You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

306 lines
9.9KB

  1. /*
  2. * DV decoder
  3. * Copyright (c) 2002 Fabrice Bellard
  4. * Copyright (c) 2004 Roman Shaposhnik
  5. *
  6. * DV encoder
  7. * Copyright (c) 2003 Roman Shaposhnik
  8. *
  9. * 50 Mbps (DVCPRO50) support
  10. * Copyright (c) 2006 Daniel Maas <dmaas@maasdigital.com>
  11. *
  12. * 100 Mbps (DVCPRO HD) support
  13. * Initial code by Daniel Maas <dmaas@maasdigital.com> (funded by BBC R&D)
  14. * Final code by Roman Shaposhnik
  15. *
  16. * Many thanks to Dan Dennedy <dan@dennedy.org> for providing wealth
  17. * of DV technical info.
  18. *
  19. * This file is part of Libav.
  20. *
  21. * Libav is free software; you can redistribute it and/or
  22. * modify it under the terms of the GNU Lesser General Public
  23. * License as published by the Free Software Foundation; either
  24. * version 2.1 of the License, or (at your option) any later version.
  25. *
  26. * Libav is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  29. * Lesser General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU Lesser General Public
  32. * License along with Libav; if not, write to the Free Software
  33. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  34. */
  35. /**
  36. * @file
  37. * DV codec.
  38. */
  39. #include "libavutil/internal.h"
  40. #include "libavutil/pixdesc.h"
  41. #include "avcodec.h"
  42. #include "dv.h"
  43. #include "dvdata.h"
  44. #include "get_bits.h"
  45. #include "internal.h"
  46. #include "put_bits.h"
  47. #include "simple_idct.h"
  48. /* XXX: also include quantization */
  49. RL_VLC_ELEM ff_dv_rl_vlc[1184];
  50. static inline void dv_calc_mb_coordinates(const AVDVProfile *d, int chan,
  51. int seq, int slot, uint16_t *tbl)
  52. {
  53. static const uint8_t off[] = { 2, 6, 8, 0, 4 };
  54. static const uint8_t shuf1[] = { 36, 18, 54, 0, 72 };
  55. static const uint8_t shuf2[] = { 24, 12, 36, 0, 48 };
  56. static const uint8_t shuf3[] = { 18, 9, 27, 0, 36 };
  57. static const uint8_t l_start[] = { 0, 4, 9, 13, 18, 22, 27, 31, 36, 40 };
  58. static const uint8_t l_start_shuffled[] = { 9, 4, 13, 0, 18 };
  59. static const uint8_t serpent1[] = {
  60. 0, 1, 2, 2, 1, 0,
  61. 0, 1, 2, 2, 1, 0,
  62. 0, 1, 2, 2, 1, 0,
  63. 0, 1, 2, 2, 1, 0,
  64. 0, 1, 2
  65. };
  66. static const uint8_t serpent2[] = {
  67. 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
  68. 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
  69. 0, 1, 2, 3, 4, 5
  70. };
  71. static const uint8_t remap[][2] = {
  72. { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, /* dummy */
  73. { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 10, 0 },
  74. { 10, 1 }, { 10, 2 }, { 10, 3 }, { 20, 0 }, { 20, 1 },
  75. { 20, 2 }, { 20, 3 }, { 30, 0 }, { 30, 1 }, { 30, 2 },
  76. { 30, 3 }, { 40, 0 }, { 40, 1 }, { 40, 2 }, { 40, 3 },
  77. { 50, 0 }, { 50, 1 }, { 50, 2 }, { 50, 3 }, { 60, 0 },
  78. { 60, 1 }, { 60, 2 }, { 60, 3 }, { 70, 0 }, { 70, 1 },
  79. { 70, 2 }, { 70, 3 }, { 0, 64 }, { 0, 65 }, { 0, 66 },
  80. { 10, 64 }, { 10, 65 }, { 10, 66 }, { 20, 64 }, { 20, 65 },
