You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

949 lines
37KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/dsputil.h
  24. * DSP utils.
  25. * note, many functions in here may use MMX which trashes the FPU state, it is
  26. * absolutely necessary to call emms_c() between dsp & float/double code
  27. */
  28. #ifndef AVCODEC_DSPUTIL_H
  29. #define AVCODEC_DSPUTIL_H
  30. #include "libavutil/intreadwrite.h"
  31. #include "avcodec.h"
  32. //#define DEBUG
  33. /* dct code */
  34. typedef short DCTELEM;
  35. typedef int DWTELEM;
  36. typedef short IDWTELEM;
  37. void fdct_ifast (DCTELEM *data);
  38. void fdct_ifast248 (DCTELEM *data);
  39. void ff_jpeg_fdct_islow (DCTELEM *data);
  40. void ff_fdct248_islow (DCTELEM *data);
  41. void j_rev_dct (DCTELEM *data);
  42. void j_rev_dct4 (DCTELEM *data);
  43. void j_rev_dct2 (DCTELEM *data);
  44. void j_rev_dct1 (DCTELEM *data);
  45. void ff_wmv2_idct_c(DCTELEM *data);
  46. void ff_fdct_mmx(DCTELEM *block);
  47. void ff_fdct_mmx2(DCTELEM *block);
  48. void ff_fdct_sse2(DCTELEM *block);
  49. void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
  50. void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
  51. void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  52. void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  53. void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
  54. void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
  55. void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  56. void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  57. void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  58. void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  59. void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
  60. const float *win, float add_bias, int len);
  61. void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
  62. void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
  63. /* encoding scans */
  64. extern const uint8_t ff_alternate_horizontal_scan[64];
  65. extern const uint8_t ff_alternate_vertical_scan[64];
  66. extern const uint8_t ff_zigzag_direct[64];
  67. extern const uint8_t ff_zigzag248_direct[64];
  68. /* pixel operations */
  69. #define MAX_NEG_CROP 1024
  70. /* temporary */
  71. extern uint32_t ff_squareTbl[512];
  72. extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
  73. /* VP3 DSP functions */
  74. void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
  75. void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  76. void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  77. void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  78. void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  79. /* VP6 DSP functions */
  80. void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
  81. const int16_t *h_weights, const int16_t *v_weights);
  82. /* 1/2^n downscaling functions from imgconvert.c */
  83. void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  84. void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  85. void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  86. void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  87. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  88. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  89. /* minimum alignment rules ;)
  90. If you notice errors in the align stuff, need more alignment for some ASM code
  91. for some CPU or need to use a function with less aligned data then send a mail
  92. to the ffmpeg-devel mailing list, ...
  93. !warning These alignments might not match reality, (missing attribute((align))
  94. stuff somewhere possible).
  95. I (Michael) did not check them, these are just the alignments which I think
  96. could be reached easily ...
  97. !future video codecs might need functions with less strict alignment
  98. */
  99. /*
  100. void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
  101. void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
  102. void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  103. void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  104. void clear_blocks_c(DCTELEM *blocks);
  105. */
  106. /* add and put pixel (decoding) */
  107. // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
  108. //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
  109. typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
  110. typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
  111. typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  112. typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
  113. typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
  114. typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
  115. #define DEF_OLD_QPEL(name)\
  116. void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  117. void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  118. void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  119. DEF_OLD_QPEL(qpel16_mc11_old_c)
  120. DEF_OLD_QPEL(qpel16_mc31_old_c)
  121. DEF_OLD_QPEL(qpel16_mc12_old_c)
  122. DEF_OLD_QPEL(qpel16_mc32_old_c)
  123. DEF_OLD_QPEL(qpel16_mc13_old_c)
  124. DEF_OLD_QPEL(qpel16_mc33_old_c)
  125. DEF_OLD_QPEL(qpel8_mc11_old_c)
  126. DEF_OLD_QPEL(qpel8_mc31_old_c)
  127. DEF_OLD_QPEL(qpel8_mc12_old_c)
  128. DEF_OLD_QPEL(qpel8_mc32_old_c)
  129. DEF_OLD_QPEL(qpel8_mc13_old_c)
  130. DEF_OLD_QPEL(qpel8_mc33_old_c)
  131. #define CALL_2X_PIXELS(a, b, n)\
  132. static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
  133. b(block , pixels , line_size, h);\
  134. b(block+n, pixels+n, line_size, h);\
  135. }
  136. /* motion estimation */
  137. // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
  138. // although currently h<4 is not used as functions with width <8 are neither used nor implemented
  139. typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
  140. // for snow slices
  141. typedef struct slice_buffer_s slice_buffer;
  142. /**
  143. * Scantable.
