters in the file, shifted by
  530. @var{delta}, expressed as a time in seconds.
  531. This option can be useful to ensure that a seek point is present at a
  532. chapter mark or any other designated place in the output file.
  533. For example, to insert a key frame at 5 minutes, plus key frames 0.1 second
  534. before the beginning of every chapter:
  535. @example
  536. -force_key_frames 0:05:00,chapters-0.1
  537. @end example
  538. The expression in @var{expr} can contain the following constants:
  539. @table @option
  540. @item n
  541. the number of current processed frame, starting from 0
  542. @item n_forced
  543. the number of forced frames
  544. @item prev_forced_n
  545. the number of the previous forced frame, it is @code{NAN} when no
  546. keyframe was forced yet
  547. @item prev_forced_t
  548. the time of the previous forced frame, it is @code{NAN} when no
  549. keyframe was forced yet
  550. @item t
  551. the time of the current processed frame
  552. @end table
  553. For example to force a key frame every 5 seconds, you can specify:
  554. @example
  555. -force_key_frames expr:gte(t,n_forced*5)
  556. @end example
  557. To force a key frame 5 seconds after the time of the last forced one,
  558. starting from second 13:
  559. @example
  560. -force_key_frames expr:if(isnan(prev_forced_t),gte(t,13),gte(t,prev_forced_t+5))
  561. @end example
  562. Note that forcing too many keyframes is very harmful for the lookahead
  563. algorithms of certain encoders: using fixed-GOP options or similar
  564. would be more efficient.
  565. @item -copyinkf[:@var{stream_specifier}] (@emph{output,per-stream})
  566. When doing stream copy, copy also non-key frames found at the
  567. beginning.
  568. @item -init_hw_device @var{type}[=@var{name}][:@var{device}[,@var{key=value}...]]
  569. Initialise a new hardware device of type @var{type} called @var{name}, using the
  570. given device parameters.
  571. If no name is specified it will receive a default name of the form "@var{type}%d".
  572. The meaning of @var{device} and the following arguments depends on the
  573. device type:
  574. @table @option
  575. @item cuda
  576. @var{device} is the number of the CUDA device.
  577. @item dxva2
  578. @var{device} is the number of the Direct3D 9 display adapter.
  579. @item vaapi
  580. @var{device} is either an X11 display name or a DRM render node.
  581. If not specified, it will attempt to open the default X11 display (@emph{$DISPLAY})
  582. and then the first DRM render node (@emph{/dev/dri/renderD128}).
  583. @item vdpau
  584. @var{device} is an X11 display name.
  585. If not specified, it will attempt to open the default X11 display (@emph{$DISPLAY}).
  586. @item qsv
  587. @var{device} selects a value in @samp{MFX_IMPL_*}. Allowed values are:
  588. @table @option
  589. @item auto
  590. @item sw
  591. @item hw
  592. @item auto_any
  593. @item hw_any
  594. @item hw2
  595. @item hw3
  596. @item hw4
  597. @end table
  598. If not specified, @samp{auto_any} is used.
  599. (Note that it may be easier to achieve the desired result for QSV by creating the
  600. platform-appropriate subdevice (@samp{dxva2} or @samp{vaapi}) and then deriving a
  601. QSV device from that.)
  602. @item opencl
  603. @var{device} selects the platform and device as @emph{platform_index.device_index}.
  604. The set of devices can also be filtered using the key-value pairs to find only
  605. devices matching particular platform or device strings.
  606. The strings usable as filters are:
  607. @table @option
  608. @item platform_profile
  609. @item platform_version
  610. @item platform_name
  611. @item platform_vendor
  612. @item platform_extensions
  613. @item device_name
  614. @item device_vendor
  615. @item driver_version
  616. @item device_version
  617. @item device_profile
  618. @item device_extensions
  619. @item device_type
  620. @end table
  621. The indices and filters must together uniquely select a device.
  622. Examples:
  623. @table @emph
  624. @item -init_hw_device opencl:0.1
  625. Choose the second device on the first platform.
  626. @item -init_hw_device opencl:,device_name=Foo9000
  627. Choose the device with a name containing the string @emph{Foo9000}.
  628. @item -init_hw_device opencl:1,device_type=gpu,device_extensions=cl_khr_fp16
  629. Choose the GPU device on the second platform supporting the @emph{cl_khr_fp16}
  630. extension.
  631. @end table
  632. @end table
  633. @item -init_hw_device @var{type}[=@var{name}]@@@var{source}
  634. Initialise a new hardware device of type @var{type} called @var{name},
  635. deriving it from the existing device with the name @var{source}.
  636. @item -init_hw_device list
  637. List all hardware device types supported in this build of ffmpeg.
  638. @item -filter_hw_device @var{name}
  639. Pass the hardware device called @var{name} to all filters in any filter graph.
  640. This can be used to set the device to upload to with the @code{hwupload} filter,
  641. or the device to map to with the @code{hwmap} filter. Other filters may also
  642. make use of this parameter when they require a hardware device. Note that this
  643. is typically only required when the input is not already in hardware frames -
  644. when it is, filters will derive the device they require from the context of the
  645. frames they receive as input.