  81. { 20, 66 }, { 30, 64 }, { 30, 65 }, { 30, 66 }, { 40, 64 },
  82. { 40, 65 }, { 40, 66 }, { 50, 64 }, { 50, 65 }, { 50, 66 },
  83. { 60, 64 }, { 60, 65 }, { 60, 66 }, { 70, 64 }, { 70, 65 },
  84. { 70, 66 }, { 0, 67 }, { 20, 67 }, { 40, 67 }, { 60, 67 }
  85. };
  86. int i, k, m;
  87. int x, y, blk;
  88. for (m = 0; m < 5; m++) {
  89. switch (d->width) {
  90. case 1440:
  91. blk = (chan * 11 + seq) * 27 + slot;
  92. if (chan == 0 && seq == 11) {
  93. x = m * 27 + slot;
  94. if (x < 90) {
  95. y = 0;
  96. } else {
  97. x = (x - 90) * 2;
  98. y = 67;
  99. }
  100. } else {
  101. i = (4 * chan + blk + off[m]) % 11;
  102. k = (blk / 11) % 27;
  103. x = shuf1[m] + (chan & 1) * 9 + k % 9;
  104. y = (i * 3 + k / 9) * 2 + (chan >> 1) + 1;
  105. }
  106. tbl[m] = (x << 1) | (y << 9);
  107. break;
  108. case 1280:
  109. blk = (chan * 10 + seq) * 27 + slot;
  110. i = (4 * chan + (seq / 5) + 2 * blk + off[m]) % 10;
  111. k = (blk / 5) % 27;
  112. x = shuf1[m] + (chan & 1) * 9 + k % 9;
  113. y = (i * 3 + k / 9) * 2 + (chan >> 1) + 4;
  114. if (x >= 80) {
  115. x = remap[y][0] + ((x - 80) << (y > 59));
  116. y = remap[y][1];
  117. }
  118. tbl[m] = (x << 1) | (y << 9);
  119. break;
  120. case 960:
  121. blk = (chan * 10 + seq) * 27 + slot;
  122. i = (4 * chan + (seq / 5) + 2 * blk + off[m]) % 10;
  123. k = (blk / 5) % 27 + (i & 1) * 3;
  124. x = shuf2[m] + k % 6 + 6 * (chan & 1);
  125. y = l_start[i] + k / 6 + 45 * (chan >> 1);
  126. tbl[m] = (x << 1) | (y << 9);
  127. break;
  128. case 720:
  129. switch (d->pix_fmt) {
  130. case AV_PIX_FMT_YUV422P:
  131. x = shuf3[m] + slot / 3;
  132. y = serpent1[slot] +
  133. ((((seq + off[m]) % d->difseg_size) << 1) + chan) * 3;
  134. tbl[m] = (x << 1) | (y << 8);
  135. break;
  136. case AV_PIX_FMT_YUV420P:
  137. x = shuf3[m] + slot / 3;
  138. y = serpent1[slot] +
  139. ((seq + off[m]) % d->difseg_size) * 3;
  140. tbl[m] = (x << 1) | (y << 9);
  141. break;
  142. case AV_PIX_FMT_YUV411P:
  143. i = (seq + off[m]) % d->difseg_size;
  144. k = slot + ((m == 1 || m == 2) ? 3 : 0);
  145. x = l_start_shuffled[m] + k / 6;
  146. y = serpent2[k] + i * 6;
  147. if (x > 21)
  148. y = y * 2 - i * 6;
  149. tbl[m] = (x << 2) | (y << 8);
  150. break;
  151. }
  152. default:
  153. break;
  154. }
  155. }
  156. }
  157. /* quantization quanta by QNO for DV100 */
  158. static const uint8_t dv100_qstep[16] = {
  159. 1, /* QNO = 0 and 1 both have no quantization */
  160. 1,
  161. 2, 3, 4, 5, 6, 7, 8, 16, 18, 20, 22, 24, 28, 52
  162. };
  163. static const uint8_t dv_quant_areas[4] = { 6, 21, 43, 64 };
  164. int ff_dv_init_dynamic_tables(DVVideoContext *ctx, const AVDVProfile *d)
  165. {
  166. int j, i, c, s, p;
  167. uint32_t *factor1, *factor2;
  168. const int *iweight1, *iweight2;
  169. p = i = 0;
  170. for (c = 0; c < d->n_difchan; c++) {
  171. for (s = 0; s < d->difseg_size; s++) {
  172. p += 6;
  173. for (j = 0; j < 27; j++) {
  174. p += !(j % 3);
  175. if (!(DV_PROFILE_IS_1080i50(d) && c != 0 && s == 11) &&
  176. !(DV_PROFILE_IS_720p50(d) && s > 9)) {
