You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

353 lines
9.3KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file libavcodec/fft.c
  25. * FFT/IFFT transforms.
  26. */
  27. #include "dsputil.h"
  28. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  29. DECLARE_ALIGNED_16(FFTSample, ff_cos_16[8]);
  30. DECLARE_ALIGNED_16(FFTSample, ff_cos_32[16]);
  31. DECLARE_ALIGNED_16(FFTSample, ff_cos_64[32]);
  32. DECLARE_ALIGNED_16(FFTSample, ff_cos_128[64]);
  33. DECLARE_ALIGNED_16(FFTSample, ff_cos_256[128]);
  34. DECLARE_ALIGNED_16(FFTSample, ff_cos_512[256]);
  35. DECLARE_ALIGNED_16(FFTSample, ff_cos_1024[512]);
  36. DECLARE_ALIGNED_16(FFTSample, ff_cos_2048[1024]);
  37. DECLARE_ALIGNED_16(FFTSample, ff_cos_4096[2048]);
  38. DECLARE_ALIGNED_16(FFTSample, ff_cos_8192[4096]);
  39. DECLARE_ALIGNED_16(FFTSample, ff_cos_16384[8192]);
  40. DECLARE_ALIGNED_16(FFTSample, ff_cos_32768[16384]);
  41. DECLARE_ALIGNED_16(FFTSample, ff_cos_65536[32768]);
  42. FFTSample * const ff_cos_tabs[] = {
  43. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  44. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  45. };
  46. static int split_radix_permutation(int i, int n, int inverse)
  47. {
  48. int m;
  49. if(n <= 2) return i&1;
  50. m = n >> 1;
  51. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  52. m >>= 1;
  53. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  54. else return split_radix_permutation(i, m, inverse)*4 - 1;
  55. }
  56. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  57. {
  58. int i, j, m, n;
  59. float alpha, c1, s1, s2;
  60. int av_unused has_vectors;
  61. if (nbits < 2 || nbits > 16)
  62. goto fail;
  63. s->nbits = nbits;
  64. n = 1 << nbits;
  65. s->tmp_buf = NULL;
  66. s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  67. if (!s->exptab)
  68. goto fail;
  69. s->revtab = av_malloc(n * sizeof(uint16_t));
  70. if (!s->revtab)
  71. goto fail;
  72. s->inverse = inverse;
  73. s2 = inverse ? 1.0 : -1.0;
  74. s->fft_permute = ff_fft_permute_c;
  75. s->fft_calc = ff_fft_calc_c;
  76. s->imdct_calc = ff_imdct_calc_c;
  77. s->imdct_half = ff_imdct_half_c;
  78. s->mdct_calc = ff_mdct_calc_c;
  79. s->exptab1 = NULL;
  80. s->split_radix = 1;
  81. if (ARCH_ARM) ff_fft_init_arm(s);
  82. if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
  83. if (HAVE_MMX) ff_fft_init_mmx(s);
  84. if (s->split_radix) {
  85. for(j=4; j<=nbits; j++) {
  86. int m = 1<<j;
  87. double freq = 2*M_PI/m;
  88. FFTSample *tab = ff_cos_tabs[j-4];
  89. for(i=0; i<=m/4; i++)
  90. tab[i] = cos(i*freq);
  91. for(i=1; i<m/4; i++)
  92. tab[m/2-i] = tab[i];
  93. }
  94. for(i=0; i<n; i++)
  95. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
  96. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  97. } else {
  98. int np, nblocks, np2, l;
  99. FFTComplex *q;
  100. for(i=0; i<(n/2); i++) {
  101. alpha = 2 * M_PI * (float)i / (float)n;
  102. c1 = cos(alpha);
  103. s1 = sin(alpha) * s2;
  104. s->exptab[i].re = c1;
  105. s->exptab[i].im = s1;
  106. }
  107. np = 1 << nbits;
  108. nblocks = np >> 3;
  109. np2 = np >> 1;
  110. s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
  111. if (!s->exptab1)
  112. goto fail;
  113. q = s->exptab1;
  114. do {
  115. for(l = 0; l < np2; l += 2 * nblocks) {
  116. *q++ = s->exptab[l];
  117. *q++ = s->exptab[l + nblocks];
  118. q->re = -s->exptab[l].im;
  119. q->im = s->exptab[l].re;
  120. q++;
  121. q->re = -s->exptab[l + nblocks].im;
  122. q->im = s->exptab[l + nblocks].re;
  123. q++;
  124. }
  125. nblocks = nblocks >> 1;
  126. } while (nblocks != 0);
  127. av_freep(&s->exptab);
  128. /* compute bit reverse table */
  129. for(i=0;i<n;i++) {
  130. m=0;
  131. for(j=0;j<nbits;j++) {
  132. m |= ((i >> j) & 1) << (nbits-j-1);
  133. }
  134. s->revtab[i]=m;
  135. }
  136. }
  137. return 0;
  138. fail:
  139. av_freep(&s->revtab);
  140. av_freep(&s->exptab);
  141. av_freep(&s->exptab1);
  142. av_freep(&s->tmp_buf);
  143. return -1;
  144. }
  145. void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  146. {
  147. int j, k, np;
  148. FFTComplex tmp;
  149. const uint16_t *revtab = s->revtab;
  150. np = 1 << s->nbits;
  151. if (s->tmp_buf) {
  152. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  153. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  154. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  155. return;
  156. }
  157. /* reverse */
  158. for(j=0;j<np;j++) {
  159. k = revtab[j];
  160. if (k < j) {
  161. tmp = z[k];
  162. z[k] = z[j];
  163. z[j] = tmp;
  164. }
  165. }
  166. }
  167. av_cold void ff_fft_end(FFTContext *s)
  168. {
  169. av_freep(&s->revtab);
  170. av_freep(&s->exptab);
  171. av_freep(&s->exptab1);
  172. av_freep(&s->tmp_buf);
  173. }
  174. #define sqrthalf (float)M_SQRT1_2
  175. #define BF(x,y,a,b) {\
  176. x = a - b;\
  177. y = a + b;\
  178. }
  179. #define BUTTERFLIES(a0,a1,a2,a3) {\
  180. BF(t3, t5, t5, t1);\
  181. BF(a2.re, a0.re, a0.re, t5);\
  182. BF(a3.im, a1.im, a1.im, t3);\
  183. BF(t4, t6, t2, t6);\
  184. BF(a3.re, a1.re, a1.re, t4);\
  185. BF(a2.im, a0.im, a0.im, t6);\
  186. }
  187. // force loading all the inputs before storing any.