  646. This is a global setting, so all filters will receive the same device.
  647. @item -hwaccel[:@var{stream_specifier}] @var{hwaccel} (@emph{input,per-stream})
  648. Use hardware acceleration to decode the matching stream(s). The allowed values
  649. of @var{hwaccel} are:
  650. @table @option
  651. @item none
  652. Do not use any hardware acceleration (the default).
  653. @item auto
  654. Automatically select the hardware acceleration method.
  655. @item vdpau
  656. Use VDPAU (Video Decode and Presentation API for Unix) hardware acceleration.
  657. @item dxva2
  658. Use DXVA2 (DirectX Video Acceleration) hardware acceleration.
  659. @item vaapi
  660. Use VAAPI (Video Acceleration API) hardware acceleration.
  661. @item qsv
  662. Use the Intel QuickSync Video acceleration for video transcoding.
  663. Unlike most other values, this option does not enable accelerated decoding (that
  664. is used automatically whenever a qsv decoder is selected), but accelerated
  665. transcoding, without copying the frames into the system memory.
  666. For it to work, both the decoder and the encoder must support QSV acceleration
  667. and no filters must be used.
  668. @end table
  669. This option has no effect if the selected hwaccel is not available or not
  670. supported by the chosen decoder.
  671. Note that most acceleration methods are intended for playback and will not be
  672. faster than software decoding on modern CPUs. Additionally, @command{ffmpeg}
  673. will usually need to copy the decoded frames from the GPU memory into the system
  674. memory, resulting in further performance loss. This option is thus mainly
  675. useful for testing.
  676. @item -hwaccel_device[:@var{stream_specifier}] @var{hwaccel_device} (@emph{input,per-stream})
  677. Select a device to use for hardware acceleration.
  678. This option only makes sense when the @option{-hwaccel} option is also specified.
  679. It can either refer to an existing device created with @option{-init_hw_device}
  680. by name, or it can create a new device as if
  681. @samp{-init_hw_device} @var{type}:@var{hwaccel_device}
  682. were called immediately before.
  683. @item -hwaccels
  684. List all hardware acceleration methods supported in this build of ffmpeg.
  685. @end table
  686. @section Audio Options
  687. @table @option
  688. @item -aframes @var{number} (@emph{output})
  689. Set the number of audio frames to output. This is an obsolete alias for
  690. @code{-frames:a}, which you should use instead.
  691. @item -ar[:@var{stream_specifier}] @var{freq} (@emph{input/output,per-stream})
  692. Set the audio sampling frequency. For output streams it is set by
  693. default to the frequency of the corresponding input stream. For input
  694. streams this option only makes sense for audio grabbing devices and raw
  695. demuxers and is mapped to the corresponding demuxer options.
  696. @item -aq @var{q} (@emph{output})
  697. Set the audio quality (codec-specific, VBR). This is an alias for -q:a.
  698. @item -ac[:@var{stream_specifier}] @var{channels} (@emph{input/output,per-stream})
  699. Set the number of audio channels. For output streams it is set by
  700. default to the number of input audio channels. For input streams
  701. this option only makes sense for audio grabbing devices and raw demuxers
  702. and is mapped to the corresponding demuxer options.
  703. @item -an (@emph{output})
  704. Disable audio recording.
  705. @item -acodec @var{codec} (@emph{input/output})
  706. Set the audio codec. This is an alias for @code{-codec:a}.
  707. @item -sample_fmt[:@var{stream_specifier}] @var{sample_fmt} (@emph{output,per-stream})
  708. Set the audio sample format. Use @code{-sample_fmts} to get a list
  709. of supported sample formats.
  710. @item -af @var{filtergraph} (@emph{output})
  711. Create the filtergraph specified by @var{filtergraph} and use it to
  712. filter the stream.
  713. This is an alias for @code{-filter:a}, see the @ref{filter_option,,-filter option}.
  714. @end table
  715. @section Advanced Audio options
  716. @table @option
  717. @item -atag @var{fourcc/tag} (@emph{output})
  718. Force audio tag/fourcc. This is an alias for @code{-tag:a}.
  719. @item -absf @var{bitstream_filter}
  720. Deprecated, see -bsf
  721. @item -guess_layout_max @var{channels} (@emph{input,per-stream})
  722. If some input channel layout is not known, try to guess only if it
  723. corresponds to at most the specified number of channels. For example, 2
  724. tells to @command{ffmpeg} to recognize 1 channel as mono and 2 channels as
  725. stereo but not 6 channels as 5.1. The default is to always try to guess. Use
  726. 0 to disable all guessing.
  727. @end table
  728. @section Subtitle options
  729. @table @option
  730. @item -scodec @var{codec} (@emph{input/output})
  731. Set the subtitle codec. This is an alias for @code{-codec:s}.
  732. @item -sn (@emph{output})
  733. Disable subtitle recording.
  734. @item -sbsf @var{bitstream_filter}
  735. Deprecated, see -bsf
  736. @end table
  737. @section Advanced Subtitle options
  738. @table @option
  739. @item -fix_sub_duration
  740. Fix subtitles durations. For each subtitle, wait for the next packet in the
  741. same stream and adjust the duration of the first to avoid overlap. This is
  742. necessary with some subtitles codecs, especially DVB subtitles, because the
  743. duration in the original packet is only a rough estimate and the end is
  744. actually marked by an empty subtitle frame. Failing to use this option when
  745. necessary can result in exaggerated durations or muxing failures due to
  746. non-monotonic timestamps.
  747. Note that this option will delay the output of all data until the next
  748. subtitle packet is decoded: it may increase memory consumption and latency a
  749. lot.
  750. @item -canvas_size @var{size}
  751. Set the size of the canvas used to render subtitles.
  752. @end table
  753. @section Advanced options
  754. @table @option
  755. @item -map [-]@var{input_file_id}[:@var{stream_specifier}][?][,@var{sync_file_id}[:@var{stream_specifier}]] | @var{[linklabel]} (@emph{output})
  756. Designate one or more input streams as a source for the output file. Each input
  757. stream is identified by the input file index @var{input_file_id} and
  758. the input stream index @var{input_stream_id} within the input
  759. file. Both indices start at 0. If specified,
  760. @var{sync_file_id}:@var{stream_specifier} sets which input stream
  761. is used as a presentation sync reference.
