You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1202 lines
40KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #define VLC_BITS 11
  31. #ifdef WORDS_BIGENDIAN
  32. #define B 3
  33. #define G 2
  34. #define R 1
  35. #else
  36. #define B 0
  37. #define G 1
  38. #define R 2
  39. #endif
  40. typedef enum Predictor{
  41. LEFT= 0,
  42. PLANE,
  43. MEDIAN,
  44. } Predictor;
  45. typedef struct HYuvContext{
  46. AVCodecContext *avctx;
  47. Predictor predictor;
  48. GetBitContext gb;
  49. PutBitContext pb;
  50. int interlaced;
  51. int decorrelate;
  52. int bitstream_bpp;
  53. int version;
  54. int yuy2; //use yuy2 instead of 422P
  55. int bgr32; //use bgr32 instead of bgr24
  56. int width, height;
  57. int flags;
  58. int context;
  59. int picture_number;
  60. int last_slice_end;
  61. uint8_t __align8 temp[3][2560];
  62. uint64_t stats[3][256];
  63. uint8_t len[3][256];
  64. uint32_t bits[3][256];
  65. VLC vlc[3];
  66. AVFrame picture;
  67. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  68. DSPContext dsp;
  69. }HYuvContext;
  70. static const unsigned char classic_shift_luma[] = {
  71. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  72. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  73. 69,68, 0
  74. };
  75. static const unsigned char classic_shift_chroma[] = {
  76. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  77. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  78. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  79. };
  80. static const unsigned char classic_add_luma[256] = {
  81. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  82. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  83. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  84. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  85. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  86. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  87. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  88. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  89. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  90. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  91. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  92. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  93. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  94. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  95. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  96. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  97. };
  98. static const unsigned char classic_add_chroma[256] = {
  99. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  100. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  101. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  102. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  103. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  104. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  105. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  106. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  107. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  108. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  109. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  110. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  111. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  112. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  113. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  114. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  115. };
  116. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  117. int i;
  118. for(i=0; i<w-1; i++){
  119. acc+= src[i];
  120. dst[i]= acc;
  121. i++;
  122. acc+= src[i];
  123. dst[i]= acc;
  124. }
  125. for(; i<w; i++){
  126. acc+= src[i];
  127. dst[i]= acc;
  128. }
  129. return acc;
  130. }
  131. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  132. int i;
  133. uint8_t l, lt;
  134. l= *left;
  135. lt= *left_top;
  136. for(i=0; i<w; i++){
  137. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  138. lt= src1[i];
  139. dst[i]= l;
  140. }
  141. *left= l;
  142. *left_top= lt;
  143. }
  144. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  145. int i;
  146. int r,g,b;
  147. r= *red;
  148. g= *green;
  149. b= *blue;
  150. for(i=0; i<w; i++){
  151. b+= src[4*i+B];
  152. g+= src[4*i+G];
  153. r+= src[4*i+R];
  154. dst[4*i+B]= b;
  155. dst[4*i+G]= g;
  156. dst[4*i+R]= r;
  157. }
  158. *red= r;
  159. *green= g;
