You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1162 lines
39KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "fdctdsp.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "pixblockdsp.h"
  35. #include "dnxhdenc.h"
  36. // The largest value that will not lead to overflow for 10bit samples.
  37. #define DNX10BIT_QMAT_SHIFT 18
  38. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  39. #define LAMBDA_FRAC_BITS 10
  40. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  41. static const AVOption options[] = {
  42. { "nitris_compat", "encode with Avid Nitris compatibility",
  43. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  44. { "ibias", "intra quant bias",
  45. offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
  46. { .i64 = FF_DEFAULT_QUANT_BIAS }, INT_MIN, INT_MAX, VE },
  47. { NULL }
  48. };
  49. static const AVClass class = {
  50. "dnxhd",
  51. av_default_item_name,
  52. options,
  53. LIBAVUTIL_VERSION_INT
  54. };
  55. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  56. const uint8_t *pixels,
  57. ptrdiff_t line_size)
  58. {
  59. int i;
  60. for (i = 0; i < 4; i++) {
  61. block[0] = pixels[0];
  62. block[1] = pixels[1];
  63. block[2] = pixels[2];
  64. block[3] = pixels[3];
  65. block[4] = pixels[4];
  66. block[5] = pixels[5];
  67. block[6] = pixels[6];
  68. block[7] = pixels[7];
  69. pixels += line_size;
  70. block += 8;
  71. }
  72. memcpy(block, block - 8, sizeof(*block) * 8);
  73. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  74. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  75. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  76. }
  77. static av_always_inline
  78. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  79. const uint8_t *pixels,
  80. ptrdiff_t line_size)
  81. {
  82. int i;
  83. block += 32;
  84. for (i = 0; i < 4; i++) {
  85. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  86. memcpy(block - (i + 1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  87. }
  88. }
  89. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  90. int n, int qscale, int *overflow)
  91. {
  92. const uint8_t *scantable= ctx->intra_scantable.scantable;
  93. const int *qmat = ctx->q_intra_matrix[qscale];
  94. int last_non_zero = 0;
  95. int i;
  96. ctx->fdsp.fdct(block);
  97. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  98. block[0] = (block[0] + 2) >> 2;
  99. for (i = 1; i < 64; ++i) {
  100. int j = scantable[i];
  101. int sign = FF_SIGNBIT(block[j]);
  102. int level = (block[j] ^ sign) - sign;
  103. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  104. block[j] = (level ^ sign) - sign;
  105. if (level)
  106. last_non_zero = i;
  107. }
  108. return last_non_zero;
  109. }
  110. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  111. {
  112. int i, j, level, run;
  113. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  114. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  115. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  116. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  117. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  118. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  119. 63 * 2, fail);
  120. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  121. 63, fail);
  122. ctx->vlc_codes += max_level * 2;
  123. ctx->vlc_bits += max_level * 2;
  124. for (level = -max_level; level < max_level; level++) {
  125. for (run = 0; run < 2; run++) {
  126. int index = (level << 1) | run;
  127. int sign, offset = 0, alevel = level;
  128. MASK_ABS(sign, alevel);
  129. if (alevel > 64) {
  130. offset = (alevel - 1) >> 6;
  131. alevel -= offset << 6;
  132. }
  133. for (j = 0; j < 257; j++) {
  134. if (ctx->cid_table->ac_level[j] == alevel &&
  135. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  136. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  137. assert(!ctx->vlc_codes[index]);
  138. if (alevel) {
  139. ctx->vlc_codes[index] =
  140. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  141. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  142. } else {
  143. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  144. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  145. }
  146. break;
  147. }
  148. }
  149. assert(!alevel || j < 257);
  150. if (offset) {
  151. ctx->vlc_codes[index] =
  152. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  153. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  154. }
  155. }
  156. }
  157. for (i = 0; i < 62; i++) {
  158. int run = ctx->cid_table->run[i];
  159. assert(run < 63);
  160. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  161. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  162. }
  163. return 0;
  164. fail:
  165. return AVERROR(ENOMEM);
  166. }