  762. The first @code{-map} option on the command line specifies the
  763. source for output stream 0, the second @code{-map} option specifies
  764. the source for output stream 1, etc.
  765. A @code{-} character before the stream identifier creates a "negative" mapping.
  766. It disables matching streams from already created mappings.
  767. A trailing @code{?} after the stream index will allow the map to be
  768. optional: if the map matches no streams the map will be ignored instead
  769. of failing. Note the map will still fail if an invalid input file index
  770. is used; such as if the map refers to a non-existent input.
  771. An alternative @var{[linklabel]} form will map outputs from complex filter
  772. graphs (see the @option{-filter_complex} option) to the output file.
  773. @var{linklabel} must correspond to a defined output link label in the graph.
  774. For example, to map ALL streams from the first input file to output
  775. @example
  776. ffmpeg -i INPUT -map 0 output
  777. @end example
  778. For example, if you have two audio streams in the first input file,
  779. these streams are identified by "0:0" and "0:1". You can use
  780. @code{-map} to select which streams to place in an output file. For
  781. example:
  782. @example
  783. ffmpeg -i INPUT -map 0:1 out.wav
  784. @end example
  785. will map the input stream in @file{INPUT} identified by "0:1" to
  786. the (single) output stream in @file{out.wav}.
  787. For example, to select the stream with index 2 from input file
  788. @file{a.mov} (specified by the identifier "0:2"), and stream with
  789. index 6 from input @file{b.mov} (specified by the identifier "1:6"),
  790. and copy them to the output file @file{out.mov}:
  791. @example
  792. ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov
  793. @end example
  794. To select all video and the third audio stream from an input file:
  795. @example
  796. ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT
  797. @end example
  798. To map all the streams except the second audio, use negative mappings
  799. @example
  800. ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT
  801. @end example
  802. To map the video and audio streams from the first input, and using the
  803. trailing @code{?}, ignore the audio mapping if no audio streams exist in
  804. the first input:
  805. @example
  806. ffmpeg -i INPUT -map 0:v -map 0:a? OUTPUT
  807. @end example
  808. To pick the English audio stream:
  809. @example
  810. ffmpeg -i INPUT -map 0:m:language:eng OUTPUT
  811. @end example
  812. Note that using this option disables the default mappings for this output file.
  813. @item -ignore_unknown
  814. Ignore input streams with unknown type instead of failing if copying
  815. such streams is attempted.
  816. @item -copy_unknown
  817. Allow input streams with unknown type to be copied instead of failing if copying
  818. such streams is attempted.
  819. @item -map_channel [@var{input_file_id}.@var{stream_specifier}.@var{channel_id}|-1][?][:@var{output_file_id}.@var{stream_specifier}]
  820. Map an audio channel from a given input to an output. If
  821. @var{output_file_id}.@var{stream_specifier} is not set, the audio channel will
  822. be mapped on all the audio streams.
  823. Using "-1" instead of
  824. @var{input_file_id}.@var{stream_specifier}.@var{channel_id} will map a muted
  825. channel.
  826. A trailing @code{?} will allow the map_channel to be
  827. optional: if the map_channel matches no channel the map_channel will be ignored instead
  828. of failing.
  829. For example, assuming @var{INPUT} is a stereo audio file, you can switch the
  830. two audio channels with the following command:
  831. @example
  832. ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT
  833. @end example
  834. If you want to mute the first channel and keep the second:
  835. @example
  836. ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT
  837. @end example
  838. The order of the "-map_channel" option specifies the order of the channels in
  839. the output stream. The output channel layout is guessed from the number of
  840. channels mapped (mono if one "-map_channel", stereo if two, etc.). Using "-ac"
  841. in combination of "-map_channel" makes the channel gain levels to be updated if
  842. input and output channel layouts don't match (for instance two "-map_channel"
  843. options and "-ac 6").
  844. You can also extract each channel of an input to specific outputs; the following
  845. command extracts two channels of the @var{INPUT} audio stream (file 0, stream 0)
  846. to the respective @var{OUTPUT_CH0} and @var{OUTPUT_CH1} outputs:
  847. @example
  848. ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1
  849. @end example
  850. The following example splits the channels of a stereo input into two separate
  851. streams, which are put into the same output file:
  852. @example
  853. ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg
  854. @end example
  855. Note that currently each output stream can only contain channels from a single
  856. input stream; you can't for example use "-map_channel" to pick multiple input
  857. audio channels contained in different streams (from the same or different files)
  858. and merge them into a single output stream. It is therefore not currently
  859. possible, for example, to turn two separate mono streams into a single stereo
  860. stream. However splitting a stereo stream into two single channel mono streams
  861. is possible.
  862. If you need this feature, a possible workaround is to use the @emph{amerge}
  863. filter. For example, if you need to merge a media (here @file{input.mkv}) with 2
  864. mono audio streams into one single stereo channel audio stream (and keep the
  865. video stream), you can use the following command:
  866. @example
  867. ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv
  868. @end example
  869. To map the first two audio channels from the first input, and using the
  870. trailing @code{?}, ignore the audio channel mapping if the first input is
  871. mono instead of stereo:
  872. @example
  873. ffmpeg -i INPUT -map_channel 0.0.0 -map_channel 0.0.1? OUTPUT
  874. @end example
  875. @item -map_metadata[:@var{metadata_spec_out}] @var{infile}[:@var{metadata_spec_in}] (@emph{output,per-metadata})
  876. Set metadata information of the next output file from @var{infile}. Note that
  877. those are file indices (zero-based), not filenames.