  188. // this is slightly slower for small data, but avoids store->load aliasing
  189. // for addresses separated by large powers of 2.
  190. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  191. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  192. BF(t3, t5, t5, t1);\
  193. BF(a2.re, a0.re, r0, t5);\
  194. BF(a3.im, a1.im, i1, t3);\
  195. BF(t4, t6, t2, t6);\
  196. BF(a3.re, a1.re, r1, t4);\
  197. BF(a2.im, a0.im, i0, t6);\
  198. }
  199. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  200. t1 = a2.re * wre + a2.im * wim;\
  201. t2 = a2.im * wre - a2.re * wim;\
  202. t5 = a3.re * wre - a3.im * wim;\
  203. t6 = a3.im * wre + a3.re * wim;\
  204. BUTTERFLIES(a0,a1,a2,a3)\
  205. }
  206. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  207. t1 = a2.re;\
  208. t2 = a2.im;\
  209. t5 = a3.re;\
  210. t6 = a3.im;\
  211. BUTTERFLIES(a0,a1,a2,a3)\
  212. }
  213. /* z[0...8n-1], w[1...2n-1] */
  214. #define PASS(name)\
  215. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  216. {\
  217. FFTSample t1, t2, t3, t4, t5, t6;\
  218. int o1 = 2*n;\
  219. int o2 = 4*n;\
  220. int o3 = 6*n;\
  221. const FFTSample *wim = wre+o1;\
  222. n--;\
  223. \
  224. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  225. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  226. do {\
  227. z += 2;\
  228. wre += 2;\
  229. wim -= 2;\
  230. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  231. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  232. } while(--n);\
  233. }
  234. PASS(pass)
  235. #undef BUTTERFLIES
  236. #define BUTTERFLIES BUTTERFLIES_BIG
  237. PASS(pass_big)
  238. #define DECL_FFT(n,n2,n4)\
  239. static void fft##n(FFTComplex *z)\
  240. {\
  241. fft##n2(z);\
  242. fft##n4(z+n4*2);\
  243. fft##n4(z+n4*3);\
  244. pass(z,ff_cos_##n,n4/2);\
  245. }
  246. static void fft4(FFTComplex *z)
  247. {
  248. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  249. BF(t3, t1, z[0].re, z[1].re);
  250. BF(t8, t6, z[3].re, z[2].re);
  251. BF(z[2].re, z[0].re, t1, t6);
  252. BF(t4, t2, z[0].im, z[1].im);
  253. BF(t7, t5, z[2].im, z[3].im);
  254. BF(z[3].im, z[1].im, t4, t8);
  255. BF(z[3].re, z[1].re, t3, t7);
  256. BF(z[2].im, z[0].im, t2, t5);
  257. }
  258. static void fft8(FFTComplex *z)
  259. {
  260. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  261. fft4(z);
  262. BF(t1, z[5].re, z[4].re, -z[5].re);
  263. BF(t2, z[5].im, z[4].im, -z[5].im);
  264. BF(t3, z[7].re, z[6].re, -z[7].re);
  265. BF(t4, z[7].im, z[6].im, -z[7].im);
  266. BF(t8, t1, t3, t1);
  267. BF(t7, t2, t2, t4);
  268. BF(z[4].re, z[0].re, z[0].re, t1);
  269. BF(z[4].im, z[0].im, z[0].im, t2);
  270. BF(z[6].re, z[2].re, z[2].re, t7);
  271. BF(z[6].im, z[2].im, z[2].im, t8);
  272. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  273. }
  274. #if !CONFIG_SMALL
  275. static void fft16(FFTComplex *z)
  276. {
  277. FFTSample t1, t2, t3, t4, t5, t6;
  278. fft8(z);
  279. fft4(z+8);
  280. fft4(z+12);
  281. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  282. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  283. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  284. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  285. }
  286. #else
  287. DECL_FFT(16,8,4)
  288. #endif
  289. DECL_FFT(32,16,8)
  290. DECL_FFT(64,32,16)
  291. DECL_FFT(128,64,32)
  292. DECL_FFT(256,128,64)
  293. DECL_FFT(512,256,128)
  294. #if !CONFIG_SMALL
  295. #define pass pass_big
  296. #endif
  297. DECL_FFT(1024,512,256)
  298. DECL_FFT(2048,1024,512)
  299. DECL_FFT(4096,2048,1024)
  300. DECL_FFT(8192,4096,2048)
  301. DECL_FFT(16384,8192,4096)
  302. DECL_FFT(32768,16384,8192)
  303. DECL_FFT(65536,32768,16384)
  304. static void (*fft_dispatch[])(FFTComplex*) = {
  305. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  306. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  307. };
  308. void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  309. {
  310. fft_dispatch[s->nbits-2](z);
  311. }