  144. */
  145. typedef struct ScanTable{
  146. const uint8_t *scantable;
  147. uint8_t permutated[64];
  148. uint8_t raster_end[64];
  149. #if ARCH_PPC
  150. /** Used by dct_quantize_altivec to find last-non-zero */
  151. DECLARE_ALIGNED(16, uint8_t, inverse[64]);
  152. #endif
  153. } ScanTable;
  154. void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
  155. void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
  156. int block_w, int block_h,
  157. int src_x, int src_y, int w, int h);
  158. /**
  159. * DSPContext.
  160. */
  161. typedef struct DSPContext {
  162. /* pixel ops : interface with DCT */
  163. void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
  164. void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
  165. void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  166. void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  167. void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  168. void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
  169. void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
  170. int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
  171. /**
  172. * translational global motion compensation.
  173. */
  174. void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
  175. /**
  176. * global motion compensation.
  177. */
  178. void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
  179. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  180. void (*clear_block)(DCTELEM *block/*align 16*/);
  181. void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
  182. int (*pix_sum)(uint8_t * pix, int line_size);
  183. int (*pix_norm1)(uint8_t * pix, int line_size);
  184. // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
  185. me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
  186. me_cmp_func sse[6];
  187. me_cmp_func hadamard8_diff[6];
  188. me_cmp_func dct_sad[6];
  189. me_cmp_func quant_psnr[6];
  190. me_cmp_func bit[6];
  191. me_cmp_func rd[6];
  192. me_cmp_func vsad[6];
  193. me_cmp_func vsse[6];
  194. me_cmp_func nsse[6];
  195. me_cmp_func w53[6];
  196. me_cmp_func w97[6];
  197. me_cmp_func dct_max[6];
  198. me_cmp_func dct264_sad[6];
  199. me_cmp_func me_pre_cmp[6];
  200. me_cmp_func me_cmp[6];
  201. me_cmp_func me_sub_cmp[6];
  202. me_cmp_func mb_cmp[6];
  203. me_cmp_func ildct_cmp[6]; //only width 16 used
  204. me_cmp_func frame_skip_cmp[6]; //only width 8 used
  205. int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
  206. int size);
  207. /**
  208. * Halfpel motion compensation with rounding (a+b+1)>>1.
  209. * this is an array[4][4] of motion compensation functions for 4
  210. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  211. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  212. * @param block destination where the result is stored
  213. * @param pixels source
  214. * @param line_size number of bytes in a horizontal line of block
  215. * @param h height
  216. */
  217. op_pixels_func put_pixels_tab[4][4];
  218. /**
  219. * Halfpel motion compensation with rounding (a+b+1)>>1.
  220. * This is an array[4][4] of motion compensation functions for 4
  221. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  222. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  223. * @param block destination into which the result is averaged (a+b+1)>>1
  224. * @param pixels source
  225. * @param line_size number of bytes in a horizontal line of block
  226. * @param h height
  227. */
  228. op_pixels_func avg_pixels_tab[4][4];
  229. /**
  230. * Halfpel motion compensation with no rounding (a+b)>>1.
  231. * this is an array[2][4] of motion compensation functions for 2
  232. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  233. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  234. * @param block destination where the result is stored
  235. * @param pixels source
  236. * @param line_size number of bytes in a horizontal line of block
  237. * @param h height
  238. */
  239. op_pixels_func put_no_rnd_pixels_tab[4][4];
  240. /**
  241. * Halfpel motion compensation with no rounding (a+b)>>1.