  878. Optional @var{metadata_spec_in/out} parameters specify, which metadata to copy.
  879. A metadata specifier can have the following forms:
  880. @table @option
  881. @item @var{g}
  882. global metadata, i.e. metadata that applies to the whole file
  883. @item @var{s}[:@var{stream_spec}]
  884. per-stream metadata. @var{stream_spec} is a stream specifier as described
  885. in the @ref{Stream specifiers} chapter. In an input metadata specifier, the first
  886. matching stream is copied from. In an output metadata specifier, all matching
  887. streams are copied to.
  888. @item @var{c}:@var{chapter_index}
  889. per-chapter metadata. @var{chapter_index} is the zero-based chapter index.
  890. @item @var{p}:@var{program_index}
  891. per-program metadata. @var{program_index} is the zero-based program index.
  892. @end table
  893. If metadata specifier is omitted, it defaults to global.
  894. By default, global metadata is copied from the first input file,
  895. per-stream and per-chapter metadata is copied along with streams/chapters. These
  896. default mappings are disabled by creating any mapping of the relevant type. A negative
  897. file index can be used to create a dummy mapping that just disables automatic copying.
  898. For example to copy metadata from the first stream of the input file to global metadata
  899. of the output file:
  900. @example
  901. ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3
  902. @end example
  903. To do the reverse, i.e. copy global metadata to all audio streams:
  904. @example
  905. ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv
  906. @end example
  907. Note that simple @code{0} would work as well in this example, since global
  908. metadata is assumed by default.
  909. @item -map_chapters @var{input_file_index} (@emph{output})
  910. Copy chapters from input file with index @var{input_file_index} to the next
  911. output file. If no chapter mapping is specified, then chapters are copied from
  912. the first input file with at least one chapter. Use a negative file index to
  913. disable any chapter copying.
  914. @item -benchmark (@emph{global})
  915. Show benchmarking information at the end of an encode.
  916. Shows CPU time used and maximum memory consumption.
  917. Maximum memory consumption is not supported on all systems,
  918. it will usually display as 0 if not supported.
  919. @item -benchmark_all (@emph{global})
  920. Show benchmarking information during the encode.
  921. Shows CPU time used in various steps (audio/video encode/decode).
  922. @item -timelimit @var{duration} (@emph{global})
  923. Exit after ffmpeg has been running for @var{duration} seconds.
  924. @item -dump (@emph{global})
  925. Dump each input packet to stderr.
  926. @item -hex (@emph{global})
  927. When dumping packets, also dump the payload.
  928. @item -re (@emph{input})
  929. Read input at native frame rate. Mainly used to simulate a grab device,
  930. or live input stream (e.g. when reading from a file). Should not be used
  931. with actual grab devices or live input streams (where it can cause packet
  932. loss).
  933. By default @command{ffmpeg} attempts to read the input(s) as fast as possible.
  934. This option will slow down the reading of the input(s) to the native frame rate
  935. of the input(s). It is useful for real-time output (e.g. live streaming).
  936. @item -loop_output @var{number_of_times}
  937. Repeatedly loop output for formats that support looping such as animated GIF
  938. (0 will loop the output infinitely).
  939. This option is deprecated, use -loop.
  940. @item -vsync @var{parameter}
  941. Video sync method.
  942. For compatibility reasons old values can be specified as numbers.
  943. Newly added values will have to be specified as strings always.
  944. @table @option
  945. @item 0, passthrough
  946. Each frame is passed with its timestamp from the demuxer to the muxer.
  947. @item 1, cfr
  948. Frames will be duplicated and dropped to achieve exactly the requested
  949. constant frame rate.
  950. @item 2, vfr
  951. Frames are passed through with their timestamp or dropped so as to
  952. prevent 2 frames from having the same timestamp.
  953. @item drop
  954. As passthrough but destroys all timestamps, making the muxer generate
  955. fresh timestamps based on frame-rate.
  956. @item -1, auto
  957. Chooses between 1 and 2 depending on muxer capabilities. This is the
  958. default method.
  959. @end table
  960. Note that the timestamps may be further modified by the muxer, after this.
  961. For example, in the case that the format option @option{avoid_negative_ts}
  962. is enabled.
  963. With -map you can select from which stream the timestamps should be
  964. taken. You can leave either video or audio unchanged and sync the
  965. remaining stream(s) to the unchanged one.
  966. @item -frame_drop_threshold @var{parameter}
  967. Frame drop threshold, which specifies how much behind video frames can
  968. be before they are dropped. In frame rate units, so 1.0 is one frame.
  969. The default is -1.1. One possible usecase is to avoid framedrops in case
  970. of noisy timestamps or to increase frame drop precision in case of exact
  971. timestamps.
  972. @item -async @var{samples_per_second}
  973. Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps,
  974. the parameter is the maximum samples per second by which the audio is changed.
  975. -async 1 is a special case where only the start of the audio stream is corrected
  976. without any later correction.
  977. Note that the timestamps may be further modified by the muxer, after this.
  978. For example, in the case that the format option @option{avoid_negative_ts}
  979. is enabled.
  980. This option has been deprecated. Use the @code{aresample} audio filter instead.
  981. @item -copyts
  982. Do not process input timestamps, but keep their values without trying
  983. to sanitize them. In particular, do not remove the initial start time
  984. offset value.