  177. dv_calc_mb_coordinates(d, c, s, j, &ctx->work_chunks[i].mb_coordinates[0]);
  178. ctx->work_chunks[i++].buf_offset = p;
  179. }
  180. p += 5;
  181. }
  182. }
  183. }
  184. factor1 = &ctx->idct_factor[0];
  185. factor2 = &ctx->idct_factor[DV_PROFILE_IS_HD(d) ? 4096 : 2816];
  186. if (d->height == 720) {
  187. iweight1 = &ff_dv_iweight_720_y[0];
  188. iweight2 = &ff_dv_iweight_720_c[0];
  189. } else {
  190. iweight1 = &ff_dv_iweight_1080_y[0];
  191. iweight2 = &ff_dv_iweight_1080_c[0];
  192. }
  193. if (DV_PROFILE_IS_HD(d)) {
  194. for (c = 0; c < 4; c++) {
  195. for (s = 0; s < 16; s++) {
  196. for (i = 0; i < 64; i++) {
  197. *factor1++ = (dv100_qstep[s] << (c + 9)) * iweight1[i];
  198. *factor2++ = (dv100_qstep[s] << (c + 9)) * iweight2[i];
  199. }
  200. }
  201. }
  202. } else {
  203. iweight1 = &ff_dv_iweight_88[0];
  204. for (j = 0; j < 2; j++, iweight1 = &ff_dv_iweight_248[0]) {
  205. for (s = 0; s < 22; s++) {
  206. for (i = c = 0; c < 4; c++) {
  207. for (; i < dv_quant_areas[c]; i++) {
  208. *factor1 = iweight1[i] << (ff_dv_quant_shifts[s][c] + 1);
  209. *factor2++ = (*factor1++) << 1;
  210. }
  211. }
  212. }
  213. }
  214. }
  215. return 0;
  216. }
  217. av_cold int ff_dvvideo_init(AVCodecContext *avctx)
  218. {
  219. DVVideoContext *s = avctx->priv_data;
  220. static int done = 0;
  221. int i, j;
  222. if (!done) {
  223. VLC dv_vlc;
  224. uint16_t new_dv_vlc_bits[NB_DV_VLC * 2];
  225. uint8_t new_dv_vlc_len[NB_DV_VLC * 2];
  226. uint8_t new_dv_vlc_run[NB_DV_VLC * 2];
  227. int16_t new_dv_vlc_level[NB_DV_VLC * 2];
  228. done = 1;
  229. /* it's faster to include sign bit in a generic VLC parsing scheme */
  230. for (i = 0, j = 0; i < NB_DV_VLC; i++, j++) {
  231. new_dv_vlc_bits[j] = ff_dv_vlc_bits[i];
  232. new_dv_vlc_len[j] = ff_dv_vlc_len[i];
  233. new_dv_vlc_run[j] = ff_dv_vlc_run[i];
  234. new_dv_vlc_level[j] = ff_dv_vlc_level[i];
  235. if (ff_dv_vlc_level[i]) {
  236. new_dv_vlc_bits[j] <<= 1;
  237. new_dv_vlc_len[j]++;
  238. j++;
  239. new_dv_vlc_bits[j] = (ff_dv_vlc_bits[i] << 1) | 1;
  240. new_dv_vlc_len[j] = ff_dv_vlc_len[i] + 1;
  241. new_dv_vlc_run[j] = ff_dv_vlc_run[i];
  242. new_dv_vlc_level[j] = -ff_dv_vlc_level[i];
  243. }
  244. }
  245. /* NOTE: as a trick, we use the fact the no codes are unused
  246. * to accelerate the parsing of partial codes */
  247. init_vlc(&dv_vlc, TEX_VLC_BITS, j, new_dv_vlc_len,
  248. 1, 1, new_dv_vlc_bits, 2, 2, 0);
  249. assert(dv_vlc.table_size == 1184);
  250. for (i = 0; i < dv_vlc.table_size; i++) {
  251. int code = dv_vlc.table[i][0];
  252. int len = dv_vlc.table[i][1];
  253. int level, run;
  254. if (len < 0) { // more bits needed
  255. run = 0;
  256. level = code;
  257. } else {
  258. run = new_dv_vlc_run[code] + 1;
  259. level = new_dv_vlc_level[code];
  260. }
  261. ff_dv_rl_vlc[i].len = len;
  262. ff_dv_rl_vlc[i].level = level;
  263. ff_dv_rl_vlc[i].run = run;
  264. }
  265. ff_free_vlc(&dv_vlc);
  266. }
  267. s->avctx = avctx;
  268. avctx->chroma_sample_location = AVCHROMA_LOC_TOPLEFT;
  269. return 0;
  270. }