  160. *blue= b;
  161. }
  162. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  163. int i;
  164. if(w<32){
  165. for(i=0; i<w; i++){
  166. const int temp= src[i];
  167. dst[i]= temp - left;
  168. left= temp;
  169. }
  170. return left;
  171. }else{
  172. for(i=0; i<16; i++){
  173. const int temp= src[i];
  174. dst[i]= temp - left;
  175. left= temp;
  176. }
  177. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  178. return src[w-1];
  179. }
  180. }
  181. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  182. int i, val, repeat;
  183. for(i=0; i<256;){
  184. repeat= get_bits(gb, 3);
  185. val = get_bits(gb, 5);
  186. if(repeat==0)
  187. repeat= get_bits(gb, 8);
  188. //printf("%d %d\n", val, repeat);
  189. while (repeat--)
  190. dst[i++] = val;
  191. }
  192. }
  193. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  194. int len, index;
  195. uint32_t bits=0;
  196. for(len=32; len>0; len--){
  197. for(index=0; index<256; index++){
  198. if(len_table[index]==len)
  199. dst[index]= bits++;
  200. }
  201. if(bits & 1){
  202. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  203. return -1;
  204. }
  205. bits >>= 1;
  206. }
  207. return 0;
  208. }
  209. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  210. uint64_t counts[2*size];
  211. int up[2*size];
  212. int offset, i, next;
  213. for(offset=1; ; offset<<=1){
  214. for(i=0; i<size; i++){
  215. counts[i]= stats[i] + offset - 1;
  216. }
  217. for(next=size; next<size*2; next++){
  218. uint64_t min1, min2;
  219. int min1_i, min2_i;
  220. min1=min2= INT64_MAX;
  221. min1_i= min2_i=-1;
  222. for(i=0; i<next; i++){
  223. if(min2 > counts[i]){
  224. if(min1 > counts[i]){
  225. min2= min1;
  226. min2_i= min1_i;
  227. min1= counts[i];
  228. min1_i= i;
  229. }else{
  230. min2= counts[i];
  231. min2_i= i;
  232. }
  233. }
  234. }
  235. if(min2==INT64_MAX) break;
  236. counts[next]= min1 + min2;
  237. counts[min1_i]=
  238. counts[min2_i]= INT64_MAX;
  239. up[min1_i]=
  240. up[min2_i]= next;
  241. up[next]= -1;
  242. }
  243. for(i=0; i<size; i++){
  244. int len;
  245. int index=i;
  246. for(len=0; up[index] != -1; len++)
  247. index= up[index];
  248. if(len >= 32) break;
  249. dst[i]= len;
  250. }
  251. if(i==size) break;
  252. }
  253. }
  254. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  255. GetBitContext gb;
  256. int i;
  257. init_get_bits(&gb, src, length*8);
  258. for(i=0; i<3; i++){
  259. read_len_table(s->len[i], &gb);
  260. if(generate_bits_table(s->bits[i], s->len[i])<0){
  261. return -1;
  262. }
  263. #if 0
  264. for(j=0; j<256; j++){
  265. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  266. }
  267. #endif
  268. free_vlc(&s->vlc[i]);
  269. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  270. }
  271. return (get_bits_count(&gb)+7)/8;
  272. }
  273. static int read_old_huffman_tables(HYuvContext *s){
  274. #if 1
  275. GetBitContext gb;
  276. int i;
  277. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  278. read_len_table(s->len[0], &gb);
  279. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  280. read_len_table(s->len[1], &gb);
  281. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  282. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  283. if(s->bitstream_bpp >= 24){
  284. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  285. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  286. }
  287. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  288. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  289. for(i=0; i<3; i++){
  290. free_vlc(&s->vlc[i]);
  291. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  292. }
  293. return 0;
  294. #else
  295. fprintf(stderr, "v1 huffyuv is not supported \n");
  296. return -1;
  297. #endif
  298. }
  299. static int decode_init(AVCodecContext *avctx)
  300. {
  301. HYuvContext *s = avctx->priv_data;
  302. int width, height;
  303. s->avctx= avctx;
  304. s->flags= avctx->flags;
  305. dsputil_init(&s->dsp, avctx);
  306. memset(s->vlc, 0, 3*sizeof(VLC));
  307. width= s->width= avctx->width;
  308. height= s->height= avctx->height;
  309. avctx->coded_frame= &s->picture;
  310. s->bgr32=1;
  311. assert(width && height);
  312. //if(avctx->extradata)
  313. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  314. if(avctx->extradata_size){
  315. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  316. s->version=1; // do such files exist at all?