  985. Note that, depending on the @option{vsync} option or on specific muxer
  986. processing (e.g. in case the format option @option{avoid_negative_ts}
  987. is enabled) the output timestamps may mismatch with the input
  988. timestamps even when this option is selected.
  989. @item -start_at_zero
  990. When used with @option{copyts}, shift input timestamps so they start at zero.
  991. This means that using e.g. @code{-ss 50} will make output timestamps start at
  992. 50 seconds, regardless of what timestamp the input file started at.
  993. @item -copytb @var{mode}
  994. Specify how to set the encoder timebase when stream copying. @var{mode} is an
  995. integer numeric value, and can assume one of the following values:
  996. @table @option
  997. @item 1
  998. Use the demuxer timebase.
  999. The time base is copied to the output encoder from the corresponding input
  1000. demuxer. This is sometimes required to avoid non monotonically increasing
  1001. timestamps when copying video streams with variable frame rate.
  1002. @item 0
  1003. Use the decoder timebase.
  1004. The time base is copied to the output encoder from the corresponding input
  1005. decoder.
  1006. @item -1
  1007. Try to make the choice automatically, in order to generate a sane output.
  1008. @end table
  1009. Default value is -1.
  1010. @item -enc_time_base[:@var{stream_specifier}] @var{timebase} (@emph{output,per-stream})
  1011. Set the encoder timebase. @var{timebase} is a floating point number,
  1012. and can assume one of the following values:
  1013. @table @option
  1014. @item 0
  1015. Assign a default value according to the media type.
  1016. For video - use 1/framerate, for audio - use 1/samplerate.
  1017. @item -1
  1018. Use the input stream timebase when possible.
  1019. If an input stream is not available, the default timebase will be used.
  1020. @item >0
  1021. Use the provided number as the timebase.
  1022. This field can be provided as a ratio of two integers (e.g. 1:24, 1:48000)
  1023. or as a floating point number (e.g. 0.04166, 2.0833e-5)
  1024. @end table
  1025. Default value is 0.
  1026. @item -bitexact (@emph{input/output})
  1027. Enable bitexact mode for (de)muxer and (de/en)coder
  1028. @item -shortest (@emph{output})
  1029. Finish encoding when the shortest input stream ends.
  1030. @item -dts_delta_threshold
  1031. Timestamp discontinuity delta threshold.
  1032. @item -muxdelay @var{seconds} (@emph{input})
  1033. Set the maximum demux-decode delay.
  1034. @item -muxpreload @var{seconds} (@emph{input})
  1035. Set the initial demux-decode delay.
  1036. @item -streamid @var{output-stream-index}:@var{new-value} (@emph{output})
  1037. Assign a new stream-id value to an output stream. This option should be
  1038. specified prior to the output filename to which it applies.
  1039. For the situation where multiple output files exist, a streamid
  1040. may be reassigned to a different value.
  1041. For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for
  1042. an output mpegts file:
  1043. @example
  1044. ffmpeg -i inurl -streamid 0:33 -streamid 1:36 out.ts
  1045. @end example
  1046. @item -bsf[:@var{stream_specifier}] @var{bitstream_filters} (@emph{output,per-stream})
  1047. Set bitstream filters for matching streams. @var{bitstream_filters} is
  1048. a comma-separated list of bitstream filters. Use the @code{-bsfs} option
  1049. to get the list of bitstream filters.
  1050. @example
  1051. ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264
  1052. @end example
  1053. @example
  1054. ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt
  1055. @end example
  1056. @item -tag[:@var{stream_specifier}] @var{codec_tag} (@emph{input/output,per-stream})
  1057. Force a tag/fourcc for matching streams.
  1058. @item -timecode @var{hh}:@var{mm}:@var{ss}SEP@var{ff}
  1059. Specify Timecode for writing. @var{SEP} is ':' for non drop timecode and ';'
  1060. (or '.') for drop.
  1061. @example
  1062. ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg
  1063. @end example
  1064. @anchor{filter_complex_option}
  1065. @item -filter_complex @var{filtergraph} (@emph{global})
  1066. Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or
  1067. outputs. For simple graphs -- those with one input and one output of the same
  1068. type -- see the @option{-filter} options. @var{filtergraph} is a description of
  1069. the filtergraph, as described in the ``Filtergraph syntax'' section of the
  1070. ffmpeg-filters manual.
  1071. Input link labels must refer to input streams using the
  1072. @code{[file_index:stream_specifier]} syntax (i.e. the same as @option{-map}
  1073. uses). If @var{stream_specifier} matches multiple streams, the first one will be
  1074. used. An unlabeled input will be connected to the first unused input stream of
  1075. the matching type.
  1076. Output link labels are referred to with @option{-map}. Unlabeled outputs are
  1077. added to the first output file.
  1078. Note that with this option it is possible to use only lavfi sources without
  1079. normal input files.
  1080. For example, to overlay an image over video
  1081. @example
  1082. ffmpeg -i video.mkv -i image.png -filter_complex '[0:v][1:v]overlay[out]' -map
  1083. '[out]' out.mkv
  1084. @end example
  1085. Here @code{[0:v]} refers to the first video stream in the first input file,
  1086. which is linked to the first (main) input of the overlay filter. Similarly the
  1087. first video stream in the second input is linked to the second (overlay) input
  1088. of overlay.