  167. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  168. {
  169. // init first elem to 1 to avoid div by 0 in convert_matrix
  170. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  171. int qscale, i;
  172. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  173. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  174. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  175. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  176. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  177. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  178. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  179. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  180. fail);
  181. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  182. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  183. fail);
  184. if (ctx->cid_table->bit_depth == 8) {
  185. for (i = 1; i < 64; i++) {
  186. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  187. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  188. }
  189. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  190. weight_matrix, ctx->intra_quant_bias, 1,
  191. ctx->m.avctx->qmax, 1);
  192. for (i = 1; i < 64; i++) {
  193. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  194. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  195. }
  196. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  197. weight_matrix, ctx->intra_quant_bias, 1,
  198. ctx->m.avctx->qmax, 1);
  199. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  200. for (i = 0; i < 64; i++) {
  201. ctx->qmatrix_l[qscale][i] <<= 2;
  202. ctx->qmatrix_c[qscale][i] <<= 2;
  203. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  204. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  205. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  206. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  207. }
  208. }
  209. } else {
  210. // 10-bit
  211. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  212. for (i = 1; i < 64; i++) {
  213. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  214. /* The quantization formula from the VC-3 standard is:
  215. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  216. * (qscale * weight_table[i]))
  217. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  218. * The s factor compensates scaling of DCT coefficients done by
  219. * the DCT routines, and therefore is not present in standard.
  220. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  221. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  222. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  223. * (qscale * weight_table[i])
  224. * For 10-bit samples, p / s == 2 */
  225. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  226. (qscale * luma_weight_table[i]);
  227. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  228. (qscale * chroma_weight_table[i]);
  229. }
  230. }
  231. }
  232. return 0;
  233. fail:
  234. return AVERROR(ENOMEM);
  235. }
  236. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  237. {
  238. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc,
  239. 8160 * ctx->m.avctx->qmax * sizeof(RCEntry), fail);
  240. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  241. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  242. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  243. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  244. 640 - 4 - ctx->min_padding) * 8;
  245. ctx->qscale = 1;
  246. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  247. return 0;
  248. fail:
  249. return AVERROR(ENOMEM);
  250. }
  251. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  252. {
  253. DNXHDEncContext *ctx = avctx->priv_data;
  254. int i, index, bit_depth, ret;
  255. switch (avctx->pix_fmt) {
  256. case AV_PIX_FMT_YUV422P:
  257. bit_depth = 8;
  258. break;
  259. case AV_PIX_FMT_YUV422P10:
  260. bit_depth = 10;
  261. break;
  262. default:
  263. av_log(avctx, AV_LOG_ERROR,
  264. "pixel format is incompatible with DNxHD\n");
  265. return AVERROR(EINVAL);
  266. }
  267. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  268. if (!ctx->cid) {
  269. av_log(avctx, AV_LOG_ERROR,
  270. "video parameters incompatible with DNxHD\n");
  271. return AVERROR(EINVAL);
  272. }
  273. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  274. index = ff_dnxhd_get_cid_table(ctx->cid);
  275. if (index < 0)
  276. return index;
  277. ctx->cid_table = &ff_dnxhd_cid_table[index];
  278. ctx->m.avctx = avctx;
  279. ctx->m.mb_intra = 1;
  280. ctx->m.h263_aic = 1;
  281. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  282. ff_blockdsp_init(&ctx->bdsp, avctx);
  283. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  284. ff_mpv_idct_init(&ctx->m);
  285. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  286. ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
