You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

273 lines
9.3KB

  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. */
  20. /**
  21. * @file resample2.c
  22. * audio resampling
  23. * @author Michael Niedermayer <michaelni@gmx.at>
  24. */
  25. #include "avcodec.h"
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #if 1
  29. #define FILTER_SHIFT 15
  30. #define FELEM int16_t
  31. #define FELEM2 int32_t
  32. #define FELEM_MAX INT16_MAX
  33. #define FELEM_MIN INT16_MIN
  34. #else
  35. #define FILTER_SHIFT 22
  36. #define FELEM int32_t
  37. #define FELEM2 int64_t
  38. #define FELEM_MAX INT32_MAX
  39. #define FELEM_MIN INT32_MIN
  40. #endif
  41. typedef struct AVResampleContext{
  42. FELEM *filter_bank;
  43. int filter_length;
  44. int ideal_dst_incr;
  45. int dst_incr;
  46. int index;
  47. int frac;
  48. int src_incr;
  49. int compensation_distance;
  50. int phase_shift;
  51. int phase_mask;
  52. int linear;
  53. }AVResampleContext;
  54. /**
  55. * 0th order modified bessel function of the first kind.
  56. */
  57. double bessel(double x){
  58. double v=1;
  59. double t=1;
  60. int i;
  61. for(i=1; i<50; i++){
  62. t *= i;
  63. v += pow(x*x/4, i)/(t*t);
  64. }
  65. return v;
  66. }
  67. /**
  68. * builds a polyphase filterbank.
  69. * @param factor resampling factor
  70. * @param scale wanted sum of coefficients for each filter
  71. * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
  72. */
  73. void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
  74. int ph, i, v;
  75. double x, y, w, tab[tap_count];
  76. const int center= (tap_count-1)/2;
  77. /* if upsampling, only need to interpolate, no filter */
  78. if (factor > 1.0)
  79. factor = 1.0;
  80. for(ph=0;ph<phase_count;ph++) {
  81. double norm = 0;
  82. double e= 0;
  83. for(i=0;i<tap_count;i++) {
  84. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  85. if (x == 0) y = 1.0;
  86. else y = sin(x) / x;
  87. switch(type){
  88. case 0:{
  89. const float d= -0.5; //first order derivative = -0.5
  90. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  91. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  92. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  93. break;}
  94. case 1:
  95. w = 2.0*x / (factor*tap_count) + M_PI;
  96. y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
  97. break;
  98. case 2:
  99. w = 2.0*x / (factor*tap_count*M_PI);
  100. y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
  101. break;
  102. }
  103. tab[i] = y;
  104. norm += y;
  105. }
  106. /* normalize so that an uniform color remains the same */
  107. for(i=0;i<tap_count;i++) {
  108. v = clip(lrintf(tab[i] * scale / norm + e), FELEM_MIN, FELEM_MAX);
  109. filter[ph * tap_count + i] = v;
  110. e += tab[i] * scale / norm - v;
  111. }
  112. }
  113. }
  114. /**
  115. * initalizes a audio resampler.
  116. * note, if either rate is not a integer then simply scale both rates up so they are
  117. */
  118. AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
  119. AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
  120. double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
  121. int phase_count= 1<<phase_shift;
  122. c->phase_shift= phase_shift;
  123. c->phase_mask= phase_count-1;
  124. c->linear= linear;
  125. c->filter_length= FFMAX(ceil(filter_size/factor), 1);
  126. c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
  127. av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, 1);
  128. memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
  129. c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
  130. c->src_incr= out_rate;
  131. c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
  132. c->index= -phase_count*((c->filter_length-1)/2);
  133. return c;
  134. }
  135. void av_resample_close(AVResampleContext *c){
  136. av_freep(&c->filter_bank);
  137. av_freep(&c);
  138. }
  139. /**
  140. * Compensates samplerate/timestamp drift. The compensation is done by changing
  141. * the resampler parameters, so no audible clicks or similar distortions ocur
  142. * @param compensation_distance distance in output samples over which the compensation should be performed
  143. * @param sample_delta number of output samples which should be output less
  144. *
  145. * example: av_resample_compensate(c, 10, 500)
  146. * here instead of 510 samples only 500 samples would be output
  147. *
  148. * note, due to rounding the actual compensation might be slightly different,
  149. * especially if the compensation_distance is large and the in_rate used during init is small
  150. */
  151. void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
  152. // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
  153. c->compensation_distance= compensation_distance;
  154. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  155. }
  156. /**
  157. * resamples.
  158. * @param src an array of unconsumed samples
  159. * @param consumed the number of samples of src which have been consumed are returned here
  160. * @param src_size the number of unconsumed samples available
  161. * @param dst_size the amount of space in samples available in dst
  162. * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
  163. * @return the number of samples written in dst or -1 if an error occured
  164. */
  165. int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
  166. int dst_index, i;
  167. int index= c->index;
  168. int frac= c->frac;
  169. int dst_incr_frac= c->dst_incr % c->src_incr;
  170. int dst_incr= c->dst_incr / c->src_incr;
  171. int compensation_distance= c->compensation_distance;
  172. if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
  173. int64_t index2= ((int64_t)index)<<32;
  174. int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
  175. dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
  176. for(dst_index=0; dst_index < dst_size; dst_index++){
  177. dst[dst_index] = src[index2>>32];
  178. index2 += incr;
  179. }
  180. frac += dst_index * dst_incr_frac;
  181. index += dst_index * dst_incr;
  182. index += frac / c->src_incr;
  183. frac %= c->src_incr;
  184. }else{
  185. for(dst_index=0; dst_index < dst_size; dst_index++){
  186. FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
  187. int sample_index= index >> c->phase_shift;
  188. FELEM2 val=0;
  189. if(sample_index < 0){
  190. for(i=0; i<c->filter_length; i++)
  191. val += src[ABS(sample_index + i) % src_size] * filter[i];
  192. }else if(sample_index + c->filter_length > src_size){
  193. break;
  194. }else if(c->linear){
  195. int64_t v=0;
  196. int sub_phase= (frac<<8) / c->src_incr;
  197. for(i=0; i<c->filter_length; i++){
  198. int64_t coeff= filter[i]*(256 - sub_phase) + filter[i + c->filter_length]*sub_phase;
  199. v += src[sample_index + i] * coeff;
  200. }
  201. val= v>>8;
  202. }else{
  203. for(i=0; i<c->filter_length; i++){
  204. val += src[sample_index + i] * (FELEM2)filter[i];
  205. }
  206. }
  207. val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
  208. dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
  209. frac += dst_incr_frac;
  210. index += dst_incr;
  211. if(frac >= c->src_incr){
  212. frac -= c->src_incr;
  213. index++;
  214. }
  215. if(dst_index + 1 == compensation_distance){
  216. compensation_distance= 0;
  217. dst_incr_frac= c->ideal_dst_incr % c->src_incr;
  218. dst_incr= c->ideal_dst_incr / c->src_incr;
  219. }
  220. }
  221. }
  222. *consumed= FFMAX(index, 0) >> c->phase_shift;
  223. if(index>=0) index &= c->phase_mask;
  224. if(compensation_distance){
  225. compensation_distance -= dst_index;
  226. assert(compensation_distance > 0);
  227. }
  228. if(update_ctx){
  229. c->frac= frac;
  230. c->index= index;
  231. c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
  232. c->compensation_distance= compensation_distance;
  233. }
  234. #if 0
  235. if(update_ctx && !c->compensation_distance){
  236. #undef rand
  237. av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
  238. av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
  239. }
  240. #endif
  241. return dst_index;
  242. }