  317. else
  318. s->version=2;
  319. }else
  320. s->version=0;
  321. if(s->version==2){
  322. int method;
  323. method= ((uint8_t*)avctx->extradata)[0];
  324. s->decorrelate= method&64 ? 1 : 0;
  325. s->predictor= method&63;
  326. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  327. if(s->bitstream_bpp==0)
  328. s->bitstream_bpp= avctx->bits_per_sample&~7;
  329. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  330. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  331. return -1;
  332. }else{
  333. switch(avctx->bits_per_sample&7){
  334. case 1:
  335. s->predictor= LEFT;
  336. s->decorrelate= 0;
  337. break;
  338. case 2:
  339. s->predictor= LEFT;
  340. s->decorrelate= 1;
  341. break;
  342. case 3:
  343. s->predictor= PLANE;
  344. s->decorrelate= avctx->bits_per_sample >= 24;
  345. break;
  346. case 4:
  347. s->predictor= MEDIAN;
  348. s->decorrelate= 0;
  349. break;
  350. default:
  351. s->predictor= LEFT; //OLD
  352. s->decorrelate= 0;
  353. break;
  354. }
  355. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  356. s->context= 0;
  357. if(read_old_huffman_tables(s) < 0)
  358. return -1;
  359. }
  360. if(((uint8_t*)avctx->extradata)[2] & 0x20)
  361. s->interlaced= ((uint8_t*)avctx->extradata)[2] & 0x10 ? 1 : 0;
  362. else
  363. s->interlaced= height > 288;
  364. switch(s->bitstream_bpp){
  365. case 12:
  366. avctx->pix_fmt = PIX_FMT_YUV420P;
  367. break;
  368. case 16:
  369. if(s->yuy2){
  370. avctx->pix_fmt = PIX_FMT_YUV422;
  371. }else{
  372. avctx->pix_fmt = PIX_FMT_YUV422P;
  373. }
  374. break;
  375. case 24:
  376. case 32:
  377. if(s->bgr32){
  378. avctx->pix_fmt = PIX_FMT_RGBA32;
  379. }else{
  380. avctx->pix_fmt = PIX_FMT_BGR24;
  381. }
  382. break;
  383. default:
  384. assert(0);
  385. }
  386. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  387. return 0;
  388. }
  389. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  390. int i;
  391. int index= 0;
  392. for(i=0; i<256;){
  393. int val= len[i];
  394. int repeat=0;
  395. for(; i<256 && len[i]==val && repeat<255; i++)
  396. repeat++;
  397. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  398. if(repeat>7){
  399. buf[index++]= val;
  400. buf[index++]= repeat;
  401. }else{
  402. buf[index++]= val | (repeat<<5);
  403. }
  404. }
  405. return index;
  406. }
  407. static int encode_init(AVCodecContext *avctx)
  408. {
  409. HYuvContext *s = avctx->priv_data;
  410. int i, j, width, height;
  411. s->avctx= avctx;
  412. s->flags= avctx->flags;
  413. dsputil_init(&s->dsp, avctx);
  414. width= s->width= avctx->width;
  415. height= s->height= avctx->height;
  416. assert(width && height);
  417. avctx->extradata= av_mallocz(1024*30);
  418. avctx->stats_out= av_mallocz(1024*30);
  419. s->version=2;
  420. avctx->coded_frame= &s->picture;
  421. switch(avctx->pix_fmt){
  422. case PIX_FMT_YUV420P:
  423. if(avctx->strict_std_compliance>=0){
  424. av_log(avctx, AV_LOG_ERROR, "Warning: YV12-huffyuv is not supported by windows huffyuv use a different colorspace or use (v)strict=-1\n");
  425. return -1;
  426. }
  427. s->bitstream_bpp= 12;
  428. break;
  429. case PIX_FMT_YUV422P:
  430. s->bitstream_bpp= 16;
  431. break;
  432. default:
  433. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  434. return -1;
  435. }
  436. avctx->bits_per_sample= s->bitstream_bpp;
  437. s->decorrelate= s->bitstream_bpp >= 24;
  438. s->predictor= avctx->prediction_method;
  439. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  440. if(s->interlaced != ( height > 288 )){
  441. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  442. }
  443. if(avctx->context_model==1){
  444. s->context= avctx->context_model;
  445. if(avctx->strict_std_compliance>=0){
  446. av_log(avctx, AV_LOG_ERROR, "Warning: per-frame huffman tables are not supported by windows huffyuv; use context=0 or use (v)strict=-1\n");
  447. return -1;
  448. }
  449. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  450. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  451. return -1;
  452. }
  453. av_log(avctx, AV_LOG_INFO, "using per-frame huffman tables\n");
  454. }else s->context= 0;
  455. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  456. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  457. ((uint8_t*)avctx->extradata)[2]= 0x20 | (s->interlaced ? 0x10 : 0);
  458. if(s->context)
  459. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  460. ((uint8_t*)avctx->extradata)[3]= 0;
  461. s->avctx->extradata_size= 4;
  462. if(avctx->stats_in){
  463. char *p= avctx->stats_in;
  464. for(i=0; i<3; i++)
  465. for(j=0; j<256; j++)
  466. s->stats[i][j]= 1;
  467. for(;;){