  287. if (!ctx->m.dct_quantize)
  288. ctx->m.dct_quantize = ff_dct_quantize_c;
  289. if (ctx->cid_table->bit_depth == 10) {
  290. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  291. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  292. ctx->block_width_l2 = 4;
  293. } else {
  294. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  295. ctx->block_width_l2 = 3;
  296. }
  297. if (ARCH_X86)
  298. ff_dnxhdenc_init_x86(ctx);
  299. ctx->m.mb_height = (avctx->height + 15) / 16;
  300. ctx->m.mb_width = (avctx->width + 15) / 16;
  301. if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
  302. ctx->interlaced = 1;
  303. ctx->m.mb_height /= 2;
  304. }
  305. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  306. #if FF_API_QUANT_BIAS
  307. FF_DISABLE_DEPRECATION_WARNINGS
  308. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  309. ctx->intra_quant_bias = avctx->intra_quant_bias;
  310. FF_ENABLE_DEPRECATION_WARNINGS
  311. #endif
  312. // XXX tune lbias/cbias
  313. if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
  314. return ret;
  315. /* Avid Nitris hardware decoder requires a minimum amount of padding
  316. * in the coding unit payload */
  317. if (ctx->nitris_compat)
  318. ctx->min_padding = 1600;
  319. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  320. return ret;
  321. if ((ret = dnxhd_init_rc(ctx)) < 0)
  322. return ret;
  323. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  324. ctx->m.mb_height * sizeof(uint32_t), fail);
  325. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  326. ctx->m.mb_height * sizeof(uint32_t), fail);
  327. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  328. ctx->m.mb_num * sizeof(uint16_t), fail);
  329. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  330. ctx->m.mb_num * sizeof(uint8_t), fail);
  331. #if FF_API_CODED_FRAME
  332. FF_DISABLE_DEPRECATION_WARNINGS
  333. avctx->coded_frame->key_frame = 1;
  334. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  335. FF_ENABLE_DEPRECATION_WARNINGS
  336. #endif
  337. if (avctx->thread_count > MAX_THREADS) {
  338. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  339. return AVERROR(EINVAL);
  340. }
  341. ctx->thread[0] = ctx;
  342. for (i = 1; i < avctx->thread_count; i++) {
  343. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  344. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  345. }
  346. return 0;
  347. fail: // for FF_ALLOCZ_OR_GOTO
  348. return AVERROR(ENOMEM);
  349. }
  350. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  351. {
  352. DNXHDEncContext *ctx = avctx->priv_data;
  353. const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  354. memset(buf, 0, 640);
  355. memcpy(buf, header_prefix, 5);
  356. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  357. buf[6] = 0x80; // crc flag off
  358. buf[7] = 0xa0; // reserved
  359. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  360. AV_WB16(buf + 0x1a, avctx->width); // SPL
  361. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  362. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  363. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  364. AV_WB32(buf + 0x28, ctx->cid); // CID
  365. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  366. buf[0x5f] = 0x01; // UDL
  367. buf[0x167] = 0x02; // reserved
  368. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  369. buf[0x16d] = ctx->m.mb_height; // Ns
  370. buf[0x16f] = 0x10; // reserved
  371. ctx->msip = buf + 0x170;
  372. return 0;
  373. }
  374. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  375. {
  376. int nbits;
  377. if (diff < 0) {
  378. nbits = av_log2_16bit(-2 * diff);
  379. diff--;
  380. } else {
  381. nbits = av_log2_16bit(2 * diff);
  382. }
  383. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  384. (ctx->cid_table->dc_codes[nbits] << nbits) +
  385. (diff & ((1 << nbits) - 1)));
  386. }
  387. static av_always_inline
  388. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  389. int last_index, int n)
  390. {
  391. int last_non_zero = 0;
  392. int slevel, i, j;
  393. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  394. ctx->m.last_dc[n] = block[0];
  395. for (i = 1; i <= last_index; i++) {
  396. j = ctx->m.intra_scantable.permutated[i];
  397. slevel = block[j];
  398. if (slevel) {
  399. int run_level = i - last_non_zero - 1;
  400. int rlevel = (slevel << 1) | !!run_level;
  401. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  402. if (run_level)
  403. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  404. ctx->run_codes[run_level]);
  405. last_non_zero = i;
  406. }
  407. }
  408. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  409. }
  410. static av_always_inline