  1089. Assuming there is only one video stream in each input file, we can omit input
  1090. labels, so the above is equivalent to
  1091. @example
  1092. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay[out]' -map
  1093. '[out]' out.mkv
  1094. @end example
  1095. Furthermore we can omit the output label and the single output from the filter
  1096. graph will be added to the output file automatically, so we can simply write
  1097. @example
  1098. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay' out.mkv
  1099. @end example
  1100. To generate 5 seconds of pure red video using lavfi @code{color} source:
  1101. @example
  1102. ffmpeg -filter_complex 'color=c=red' -t 5 out.mkv
  1103. @end example
  1104. @item -filter_complex_threads @var{nb_threads} (@emph{global})
  1105. Defines how many threads are used to process a filter_complex graph.
  1106. Similar to filter_threads but used for @code{-filter_complex} graphs only.
  1107. The default is the number of available CPUs.
  1108. @item -lavfi @var{filtergraph} (@emph{global})
  1109. Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or
  1110. outputs. Equivalent to @option{-filter_complex}.
  1111. @item -filter_complex_script @var{filename} (@emph{global})
  1112. This option is similar to @option{-filter_complex}, the only difference is that
  1113. its argument is the name of the file from which a complex filtergraph
  1114. description is to be read.
  1115. @item -accurate_seek (@emph{input})
  1116. This option enables or disables accurate seeking in input files with the
  1117. @option{-ss} option. It is enabled by default, so seeking is accurate when
  1118. transcoding. Use @option{-noaccurate_seek} to disable it, which may be useful
  1119. e.g. when copying some streams and transcoding the others.
  1120. @item -seek_timestamp (@emph{input})
  1121. This option enables or disables seeking by timestamp in input files with the
  1122. @option{-ss} option. It is disabled by default. If enabled, the argument
  1123. to the @option{-ss} option is considered an actual timestamp, and is not
  1124. offset by the start time of the file. This matters only for files which do
  1125. not start from timestamp 0, such as transport streams.
  1126. @item -thread_queue_size @var{size} (@emph{input})
  1127. This option sets the maximum number of queued packets when reading from the
  1128. file or device. With low latency / high rate live streams, packets may be
  1129. discarded if they are not read in a timely manner; raising this value can
  1130. avoid it.
  1131. @item -sdp_file @var{file} (@emph{global})
  1132. Print sdp information for an output stream to @var{file}.
  1133. This allows dumping sdp information when at least one output isn't an
  1134. rtp stream. (Requires at least one of the output formats to be rtp).
  1135. @item -discard (@emph{input})
  1136. Allows discarding specific streams or frames of streams at the demuxer.
  1137. Not all demuxers support this.
  1138. @table @option
  1139. @item none
  1140. Discard no frame.
  1141. @item default
  1142. Default, which discards no frames.
  1143. @item noref
  1144. Discard all non-reference frames.
  1145. @item bidir
  1146. Discard all bidirectional frames.
  1147. @item nokey
  1148. Discard all frames excepts keyframes.
  1149. @item all
  1150. Discard all frames.
  1151. @end table
  1152. @item -abort_on @var{flags} (@emph{global})
  1153. Stop and abort on various conditions. The following flags are available:
  1154. @table @option
  1155. @item empty_output
  1156. No packets were passed to the muxer, the output is empty.
  1157. @end table
  1158. @item -xerror (@emph{global})
  1159. Stop and exit on error
  1160. @item -max_muxing_queue_size @var{packets} (@emph{output,per-stream})
  1161. When transcoding audio and/or video streams, ffmpeg will not begin writing into
  1162. the output until it has one packet for each such stream. While waiting for that
  1163. to happen, packets for other streams are buffered. This option sets the size of
  1164. this buffer, in packets, for the matching output stream.
  1165. The default value of this option should be high enough for most uses, so only
  1166. touch this option if you are sure that you need it.
  1167. @end table
  1168. As a special exception, you can use a bitmap subtitle stream as input: it
  1169. will be converted into a video with the same size as the largest video in
  1170. the file, or 720x576 if no video is present. Note that this is an
  1171. experimental and temporary solution. It will be removed once libavfilter has
  1172. proper support for subtitles.
  1173. For example, to hardcode subtitles on top of a DVB-T recording stored in
  1174. MPEG-TS format, delaying the subtitles by 1 second:
  1175. @example
  1176. ffmpeg -i input.ts -filter_complex \
  1177. '[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay' \
  1178. -sn -map '#0x2dc' output.mkv
  1179. @end example
  1180. (0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video,
  1181. audio and subtitles streams; 0:0, 0:3 and 0:7 would have worked too)
  1182. @section Preset files
  1183. A preset file contains a sequence of @var{option}=@var{value} pairs,
  1184. one for each line, specifying a sequence of options which would be
  1185. awkward to specify on the command line. Lines starting with the hash
  1186. ('#') character are ignored and are used to provide comments. Check
  1187. the @file{presets} directory in the FFmpeg source tree for examples.
  1188. There are two types of preset files: ffpreset and avpreset files.
  1189. @subsection ffpreset files
  1190. ffpreset files are specified with the @code{vpre}, @code{apre},
  1191. @code{spre}, and @code{fpre} options. The @code{fpre} option takes the
  1192. filename of the preset instead of a preset name as input and can be
  1193. used for any kind of codec. For the @code{vpre}, @code{apre}, and
  1194. @code{spre} options, the options specified in a preset file are
  1195. applied to the currently selected codec of the same type as the preset
  1196. option.