  242. * this is an array[2][4] of motion compensation functions for 2
  243. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  244. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  245. * @param block destination into which the result is averaged (a+b)>>1
  246. * @param pixels source
  247. * @param line_size number of bytes in a horizontal line of block
  248. * @param h height
  249. */
  250. op_pixels_func avg_no_rnd_pixels_tab[4][4];
  251. void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
  252. /**
  253. * Thirdpel motion compensation with rounding (a+b+1)>>1.
  254. * this is an array[12] of motion compensation functions for the 9 thirdpe
  255. * positions<br>
  256. * *pixels_tab[ xthirdpel + 4*ythirdpel ]
  257. * @param block destination where the result is stored
  258. * @param pixels source
  259. * @param line_size number of bytes in a horizontal line of block
  260. * @param h height
  261. */
  262. tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  263. tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  264. qpel_mc_func put_qpel_pixels_tab[2][16];
  265. qpel_mc_func avg_qpel_pixels_tab[2][16];
  266. qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
  267. qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
  268. qpel_mc_func put_mspel_pixels_tab[8];
  269. /**
  270. * h264 Chroma MC
  271. */
  272. h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
  273. h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
  274. /* This is really one func used in VC-1 decoding */
  275. h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
  276. h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
  277. qpel_mc_func put_h264_qpel_pixels_tab[4][16];
  278. qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
  279. qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
  280. qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
  281. h264_weight_func weight_h264_pixels_tab[10];
  282. h264_biweight_func biweight_h264_pixels_tab[10];
  283. /* AVS specific */
  284. qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
  285. qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
  286. void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  287. void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  288. void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  289. void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  290. void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
  291. me_cmp_func pix_abs[2][4];
  292. /* huffyuv specific */
  293. void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
  294. void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
  295. void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
  296. /**
  297. * subtract huffyuv's variant of median prediction
  298. * note, this might read from src1[-1], src2[-1]
  299. */
  300. void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
  301. void (*add_hfyu_median_prediction)(uint8_t *dst, uint8_t *top, uint8_t *diff, int w, int *left, int *left_top);
  302. /* this might write to dst[w] */
  303. void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
  304. void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
  305. void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
  306. void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
  307. /* v/h_loop_filter_luma_intra: align 16 */
  308. void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  309. void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  310. void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
  311. void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
  312. void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  313. void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  314. // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
  315. void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
  316. int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
  317. void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
  318. void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
  319. void (*h261_loop_filter)(uint8_t *src, int stride);
  320. void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
  321. void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
  322. void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  323. void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  324. void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
  325. const int16_t *h_weights,const int16_t *v_weights);
  326. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  327. void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
  328. void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
  329. /* no alignment needed */
  330. void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
  331. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  332. void (*vector_fmul)(float *dst, const float *src, int len);
  333. void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
  334. /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
  335. void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
  336. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  337. void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
  338. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  339. void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
  340. void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
  341. /**
  342. * Multiply a vector of floats by a scalar float. Source and
  343. * destination vectors must overlap exactly or not at all.
  344. * @param dst result vector, 16-byte aligned
  345. * @param src input vector, 16-byte aligned
  346. * @param mul scalar value
  347. * @param len length of vector, multiple of 4
  348. */
  349. void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
  350. int len);
  351. /**
  352. * Multiply a vector of floats by concatenated short vectors of
  353. * floats and by a scalar float. Source and destination vectors
  354. * must overlap exactly or not at all.
  355. * [0]: short vectors of length 2, 8-byte aligned
  356. * [1]: short vectors of length 4, 16-byte aligned
  357. * @param dst output vector, 16-byte aligned
  358. * @param src input vector, 16-byte aligned
  359. * @param sv array of pointers to short vectors
  360. * @param mul scalar value
  361. * @param len number of elements in src and dst, multiple of 4
  362. */
  363. void (*vector_fmul_sv_scalar[2])(float *dst, const float *src,
  364. const float **sv, float mul, int len);
  365. /**
  366. * Multiply short vectors of floats by a scalar float, store
  367. * concatenated result.