  411. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  412. int qscale, int last_index)
  413. {
  414. const uint8_t *weight_matrix;
  415. int level;
  416. int i;
  417. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  418. : ctx->cid_table->luma_weight;
  419. for (i = 1; i <= last_index; i++) {
  420. int j = ctx->m.intra_scantable.permutated[i];
  421. level = block[j];
  422. if (level) {
  423. if (level < 0) {
  424. level = (1 - 2 * level) * qscale * weight_matrix[i];
  425. if (ctx->cid_table->bit_depth == 10) {
  426. if (weight_matrix[i] != 8)
  427. level += 8;
  428. level >>= 4;
  429. } else {
  430. if (weight_matrix[i] != 32)
  431. level += 32;
  432. level >>= 6;
  433. }
  434. level = -level;
  435. } else {
  436. level = (2 * level + 1) * qscale * weight_matrix[i];
  437. if (ctx->cid_table->bit_depth == 10) {
  438. if (weight_matrix[i] != 8)
  439. level += 8;
  440. level >>= 4;
  441. } else {
  442. if (weight_matrix[i] != 32)
  443. level += 32;
  444. level >>= 6;
  445. }
  446. }
  447. block[j] = level;
  448. }
  449. }
  450. }
  451. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  452. {
  453. int score = 0;
  454. int i;
  455. for (i = 0; i < 64; i++)
  456. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  457. return score;
  458. }
  459. static av_always_inline
  460. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  461. {
  462. int last_non_zero = 0;
  463. int bits = 0;
  464. int i, j, level;
  465. for (i = 1; i <= last_index; i++) {
  466. j = ctx->m.intra_scantable.permutated[i];
  467. level = block[j];
  468. if (level) {
  469. int run_level = i - last_non_zero - 1;
  470. bits += ctx->vlc_bits[(level << 1) |
  471. !!run_level] + ctx->run_bits[run_level];
  472. last_non_zero = i;
  473. }
  474. }
  475. return bits;
  476. }
  477. static av_always_inline
  478. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  479. {
  480. const int bs = ctx->block_width_l2;
  481. const int bw = 1 << bs;
  482. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  483. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  484. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  485. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  486. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  487. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  488. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  489. pdsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  490. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  491. pdsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  492. pdsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  493. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  494. if (ctx->interlaced) {
  495. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  496. ptr_y + ctx->dct_y_offset,
  497. ctx->m.linesize);
  498. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  499. ptr_y + ctx->dct_y_offset + bw,
  500. ctx->m.linesize);
  501. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  502. ptr_u + ctx->dct_uv_offset,
  503. ctx->m.uvlinesize);
  504. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  505. ptr_v + ctx->dct_uv_offset,
  506. ctx->m.uvlinesize);
  507. } else {
  508. ctx->bdsp.clear_block(ctx->blocks[4]);
  509. ctx->bdsp.clear_block(ctx->blocks[5]);
  510. ctx->bdsp.clear_block(ctx->blocks[6]);
  511. ctx->bdsp.clear_block(ctx->blocks[7]);
  512. }
  513. } else {
  514. pdsp->get_pixels(ctx->blocks[4],
  515. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  516. pdsp->get_pixels(ctx->blocks[5],
  517. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  518. pdsp->get_pixels(ctx->blocks[6],
  519. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  520. pdsp->get_pixels(ctx->blocks[7],
  521. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  522. }
  523. }
  524. static av_always_inline
  525. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  526. {
  527. if (i & 2) {
  528. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  529. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  530. return 1 + (i & 1);
  531. } else {
  532. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  533. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  534. return 0;
  535. }
  536. }
  537. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  538. int jobnr, int threadnr)
  539. {
  540. DNXHDEncContext *ctx = avctx->priv_data;
  541. int mb_y = jobnr, mb_x;
  542. int qscale = ctx->qscale;
  543. LOCAL_ALIGNED_16(int16_t, block, [64]);
  544. ctx = ctx->thread[threadnr];
  545. ctx->m.last_dc[0] =
  546. ctx->m.last_dc[1] =
  547. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  548. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  549. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  550. int ssd = 0;