  468. for(i=0; i<3; i++){
  469. char *next;
  470. for(j=0; j<256; j++){
  471. s->stats[i][j]+= strtol(p, &next, 0);
  472. if(next==p) return -1;
  473. p=next;
  474. }
  475. }
  476. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  477. }
  478. }else{
  479. for(i=0; i<3; i++)
  480. for(j=0; j<256; j++){
  481. int d= FFMIN(j, 256-j);
  482. s->stats[i][j]= 100000000/(d+1);
  483. }
  484. }
  485. for(i=0; i<3; i++){
  486. generate_len_table(s->len[i], s->stats[i], 256);
  487. if(generate_bits_table(s->bits[i], s->len[i])<0){
  488. return -1;
  489. }
  490. s->avctx->extradata_size+=
  491. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  492. }
  493. if(s->context){
  494. for(i=0; i<3; i++){
  495. int pels = width*height / (i?40:10);
  496. for(j=0; j<256; j++){
  497. int d= FFMIN(j, 256-j);
  498. s->stats[i][j]= pels/(d+1);
  499. }
  500. }
  501. }else{
  502. for(i=0; i<3; i++)
  503. for(j=0; j<256; j++)
  504. s->stats[i][j]= 0;
  505. }
  506. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  507. s->picture_number=0;
  508. return 0;
  509. }
  510. static void decode_422_bitstream(HYuvContext *s, int count){
  511. int i;
  512. count/=2;
  513. for(i=0; i<count; i++){
  514. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  515. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  516. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  517. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  518. }
  519. }
  520. static void decode_gray_bitstream(HYuvContext *s, int count){
  521. int i;
  522. count/=2;
  523. for(i=0; i<count; i++){
  524. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  525. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  526. }
  527. }
  528. static void encode_422_bitstream(HYuvContext *s, int count){
  529. int i;
  530. count/=2;
  531. if(s->flags&CODEC_FLAG_PASS1){
  532. for(i=0; i<count; i++){
  533. s->stats[0][ s->temp[0][2*i ] ]++;
  534. s->stats[1][ s->temp[1][ i ] ]++;
  535. s->stats[0][ s->temp[0][2*i+1] ]++;
  536. s->stats[2][ s->temp[2][ i ] ]++;
  537. }
  538. }else if(s->context){
  539. for(i=0; i<count; i++){
  540. s->stats[0][ s->temp[0][2*i ] ]++;
  541. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  542. s->stats[1][ s->temp[1][ i ] ]++;
  543. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  544. s->stats[0][ s->temp[0][2*i+1] ]++;
  545. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  546. s->stats[2][ s->temp[2][ i ] ]++;
  547. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  548. }
  549. }else{
  550. for(i=0; i<count; i++){
  551. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  552. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  553. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  554. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  555. }
  556. }
  557. }
  558. static void encode_gray_bitstream(HYuvContext *s, int count){
  559. int i;
  560. count/=2;
  561. if(s->flags&CODEC_FLAG_PASS1){
  562. for(i=0; i<count; i++){
  563. s->stats[0][ s->temp[0][2*i ] ]++;
  564. s->stats[0][ s->temp[0][2*i+1] ]++;
  565. }
  566. }else if(s->context){
  567. for(i=0; i<count; i++){
  568. s->stats[0][ s->temp[0][2*i ] ]++;
  569. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  570. s->stats[0][ s->temp[0][2*i+1] ]++;
  571. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  572. }
  573. }else{
  574. for(i=0; i<count; i++){
  575. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  576. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  577. }
  578. }
  579. }
  580. static void decode_bgr_bitstream(HYuvContext *s, int count){
  581. int i;
  582. if(s->decorrelate){
  583. if(s->bitstream_bpp==24){
  584. for(i=0; i<count; i++){
  585. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  586. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  587. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  588. }
  589. }else{
  590. for(i=0; i<count; i++){
  591. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  592. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  593. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  594. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  595. }
  596. }
  597. }else{
  598. if(s->bitstream_bpp==24){
  599. for(i=0; i<count; i++){
  600. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  601. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  602. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  603. }
  604. }else{
  605. for(i=0; i<count; i++){
  606. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  607. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  608. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  609. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  610. }