  368. * [0]: short vectors of length 2, 8-byte aligned
  369. * [1]: short vectors of length 4, 16-byte aligned
  370. * @param dst output vector, 16-byte aligned
  371. * @param sv array of pointers to short vectors
  372. * @param mul scalar value
  373. * @param len number of output elements, multiple of 4
  374. */
  375. void (*sv_fmul_scalar[2])(float *dst, const float **sv,
  376. float mul, int len);
  377. /**
  378. * Calculate the scalar product of two vectors of floats.
  379. * @param v1 first vector, 16-byte aligned
  380. * @param v2 second vector, 16-byte aligned
  381. * @param len length of vectors, multiple of 4
  382. */
  383. float (*scalarproduct_float)(const float *v1, const float *v2, int len);
  384. /**
  385. * Calculate the sum and difference of two vectors of floats.
  386. * @param v1 first input vector, sum output, 16-byte aligned
  387. * @param v2 second input vector, difference output, 16-byte aligned
  388. * @param len length of vectors, multiple of 4
  389. */
  390. void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
  391. /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
  392. * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
  393. void (*float_to_int16)(int16_t *dst, const float *src, long len);
  394. void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
  395. /* (I)DCT */
  396. void (*fdct)(DCTELEM *block/* align 16*/);
  397. void (*fdct248)(DCTELEM *block/* align 16*/);
  398. /* IDCT really*/
  399. void (*idct)(DCTELEM *block/* align 16*/);
  400. /**
  401. * block -> idct -> clip to unsigned 8 bit -> dest.
  402. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
  403. * @param line_size size in bytes of a horizontal line of dest
  404. */
  405. void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  406. /**
  407. * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
  408. * @param line_size size in bytes of a horizontal line of dest
  409. */
  410. void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  411. /**
  412. * idct input permutation.
  413. * several optimized IDCTs need a permutated input (relative to the normal order of the reference
  414. * IDCT)
  415. * this permutation must be performed before the idct_put/add, note, normally this can be merged
  416. * with the zigzag/alternate scan<br>
  417. * an example to avoid confusion:
  418. * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
  419. * - (x -> referece dct -> reference idct -> x)
  420. * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
  421. * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
  422. */
  423. uint8_t idct_permutation[64];
  424. int idct_permutation_type;
  425. #define FF_NO_IDCT_PERM 1
  426. #define FF_LIBMPEG2_IDCT_PERM 2
  427. #define FF_SIMPLE_IDCT_PERM 3
  428. #define FF_TRANSPOSE_IDCT_PERM 4
  429. #define FF_PARTTRANS_IDCT_PERM 5
  430. #define FF_SSE2_IDCT_PERM 6
  431. int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
  432. void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
  433. #define BASIS_SHIFT 16
  434. #define RECON_SHIFT 6
  435. void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
  436. #define EDGE_WIDTH 16
  437. /* h264 functions */
  438. /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
  439. NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
  440. The reason for above, is that no 2 out of one list may use a different permutation.
  441. */
  442. void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  443. void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  444. void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  445. void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  446. void (*h264_dct)(DCTELEM block[4][4]);
  447. void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  448. void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  449. void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  450. void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  451. /* snow wavelet */
  452. void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
  453. void (*horizontal_compose97i)(IDWTELEM *b, int width);
  454. void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
  455. void (*prefetch)(void *mem, int stride, int h);
  456. void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  457. /* mlp/truehd functions */
  458. void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
  459. int firorder, int iirorder,
  460. unsigned int filter_shift, int32_t mask, int blocksize,
  461. int32_t *sample_buffer);
  462. /* vc1 functions */
  463. void (*vc1_inv_trans_8x8)(DCTELEM *b);
  464. void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
  465. void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
  466. void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
  467. void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  468. void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  469. void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  470. void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  471. void (*vc1_v_overlap)(uint8_t* src, int stride);
  472. void (*vc1_h_overlap)(uint8_t* src, int stride);
  473. void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
  474. void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
  475. void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
  476. void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
  477. void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
  478. void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
  479. /* put 8x8 block with bicubic interpolation and quarterpel precision
  480. * last argument is actually round value instead of height
  481. */
  482. op_pixels_func put_vc1_mspel_pixels_tab[16];
  483. op_pixels_func avg_vc1_mspel_pixels_tab[16];
  484. /* intrax8 functions */
  485. void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
  486. void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
  487. int * range, int * sum, int edges);
  488. /* ape functions */
  489. /**
  490. * Add contents of the second vector to the first one.