  551. int ac_bits = 0;
  552. int dc_bits = 0;
  553. int i;
  554. dnxhd_get_blocks(ctx, mb_x, mb_y);
  555. for (i = 0; i < 8; i++) {
  556. int16_t *src_block = ctx->blocks[i];
  557. int overflow, nbits, diff, last_index;
  558. int n = dnxhd_switch_matrix(ctx, i);
  559. memcpy(block, src_block, 64 * sizeof(*block));
  560. last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  561. qscale, &overflow);
  562. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  563. diff = block[0] - ctx->m.last_dc[n];
  564. if (diff < 0)
  565. nbits = av_log2_16bit(-2 * diff);
  566. else
  567. nbits = av_log2_16bit(2 * diff);
  568. assert(nbits < ctx->cid_table->bit_depth + 4);
  569. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  570. ctx->m.last_dc[n] = block[0];
  571. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  572. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  573. ctx->m.idsp.idct(block);
  574. ssd += dnxhd_ssd_block(block, src_block);
  575. }
  576. }
  577. ctx->mb_rc[qscale][mb].ssd = ssd;
  578. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  579. 8 * ctx->vlc_bits[0];
  580. }
  581. return 0;
  582. }
  583. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  584. int jobnr, int threadnr)
  585. {
  586. DNXHDEncContext *ctx = avctx->priv_data;
  587. int mb_y = jobnr, mb_x;
  588. ctx = ctx->thread[threadnr];
  589. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  590. ctx->slice_size[jobnr]);
  591. ctx->m.last_dc[0] =
  592. ctx->m.last_dc[1] =
  593. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  594. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  595. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  596. int qscale = ctx->mb_qscale[mb];
  597. int i;
  598. put_bits(&ctx->m.pb, 12, qscale << 1);
  599. dnxhd_get_blocks(ctx, mb_x, mb_y);
  600. for (i = 0; i < 8; i++) {
  601. int16_t *block = ctx->blocks[i];
  602. int overflow, n = dnxhd_switch_matrix(ctx, i);
  603. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  604. qscale, &overflow);
  605. // START_TIMER;
  606. dnxhd_encode_block(ctx, block, last_index, n);
  607. // STOP_TIMER("encode_block");
  608. }
  609. }
  610. if (put_bits_count(&ctx->m.pb) & 31)
  611. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  612. flush_put_bits(&ctx->m.pb);
  613. return 0;
  614. }
  615. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  616. {
  617. int mb_y, mb_x;
  618. int offset = 0;
  619. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  620. int thread_size;
  621. ctx->slice_offs[mb_y] = offset;
  622. ctx->slice_size[mb_y] = 0;
  623. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  624. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  625. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  626. }
  627. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  628. ctx->slice_size[mb_y] >>= 3;
  629. thread_size = ctx->slice_size[mb_y];
  630. offset += thread_size;
  631. }
  632. }
  633. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  634. int jobnr, int threadnr)
  635. {
  636. DNXHDEncContext *ctx = avctx->priv_data;
  637. int mb_y = jobnr, mb_x, x, y;
  638. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  639. ((avctx->height >> ctx->interlaced) & 0xF);
  640. ctx = ctx->thread[threadnr];
  641. if (ctx->cid_table->bit_depth == 8) {
  642. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  643. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  644. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  645. int sum;
  646. int varc;
  647. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  648. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  649. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  650. } else {
  651. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  652. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  653. sum = varc = 0;
  654. for (y = 0; y < bh; y++) {
  655. for (x = 0; x < bw; x++) {
  656. uint8_t val = pix[x + y * ctx->m.linesize];
  657. sum += val;
  658. varc += val * val;
  659. }
  660. }
  661. }
  662. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  663. ctx->mb_cmp[mb].value = varc;
  664. ctx->mb_cmp[mb].mb = mb;
  665. }
  666. } else { // 10-bit
  667. int const linesize = ctx->m.linesize >> 1;
  668. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  669. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  670. ((mb_y << 4) * linesize) + (mb_x << 4);
  671. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  672. int sum = 0;
  673. int sqsum = 0;
  674. int mean, sqmean;
  675. int i, j;
  676. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  677. for (i = 0; i < 16; ++i) {
  678. for (j = 0; j < 16; ++j) {
  679. // Turn 16-bit pixels into 10-bit ones.