  611. }
  612. }
  613. }
  614. static void draw_slice(HYuvContext *s, int y){
  615. int h, cy;
  616. int offset[4];
  617. if(s->avctx->draw_horiz_band==NULL)
  618. return;
  619. h= y - s->last_slice_end;
  620. y -= h;
  621. if(s->bitstream_bpp==12){
  622. cy= y>>1;
  623. }else{
  624. cy= y;
  625. }
  626. offset[0] = s->picture.linesize[0]*y;
  627. offset[1] = s->picture.linesize[1]*cy;
  628. offset[2] = s->picture.linesize[2]*cy;
  629. offset[3] = 0;
  630. emms_c();
  631. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  632. s->last_slice_end= y + h;
  633. }
  634. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  635. HYuvContext *s = avctx->priv_data;
  636. const int width= s->width;
  637. const int width2= s->width>>1;
  638. const int height= s->height;
  639. int fake_ystride, fake_ustride, fake_vstride;
  640. AVFrame * const p= &s->picture;
  641. int table_size= 0;
  642. AVFrame *picture = data;
  643. /* no supplementary picture */
  644. if (buf_size == 0)
  645. return 0;
  646. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  647. if(p->data[0])
  648. avctx->release_buffer(avctx, p);
  649. p->reference= 0;
  650. if(avctx->get_buffer(avctx, p) < 0){
  651. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  652. return -1;
  653. }
  654. if(s->context){
  655. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  656. if(table_size < 0)
  657. return -1;
  658. }
  659. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  660. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  661. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  662. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  663. s->last_slice_end= 0;
  664. if(s->bitstream_bpp<24){
  665. int y, cy;
  666. int lefty, leftu, leftv;
  667. int lefttopy, lefttopu, lefttopv;
  668. if(s->yuy2){
  669. p->data[0][3]= get_bits(&s->gb, 8);
  670. p->data[0][2]= get_bits(&s->gb, 8);
  671. p->data[0][1]= get_bits(&s->gb, 8);
  672. p->data[0][0]= get_bits(&s->gb, 8);
  673. av_log(avctx, AV_LOG_ERROR, "YUY2 output isnt implemenetd yet\n");
  674. return -1;
  675. }else{
  676. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  677. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  678. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  679. p->data[0][0]= get_bits(&s->gb, 8);
  680. switch(s->predictor){
  681. case LEFT:
  682. case PLANE:
  683. decode_422_bitstream(s, width-2);
  684. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  685. if(!(s->flags&CODEC_FLAG_GRAY)){
  686. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  687. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  688. }
  689. for(cy=y=1; y<s->height; y++,cy++){
  690. uint8_t *ydst, *udst, *vdst;
  691. if(s->bitstream_bpp==12){
  692. decode_gray_bitstream(s, width);
  693. ydst= p->data[0] + p->linesize[0]*y;
  694. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  695. if(s->predictor == PLANE){
  696. if(y>s->interlaced)
  697. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  698. }
  699. y++;
  700. if(y>=s->height) break;
  701. }
  702. draw_slice(s, y);
  703. ydst= p->data[0] + p->linesize[0]*y;
  704. udst= p->data[1] + p->linesize[1]*cy;
  705. vdst= p->data[2] + p->linesize[2]*cy;
  706. decode_422_bitstream(s, width);
  707. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  708. if(!(s->flags&CODEC_FLAG_GRAY)){
  709. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  710. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  711. }
  712. if(s->predictor == PLANE){
  713. if(cy>s->interlaced){
  714. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  715. if(!(s->flags&CODEC_FLAG_GRAY)){
  716. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  717. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  718. }
  719. }
  720. }
  721. }
  722. draw_slice(s, height);
  723. break;
  724. case MEDIAN:
  725. /* first line except first 2 pixels is left predicted */
  726. decode_422_bitstream(s, width-2);
  727. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  728. if(!(s->flags&CODEC_FLAG_GRAY)){
  729. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  730. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  731. }
  732. cy=y=1;
  733. /* second line is left predicted for interlaced case */
  734. if(s->interlaced){
  735. decode_422_bitstream(s, width);
  736. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  737. if(!(s->flags&CODEC_FLAG_GRAY)){
  738. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  739. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  740. }
  741. y++; cy++;
  742. }