  491. * @param len length of vectors, should be multiple of 16
  492. */
  493. void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  494. /**
  495. * Add contents of the second vector to the first one.
  496. * @param len length of vectors, should be multiple of 16
  497. */
  498. void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  499. /**
  500. * Calculate scalar product of two vectors.
  501. * @param len length of vectors, should be multiple of 16
  502. * @param shift number of bits to discard from product
  503. */
  504. int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
  505. /* rv30 functions */
  506. qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
  507. qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
  508. /* rv40 functions */
  509. qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
  510. qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
  511. h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
  512. h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
  513. } DSPContext;
  514. void dsputil_static_init(void);
  515. void dsputil_init(DSPContext* p, AVCodecContext *avctx);
  516. int ff_check_alignment(void);
  517. /**
  518. * permute block according to permuatation.
  519. * @param last last non zero element in scantable order
  520. */
  521. void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
  522. void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
  523. #define BYTE_VEC32(c) ((c)*0x01010101UL)
  524. static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
  525. {
  526. return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  527. }
  528. static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
  529. {
  530. return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  531. }
  532. static inline int get_penalty_factor(int lambda, int lambda2, int type){
  533. switch(type&0xFF){
  534. default:
  535. case FF_CMP_SAD:
  536. return lambda>>FF_LAMBDA_SHIFT;
  537. case FF_CMP_DCT:
  538. return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
  539. case FF_CMP_W53:
  540. return (4*lambda)>>(FF_LAMBDA_SHIFT);
  541. case FF_CMP_W97:
  542. return (2*lambda)>>(FF_LAMBDA_SHIFT);
  543. case FF_CMP_SATD:
  544. case FF_CMP_DCT264:
  545. return (2*lambda)>>FF_LAMBDA_SHIFT;
  546. case FF_CMP_RD:
  547. case FF_CMP_PSNR:
  548. case FF_CMP_SSE:
  549. case FF_CMP_NSSE:
  550. return lambda2>>FF_LAMBDA_SHIFT;
  551. case FF_CMP_BIT:
  552. return 1;
  553. }
  554. }
  555. /**
  556. * Empty mmx state.
  557. * this must be called between any dsp function and float/double code.
  558. * for example sin(); dsp->idct_put(); emms_c(); cos()
  559. */
  560. #define emms_c()
  561. /* should be defined by architectures supporting
  562. one or more MultiMedia extension */
  563. int mm_support(void);
  564. extern int mm_flags;
  565. void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
  566. void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
  567. void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
  568. void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
  569. void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
  570. void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
  571. void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
  572. void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
  573. void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
  574. #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
  575. #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
  576. #if HAVE_MMX
  577. #undef emms_c
  578. static inline void emms(void)
  579. {
  580. __asm__ volatile ("emms;":::"memory");
  581. }
  582. #define emms_c() \
  583. {\
  584. if (mm_flags & FF_MM_MMX)\
  585. emms();\
  586. }
  587. #elif ARCH_ARM
  588. #if HAVE_NEON
  589. # define STRIDE_ALIGN 16
  590. #endif
  591. #elif ARCH_PPC
  592. #define STRIDE_ALIGN 16
  593. #elif HAVE_MMI
  594. #define STRIDE_ALIGN 16
  595. #else
  596. #define mm_flags 0
  597. #define mm_support() 0
  598. #endif
  599. #ifndef STRIDE_ALIGN
  600. # define STRIDE_ALIGN 8
  601. #endif
  602. /* PSNR */
  603. void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
  604. int orig_linesize[3], int coded_linesize,
  605. AVCodecContext *avctx);
  606. /* FFT computation */
  607. /* NOTE: soon integer code will be added, so you must use the
  608. FFTSample type */
  609. typedef float FFTSample;
  610. typedef struct FFTComplex {
  611. FFTSample re, im;
  612. } FFTComplex;
  613. typedef struct FFTContext {
  614. int nbits;
  615. int inverse;
  616. uint16_t *revtab;
  617. FFTComplex *exptab;
  618. FFTComplex *exptab1; /* only used by SSE code */
  619. FFTComplex *tmp_buf;
  620. int mdct_size; /* size of MDCT (i.e. number of input data * 2) */
  621. int mdct_bits; /* n = 2^nbits */
  622. /* pre/post rotation tables */
  623. FFTSample *tcos;
  624. FFTSample *tsin;
  625. void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
  626. void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
  627. void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  628. void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  629. void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  630. int split_radix;
  631. int permutation;
  632. #define FF_MDCT_PERM_NONE 0
  633. #define FF_MDCT_PERM_INTERLEAVE 1
  634. } FFTContext;
  635. extern FFTSample* const ff_cos_tabs[13];
  636. /**
  637. * Sets up a complex FFT.