  680. int const sample = (unsigned) pix[j] >> 6;
  681. sum += sample;
  682. sqsum += sample * sample;
  683. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  684. }
  685. pix += linesize;
  686. }
  687. mean = sum >> 8; // 16*16 == 2^8
  688. sqmean = sqsum >> 8;
  689. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  690. ctx->mb_cmp[mb].mb = mb;
  691. }
  692. }
  693. return 0;
  694. }
  695. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  696. {
  697. int lambda, up_step, down_step;
  698. int last_lower = INT_MAX, last_higher = 0;
  699. int x, y, q;
  700. for (q = 1; q < avctx->qmax; q++) {
  701. ctx->qscale = q;
  702. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  703. NULL, NULL, ctx->m.mb_height);
  704. }
  705. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  706. lambda = ctx->lambda;
  707. for (;;) {
  708. int bits = 0;
  709. int end = 0;
  710. if (lambda == last_higher) {
  711. lambda++;
  712. end = 1; // need to set final qscales/bits
  713. }
  714. for (y = 0; y < ctx->m.mb_height; y++) {
  715. for (x = 0; x < ctx->m.mb_width; x++) {
  716. unsigned min = UINT_MAX;
  717. int qscale = 1;
  718. int mb = y * ctx->m.mb_width + x;
  719. for (q = 1; q < avctx->qmax; q++) {
  720. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  721. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  722. if (score < min) {
  723. min = score;
  724. qscale = q;
  725. }
  726. }
  727. bits += ctx->mb_rc[qscale][mb].bits;
  728. ctx->mb_qscale[mb] = qscale;
  729. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  730. }
  731. bits = (bits + 31) & ~31; // padding
  732. if (bits > ctx->frame_bits)
  733. break;
  734. }
  735. // ff_dlog(ctx->m.avctx,
  736. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  737. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  738. if (end) {
  739. if (bits > ctx->frame_bits)
  740. return AVERROR(EINVAL);
  741. break;
  742. }
  743. if (bits < ctx->frame_bits) {
  744. last_lower = FFMIN(lambda, last_lower);
  745. if (last_higher != 0)
  746. lambda = (lambda+last_higher)>>1;
  747. else
  748. lambda -= down_step;
  749. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  750. up_step = 1<<LAMBDA_FRAC_BITS;
  751. lambda = FFMAX(1, lambda);
  752. if (lambda == last_lower)
  753. break;
  754. } else {
  755. last_higher = FFMAX(lambda, last_higher);
  756. if (last_lower != INT_MAX)
  757. lambda = (lambda+last_lower)>>1;
  758. else if ((int64_t)lambda + up_step > INT_MAX)
  759. return AVERROR(EINVAL);
  760. else
  761. lambda += up_step;
  762. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  763. down_step = 1<<LAMBDA_FRAC_BITS;
  764. }
  765. }
  766. //ff_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  767. ctx->lambda = lambda;
  768. return 0;
  769. }
  770. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  771. {
  772. int bits = 0;
  773. int up_step = 1;
  774. int down_step = 1;
  775. int last_higher = 0;
  776. int last_lower = INT_MAX;
  777. int qscale;
  778. int x, y;
  779. qscale = ctx->qscale;
  780. for (;;) {
  781. bits = 0;
  782. ctx->qscale = qscale;
  783. // XXX avoid recalculating bits
  784. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  785. NULL, NULL, ctx->m.mb_height);
  786. for (y = 0; y < ctx->m.mb_height; y++) {
  787. for (x = 0; x < ctx->m.mb_width; x++)
  788. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  789. bits = (bits+31)&~31; // padding
  790. if (bits > ctx->frame_bits)
  791. break;
  792. }
  793. // ff_dlog(ctx->m.avctx,
  794. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  795. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  796. // last_higher, last_lower);
  797. if (bits < ctx->frame_bits) {
  798. if (qscale == 1)
  799. return 1;
  800. if (last_higher == qscale - 1) {
  801. qscale = last_higher;
  802. break;
  803. }
  804. last_lower = FFMIN(qscale, last_lower);
  805. if (last_higher != 0)
  806. qscale = (qscale + last_higher) >> 1;