  743. /* next 4 pixels are left predicted too */
  744. decode_422_bitstream(s, 4);
  745. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  746. if(!(s->flags&CODEC_FLAG_GRAY)){
  747. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  748. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  749. }
  750. /* next line except the first 4 pixels is median predicted */
  751. lefttopy= p->data[0][3];
  752. decode_422_bitstream(s, width-4);
  753. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  754. if(!(s->flags&CODEC_FLAG_GRAY)){
  755. lefttopu= p->data[1][1];
  756. lefttopv= p->data[2][1];
  757. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  758. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  759. }
  760. y++; cy++;
  761. for(; y<height; y++,cy++){
  762. uint8_t *ydst, *udst, *vdst;
  763. if(s->bitstream_bpp==12){
  764. while(2*cy > y){
  765. decode_gray_bitstream(s, width);
  766. ydst= p->data[0] + p->linesize[0]*y;
  767. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  768. y++;
  769. }
  770. if(y>=height) break;
  771. }
  772. draw_slice(s, y);
  773. decode_422_bitstream(s, width);
  774. ydst= p->data[0] + p->linesize[0]*y;
  775. udst= p->data[1] + p->linesize[1]*cy;
  776. vdst= p->data[2] + p->linesize[2]*cy;
  777. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  778. if(!(s->flags&CODEC_FLAG_GRAY)){
  779. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  780. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  781. }
  782. }
  783. draw_slice(s, height);
  784. break;
  785. }
  786. }
  787. }else{
  788. int y;
  789. int leftr, leftg, leftb;
  790. const int last_line= (height-1)*p->linesize[0];
  791. if(s->bitstream_bpp==32){
  792. skip_bits(&s->gb, 8);
  793. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  794. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  795. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  796. }else{
  797. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  798. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  799. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  800. skip_bits(&s->gb, 8);
  801. }
  802. if(s->bgr32){
  803. switch(s->predictor){
  804. case LEFT:
  805. case PLANE:
  806. decode_bgr_bitstream(s, width-1);
  807. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  808. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  809. decode_bgr_bitstream(s, width);
  810. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  811. if(s->predictor == PLANE){
  812. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  813. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  814. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  815. }
  816. }
  817. }
  818. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  819. break;
  820. default:
  821. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  822. }
  823. }else{
  824. av_log(avctx, AV_LOG_ERROR, "BGR24 output isnt implemenetd yet\n");
  825. return -1;
  826. }
  827. }
  828. emms_c();
  829. *picture= *p;
  830. *data_size = sizeof(AVFrame);
  831. return (get_bits_count(&s->gb)+31)/32*4;
  832. }
  833. static int decode_end(AVCodecContext *avctx)
  834. {
  835. HYuvContext *s = avctx->priv_data;
  836. int i;
  837. for(i=0; i<3; i++){
  838. free_vlc(&s->vlc[i]);
  839. }
  840. return 0;
  841. }
  842. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  843. HYuvContext *s = avctx->priv_data;
  844. AVFrame *pict = data;
  845. const int width= s->width;
  846. const int width2= s->width>>1;
  847. const int height= s->height;
  848. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  849. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  850. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  851. AVFrame * const p= &s->picture;
  852. int i, j, size=0;
  853. *p = *pict;
  854. p->pict_type= FF_I_TYPE;
  855. p->key_frame= 1;
  856. if(s->context){
  857. for(i=0; i<3; i++){
  858. generate_len_table(s->len[i], s->stats[i], 256);
  859. if(generate_bits_table(s->bits[i], s->len[i])<0)
  860. return -1;
  861. size+= store_table(s, s->len[i], &buf[size]);
  862. }
  863. for(i=0; i<3; i++)
  864. for(j=0; j<256; j++)
  865. s->stats[i][j] >>= 1;
  866. }
  867. init_put_bits(&s->pb, buf+size, buf_size-size);
  868. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  869. int lefty, leftu, leftv, y, cy;
  870. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  871. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  872. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  873. put_bits(&s->pb, 8, p->data[0][0]);