  1197. The argument passed to the @code{vpre}, @code{apre}, and @code{spre}
  1198. preset options identifies the preset file to use according to the
  1199. following rules:
  1200. First ffmpeg searches for a file named @var{arg}.ffpreset in the
  1201. directories @file{$FFMPEG_DATADIR} (if set), and @file{$HOME/.ffmpeg}, and in
  1202. the datadir defined at configuration time (usually @file{PREFIX/share/ffmpeg})
  1203. or in a @file{ffpresets} folder along the executable on win32,
  1204. in that order. For example, if the argument is @code{libvpx-1080p}, it will
  1205. search for the file @file{libvpx-1080p.ffpreset}.
  1206. If no such file is found, then ffmpeg will search for a file named
  1207. @var{codec_name}-@var{arg}.ffpreset in the above-mentioned
  1208. directories, where @var{codec_name} is the name of the codec to which
  1209. the preset file options will be applied. For example, if you select
  1210. the video codec with @code{-vcodec libvpx} and use @code{-vpre 1080p},
  1211. then it will search for the file @file{libvpx-1080p.ffpreset}.
  1212. @subsection avpreset files
  1213. avpreset files are specified with the @code{pre} option. They work similar to
  1214. ffpreset files, but they only allow encoder- specific options. Therefore, an
  1215. @var{option}=@var{value} pair specifying an encoder cannot be used.
  1216. When the @code{pre} option is specified, ffmpeg will look for files with the
  1217. suffix .avpreset in the directories @file{$AVCONV_DATADIR} (if set), and
  1218. @file{$HOME/.avconv}, and in the datadir defined at configuration time (usually
  1219. @file{PREFIX/share/ffmpeg}), in that order.
  1220. First ffmpeg searches for a file named @var{codec_name}-@var{arg}.avpreset in
  1221. the above-mentioned directories, where @var{codec_name} is the name of the codec
  1222. to which the preset file options will be applied. For example, if you select the
  1223. video codec with @code{-vcodec libvpx} and use @code{-pre 1080p}, then it will
  1224. search for the file @file{libvpx-1080p.avpreset}.
  1225. If no such file is found, then ffmpeg will search for a file named
  1226. @var{arg}.avpreset in the same directories.
  1227. @c man end OPTIONS
  1228. @chapter Examples
  1229. @c man begin EXAMPLES
  1230. @section Video and Audio grabbing
  1231. If you specify the input format and device then ffmpeg can grab video
  1232. and audio directly.
  1233. @example
  1234. ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg
  1235. @end example
  1236. Or with an ALSA audio source (mono input, card id 1) instead of OSS:
  1237. @example
  1238. ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg
  1239. @end example
  1240. Note that you must activate the right video source and channel before
  1241. launching ffmpeg with any TV viewer such as
  1242. @uref{http://linux.bytesex.org/xawtv/, xawtv} by Gerd Knorr. You also
  1243. have to set the audio recording levels correctly with a
  1244. standard mixer.
  1245. @section X11 grabbing
  1246. Grab the X11 display with ffmpeg via
  1247. @example
  1248. ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0 /tmp/out.mpg
  1249. @end example
  1250. 0.0 is display.screen number of your X11 server, same as
  1251. the DISPLAY environment variable.
  1252. @example
  1253. ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0+10,20 /tmp/out.mpg
  1254. @end example
  1255. 0.0 is display.screen number of your X11 server, same as the DISPLAY environment
  1256. variable. 10 is the x-offset and 20 the y-offset for the grabbing.
  1257. @section Video and Audio file format conversion
  1258. Any supported file format and protocol can serve as input to ffmpeg:
  1259. Examples:
  1260. @itemize
  1261. @item
  1262. You can use YUV files as input:
  1263. @example
  1264. ffmpeg -i /tmp/test%d.Y /tmp/out.mpg
  1265. @end example
  1266. It will use the files:
  1267. @example
  1268. /tmp/test0.Y, /tmp/test0.U, /tmp/test0.V,
  1269. /tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc...
  1270. @end example
  1271. The Y files use twice the resolution of the U and V files. They are
  1272. raw files, without header. They can be generated by all decent video
  1273. decoders. You must specify the size of the image with the @option{-s} option
  1274. if ffmpeg cannot guess it.
  1275. @item
  1276. You can input from a raw YUV420P file:
  1277. @example
  1278. ffmpeg -i /tmp/test.yuv /tmp/out.avi
  1279. @end example
  1280. test.yuv is a file containing raw YUV planar data. Each frame is composed
  1281. of the Y plane followed by the U and V planes at half vertical and
  1282. horizontal resolution.
  1283. @item
  1284. You can output to a raw YUV420P file:
  1285. @example
  1286. ffmpeg -i mydivx.avi hugefile.yuv
  1287. @end example
  1288. @item
  1289. You can set several input files and output files:
  1290. @example
  1291. ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg
  1292. @end example
  1293. Converts the audio file a.wav and the raw YUV video file a.yuv
  1294. to MPEG file a.mpg.
  1295. @item
  1296. You can also do audio and video conversions at the same time:
  1297. @example
  1298. ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2
  1299. @end example
  1300. Converts a.wav to MPEG audio at 22050 Hz sample rate.
  1301. @item
  1302. You can encode to several formats at the same time and define a
  1303. mapping from input stream to output streams:
  1304. @example
  1305. ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2
  1306. @end example
  1307. Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. '-map
  1308. file:index' specifies which input stream is used for each output
  1309. stream, in the order of the definition of output streams.