  807. else
  808. qscale -= down_step++;
  809. if (qscale < 1)
  810. qscale = 1;
  811. up_step = 1;
  812. } else {
  813. if (last_lower == qscale + 1)
  814. break;
  815. last_higher = FFMAX(qscale, last_higher);
  816. if (last_lower != INT_MAX)
  817. qscale = (qscale + last_lower) >> 1;
  818. else
  819. qscale += up_step++;
  820. down_step = 1;
  821. if (qscale >= ctx->m.avctx->qmax)
  822. return AVERROR(EINVAL);
  823. }
  824. }
  825. //ff_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  826. ctx->qscale = qscale;
  827. return 0;
  828. }
  829. #define BUCKET_BITS 8
  830. #define RADIX_PASSES 4
  831. #define NBUCKETS (1 << BUCKET_BITS)
  832. static inline int get_bucket(int value, int shift)
  833. {
  834. value >>= shift;
  835. value &= NBUCKETS - 1;
  836. return NBUCKETS - 1 - value;
  837. }
  838. static void radix_count(const RCCMPEntry *data, int size,
  839. int buckets[RADIX_PASSES][NBUCKETS])
  840. {
  841. int i, j;
  842. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  843. for (i = 0; i < size; i++) {
  844. int v = data[i].value;
  845. for (j = 0; j < RADIX_PASSES; j++) {
  846. buckets[j][get_bucket(v, 0)]++;
  847. v >>= BUCKET_BITS;
  848. }
  849. assert(!v);
  850. }
  851. for (j = 0; j < RADIX_PASSES; j++) {
  852. int offset = size;
  853. for (i = NBUCKETS - 1; i >= 0; i--)
  854. buckets[j][i] = offset -= buckets[j][i];
  855. assert(!buckets[j][0]);
  856. }
  857. }
  858. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  859. int size, int buckets[NBUCKETS], int pass)
  860. {
  861. int shift = pass * BUCKET_BITS;
  862. int i;
  863. for (i = 0; i < size; i++) {
  864. int v = get_bucket(data[i].value, shift);
  865. int pos = buckets[v]++;
  866. dst[pos] = data[i];
  867. }
  868. }
  869. static void radix_sort(RCCMPEntry *data, int size)
  870. {
  871. int buckets[RADIX_PASSES][NBUCKETS];
  872. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  873. radix_count(data, size, buckets);
  874. radix_sort_pass(tmp, data, size, buckets[0], 0);
  875. radix_sort_pass(data, tmp, size, buckets[1], 1);
  876. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  877. radix_sort_pass(tmp, data, size, buckets[2], 2);
  878. radix_sort_pass(data, tmp, size, buckets[3], 3);
  879. }
  880. av_free(tmp);
  881. }
  882. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  883. {
  884. int max_bits = 0;
  885. int ret, x, y;
  886. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  887. return ret;
  888. for (y = 0; y < ctx->m.mb_height; y++) {
  889. for (x = 0; x < ctx->m.mb_width; x++) {
  890. int mb = y * ctx->m.mb_width + x;
  891. int delta_bits;
  892. ctx->mb_qscale[mb] = ctx->qscale;
  893. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  894. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  895. if (!RC_VARIANCE) {
  896. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  897. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  898. ctx->mb_cmp[mb].mb = mb;
  899. ctx->mb_cmp[mb].value =
  900. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  901. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  902. delta_bits
  903. : INT_MIN; // avoid increasing qscale
  904. }
  905. }
  906. max_bits += 31; // worst padding
  907. }
  908. if (!ret) {
  909. if (RC_VARIANCE)
  910. avctx->execute2(avctx, dnxhd_mb_var_thread,
  911. NULL, NULL, ctx->m.mb_height);
  912. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  913. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  914. int mb = ctx->mb_cmp[x].mb;
  915. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  916. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  917. ctx->mb_qscale[mb] = ctx->qscale + 1;
  918. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  919. }
  920. }
  921. return 0;
  922. }
  923. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  924. {
  925. int i;