  874. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  875. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  876. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  877. encode_422_bitstream(s, width-2);
  878. if(s->predictor==MEDIAN){
  879. int lefttopy, lefttopu, lefttopv;
  880. cy=y=1;
  881. if(s->interlaced){
  882. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  883. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  884. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  885. encode_422_bitstream(s, width);
  886. y++; cy++;
  887. }
  888. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  889. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  890. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  891. encode_422_bitstream(s, 4);
  892. lefttopy= p->data[0][3];
  893. lefttopu= p->data[1][1];
  894. lefttopv= p->data[2][1];
  895. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  896. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  897. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  898. encode_422_bitstream(s, width-4);
  899. y++; cy++;
  900. for(; y<height; y++,cy++){
  901. uint8_t *ydst, *udst, *vdst;
  902. if(s->bitstream_bpp==12){
  903. while(2*cy > y){
  904. ydst= p->data[0] + p->linesize[0]*y;
  905. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  906. encode_gray_bitstream(s, width);
  907. y++;
  908. }
  909. if(y>=height) break;
  910. }
  911. ydst= p->data[0] + p->linesize[0]*y;
  912. udst= p->data[1] + p->linesize[1]*cy;
  913. vdst= p->data[2] + p->linesize[2]*cy;
  914. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  915. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  916. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  917. encode_422_bitstream(s, width);
  918. }
  919. }else{
  920. for(cy=y=1; y<height; y++,cy++){
  921. uint8_t *ydst, *udst, *vdst;
  922. /* encode a luma only line & y++ */
  923. if(s->bitstream_bpp==12){
  924. ydst= p->data[0] + p->linesize[0]*y;
  925. if(s->predictor == PLANE && s->interlaced < y){
  926. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  927. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  928. }else{
  929. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  930. }
  931. encode_gray_bitstream(s, width);
  932. y++;
  933. if(y>=height) break;
  934. }
  935. ydst= p->data[0] + p->linesize[0]*y;
  936. udst= p->data[1] + p->linesize[1]*cy;
  937. vdst= p->data[2] + p->linesize[2]*cy;
  938. if(s->predictor == PLANE && s->interlaced < cy){
  939. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  940. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  941. s->dsp.diff_bytes(s->temp[2] + 1250, vdst, vdst - fake_vstride, width2);
  942. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  943. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  944. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + 1250, width2, leftv);
  945. }else{
  946. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  947. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  948. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  949. }
  950. encode_422_bitstream(s, width);
  951. }
  952. }
  953. }else{
  954. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  955. }
  956. emms_c();
  957. size+= (put_bits_count(&s->pb)+31)/8;
  958. size/= 4;
  959. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  960. int j;
  961. char *p= avctx->stats_out;
  962. for(i=0; i<3; i++){
  963. for(j=0; j<256; j++){
  964. sprintf(p, "%llu ", s->stats[i][j]);
  965. p+= strlen(p);
  966. s->stats[i][j]= 0;
  967. }
  968. sprintf(p, "\n");
  969. p++;
  970. }
  971. }else{
  972. flush_put_bits(&s->pb);
  973. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  974. avctx->stats_out[0] = '\0';
  975. }
  976. s->picture_number++;
  977. return size*4;
  978. }
  979. static int encode_end(AVCodecContext *avctx)
  980. {
  981. // HYuvContext *s = avctx->priv_data;
  982. av_freep(&avctx->extradata);
  983. av_freep(&avctx->stats_out);
  984. return 0;
  985. }
  986. static const AVOption huffyuv_options[] =
  987. {
  988. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  989. AVOPTION_END()
  990. };
  991. AVCodec huffyuv_decoder = {
  992. "huffyuv",
  993. CODEC_TYPE_VIDEO,
  994. CODEC_ID_HUFFYUV,
  995. sizeof(HYuvContext),
  996. decode_init,
  997. NULL,
  998. decode_end,
  999. decode_frame,
  1000. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1001. NULL
  1002. };
  1003. #ifdef CONFIG_ENCODERS
  1004. AVCodec huffyuv_encoder = {
  1005. "huffyuv",
  1006. CODEC_TYPE_VIDEO,
  1007. CODEC_ID_HUFFYUV,
  1008. sizeof(HYuvContext),
  1009. encode_init,
  1010. encode_frame,
  1011. encode_end,
  1012. .options = huffyuv_options,
  1013. };
  1014. #endif //CONFIG_ENCODERS