  1310. @item
  1311. You can transcode decrypted VOBs:
  1312. @example
  1313. ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi
  1314. @end example
  1315. This is a typical DVD ripping example; the input is a VOB file, the
  1316. output an AVI file with MPEG-4 video and MP3 audio. Note that in this
  1317. command we use B-frames so the MPEG-4 stream is DivX5 compatible, and
  1318. GOP size is 300 which means one intra frame every 10 seconds for 29.97fps
  1319. input video. Furthermore, the audio stream is MP3-encoded so you need
  1320. to enable LAME support by passing @code{--enable-libmp3lame} to configure.
  1321. The mapping is particularly useful for DVD transcoding
  1322. to get the desired audio language.
  1323. NOTE: To see the supported input formats, use @code{ffmpeg -demuxers}.
  1324. @item
  1325. You can extract images from a video, or create a video from many images:
  1326. For extracting images from a video:
  1327. @example
  1328. ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg
  1329. @end example
  1330. This will extract one video frame per second from the video and will
  1331. output them in files named @file{foo-001.jpeg}, @file{foo-002.jpeg},
  1332. etc. Images will be rescaled to fit the new WxH values.
  1333. If you want to extract just a limited number of frames, you can use the
  1334. above command in combination with the @code{-frames:v} or @code{-t} option,
  1335. or in combination with -ss to start extracting from a certain point in time.
  1336. For creating a video from many images:
  1337. @example
  1338. ffmpeg -f image2 -framerate 12 -i foo-%03d.jpeg -s WxH foo.avi
  1339. @end example
  1340. The syntax @code{foo-%03d.jpeg} specifies to use a decimal number
  1341. composed of three digits padded with zeroes to express the sequence
  1342. number. It is the same syntax supported by the C printf function, but
  1343. only formats accepting a normal integer are suitable.
  1344. When importing an image sequence, -i also supports expanding
  1345. shell-like wildcard patterns (globbing) internally, by selecting the
  1346. image2-specific @code{-pattern_type glob} option.
  1347. For example, for creating a video from filenames matching the glob pattern
  1348. @code{foo-*.jpeg}:
  1349. @example
  1350. ffmpeg -f image2 -pattern_type glob -framerate 12 -i 'foo-*.jpeg' -s WxH foo.avi
  1351. @end example
  1352. @item
  1353. You can put many streams of the same type in the output:
  1354. @example
  1355. ffmpeg -i test1.avi -i test2.avi -map 1:1 -map 1:0 -map 0:1 -map 0:0 -c copy -y test12.nut
  1356. @end example
  1357. The resulting output file @file{test12.nut} will contain the first four streams
  1358. from the input files in reverse order.
  1359. @item
  1360. To force CBR video output:
  1361. @example
  1362. ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v
  1363. @end example
  1364. @item
  1365. The four options lmin, lmax, mblmin and mblmax use 'lambda' units,
  1366. but you may use the QP2LAMBDA constant to easily convert from 'q' units:
  1367. @example
  1368. ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext
  1369. @end example
  1370. @end itemize
  1371. @c man end EXAMPLES
  1372. @include config.texi
  1373. @ifset config-all
  1374. @ifset config-avutil
  1375. @include utils.texi
  1376. @end ifset
  1377. @ifset config-avcodec
  1378. @include codecs.texi
  1379. @include bitstream_filters.texi
  1380. @end ifset
  1381. @ifset config-avformat
  1382. @include formats.texi
  1383. @include protocols.texi
  1384. @end ifset
  1385. @ifset config-avdevice
  1386. @include devices.texi
  1387. @end ifset
  1388. @ifset config-swresample
  1389. @include resampler.texi
  1390. @end ifset
  1391. @ifset config-swscale
  1392. @include scaler.texi
  1393. @end ifset
  1394. @ifset config-avfilter
  1395. @include filters.texi
  1396. @end ifset
  1397. @end ifset
  1398. @chapter See Also
  1399. @ifhtml
  1400. @ifset config-all
  1401. @url{ffmpeg.html,ffmpeg}
  1402. @end ifset
  1403. @ifset config-not-all
  1404. @url{ffmpeg-all.html,ffmpeg-all},
  1405. @end ifset
  1406. @url{ffplay.html,ffplay}, @url{ffprobe.html,ffprobe},
  1407. @url{ffmpeg-utils.html,ffmpeg-utils},
  1408. @url{ffmpeg-scaler.html,ffmpeg-scaler},
  1409. @url{ffmpeg-resampler.html,ffmpeg-resampler},
  1410. @url{ffmpeg-codecs.html,ffmpeg-codecs},
  1411. @url{ffmpeg-bitstream-filters.html,ffmpeg-bitstream-filters},
  1412. @url{ffmpeg-formats.html,ffmpeg-formats},
  1413. @url{ffmpeg-devices.html,ffmpeg-devices},
  1414. @url{ffmpeg-protocols.html,ffmpeg-protocols},
  1415. @url{ffmpeg-filters.html,ffmpeg-filters}
  1416. @end ifhtml
  1417. @ifnothtml
  1418. @ifset config-all
  1419. ffmpeg(1),
  1420. @end ifset
  1421. @ifset config-not-all
  1422. ffmpeg-all(1),
  1423. @end ifset
  1424. ffplay(1), ffprobe(1),
  1425. ffmpeg-utils(1), ffmpeg-scaler(1), ffmpeg-resampler(1),
  1426. ffmpeg-codecs(1), ffmpeg-bitstream-filters(1), ffmpeg-formats(1),
  1427. ffmpeg-devices(1), ffmpeg-protocols(1), ffmpeg-filters(1)
  1428. @end ifnothtml
  1429. @include authors.texi
  1430. @ignore
  1431. @setfilename ffmpeg
  1432. @settitle ffmpeg video converter
  1433. @end ignore
  1434. @bye