  926. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  927. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  928. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  929. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  930. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  931. }
  932. #if FF_API_CODED_FRAME
  933. FF_DISABLE_DEPRECATION_WARNINGS
  934. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  935. FF_ENABLE_DEPRECATION_WARNINGS
  936. #endif
  937. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  938. }
  939. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  940. const AVFrame *frame, int *got_packet)
  941. {
  942. DNXHDEncContext *ctx = avctx->priv_data;
  943. int first_field = 1;
  944. int offset, i, ret;
  945. uint8_t *buf, *sd;
  946. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  947. av_log(avctx, AV_LOG_ERROR,
  948. "output buffer is too small to compress picture\n");
  949. return ret;
  950. }
  951. buf = pkt->data;
  952. dnxhd_load_picture(ctx, frame);
  953. encode_coding_unit:
  954. for (i = 0; i < 3; i++) {
  955. ctx->src[i] = frame->data[i];
  956. if (ctx->interlaced && ctx->cur_field)
  957. ctx->src[i] += frame->linesize[i];
  958. }
  959. dnxhd_write_header(avctx, buf);
  960. if (avctx->mb_decision == FF_MB_DECISION_RD)
  961. ret = dnxhd_encode_rdo(avctx, ctx);
  962. else
  963. ret = dnxhd_encode_fast(avctx, ctx);
  964. if (ret < 0) {
  965. av_log(avctx, AV_LOG_ERROR,
  966. "picture could not fit ratecontrol constraints, increase qmax\n");
  967. return ret;
  968. }
  969. dnxhd_setup_threads_slices(ctx);
  970. offset = 0;
  971. for (i = 0; i < ctx->m.mb_height; i++) {
  972. AV_WB32(ctx->msip + i * 4, offset);
  973. offset += ctx->slice_size[i];
  974. assert(!(ctx->slice_size[i] & 3));
  975. }
  976. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  977. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  978. memset(buf + 640 + offset, 0,
  979. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  980. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  981. if (ctx->interlaced && first_field) {
  982. first_field = 0;
  983. ctx->cur_field ^= 1;
  984. buf += ctx->cid_table->coding_unit_size;
  985. goto encode_coding_unit;
  986. }
  987. #if FF_API_CODED_FRAME
  988. FF_DISABLE_DEPRECATION_WARNINGS
  989. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  990. FF_ENABLE_DEPRECATION_WARNINGS
  991. #endif
  992. sd = av_packet_new_side_data(pkt, AV_PKT_DATA_QUALITY_FACTOR, sizeof(int));
  993. if (!sd)
  994. return AVERROR(ENOMEM);
  995. *(int *)sd = ctx->qscale * FF_QP2LAMBDA;
  996. pkt->flags |= AV_PKT_FLAG_KEY;
  997. *got_packet = 1;
  998. return 0;
  999. }
  1000. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  1001. {
  1002. DNXHDEncContext *ctx = avctx->priv_data;
  1003. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  1004. int i;
  1005. av_free(ctx->vlc_codes - max_level * 2);
  1006. av_free(ctx->vlc_bits - max_level * 2);
  1007. av_freep(&ctx->run_codes);
  1008. av_freep(&ctx->run_bits);
  1009. av_freep(&ctx->mb_bits);
  1010. av_freep(&ctx->mb_qscale);
  1011. av_freep(&ctx->mb_rc);
  1012. av_freep(&ctx->mb_cmp);
  1013. av_freep(&ctx->slice_size);
  1014. av_freep(&ctx->slice_offs);
  1015. av_freep(&ctx->qmatrix_c);
  1016. av_freep(&ctx->qmatrix_l);
  1017. av_freep(&ctx->qmatrix_c16);
  1018. av_freep(&ctx->qmatrix_l16);
  1019. for (i = 1; i < avctx->thread_count; i++)
  1020. av_freep(&ctx->thread[i]);
  1021. return 0;
  1022. }
  1023. AVCodec ff_dnxhd_encoder = {
  1024. .name = "dnxhd",
  1025. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1026. .type = AVMEDIA_TYPE_VIDEO,
  1027. .id = AV_CODEC_ID_DNXHD,
  1028. .priv_data_size = sizeof(DNXHDEncContext),
  1029. .init = dnxhd_encode_init,
  1030. .encode2 = dnxhd_encode_picture,
  1031. .close = dnxhd_encode_end,
  1032. .capabilities = AV_CODEC_CAP_SLICE_THREADS,
  1033. .pix_fmts = (const enum AVPixelFormat[]) {
  1034. AV_PIX_FMT_YUV422P,
  1035. AV_PIX_FMT_YUV422P10,
  1036. AV_PIX_FMT_NONE
  1037. },
  1038. .priv_class = &class,
  1039. };