  638. * @param nbits log2 of the length of the input array
  639. * @param inverse if 0 perform the forward transform, if 1 perform the inverse
  640. */
  641. int ff_fft_init(FFTContext *s, int nbits, int inverse);
  642. void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
  643. void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
  644. void ff_fft_init_altivec(FFTContext *s);
  645. void ff_fft_init_mmx(FFTContext *s);
  646. void ff_fft_init_arm(FFTContext *s);
  647. /**
  648. * Do the permutation needed BEFORE calling ff_fft_calc().
  649. */
  650. static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
  651. {
  652. s->fft_permute(s, z);
  653. }
  654. /**
  655. * Do a complex FFT with the parameters defined in ff_fft_init(). The
  656. * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
  657. */
  658. static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
  659. {
  660. s->fft_calc(s, z);
  661. }
  662. void ff_fft_end(FFTContext *s);
  663. /* MDCT computation */
  664. static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
  665. {
  666. s->imdct_calc(s, output, input);
  667. }
  668. static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input)
  669. {
  670. s->imdct_half(s, output, input);
  671. }
  672. static inline void ff_mdct_calc(FFTContext *s, FFTSample *output,
  673. const FFTSample *input)
  674. {
  675. s->mdct_calc(s, output, input);
  676. }
  677. /**
  678. * Generate a Kaiser-Bessel Derived Window.
  679. * @param window pointer to half window
  680. * @param alpha determines window shape
  681. * @param n size of half window
  682. */
  683. void ff_kbd_window_init(float *window, float alpha, int n);
  684. /**
  685. * Generate a sine window.
  686. * @param window pointer to half window
  687. * @param n size of half window
  688. */
  689. void ff_sine_window_init(float *window, int n);
  690. extern float ff_sine_32 [ 32];
  691. extern float ff_sine_64 [ 64];
  692. extern float ff_sine_128 [ 128];
  693. extern float ff_sine_256 [ 256];
  694. extern float ff_sine_512 [ 512];
  695. extern float ff_sine_1024[1024];
  696. extern float ff_sine_2048[2048];
  697. extern float ff_sine_4096[4096];
  698. extern float * const ff_sine_windows[13];
  699. int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale);
  700. void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  701. void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  702. void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  703. void ff_mdct_end(FFTContext *s);
  704. /* Real Discrete Fourier Transform */
  705. enum RDFTransformType {
  706. RDFT,
  707. IRDFT,
  708. RIDFT,
  709. IRIDFT,
  710. };
  711. typedef struct {
  712. int nbits;
  713. int inverse;
  714. int sign_convention;
  715. /* pre/post rotation tables */
  716. FFTSample *tcos;
  717. FFTSample *tsin;
  718. FFTContext fft;
  719. } RDFTContext;
  720. /**
  721. * Sets up a real FFT.
  722. * @param nbits log2 of the length of the input array
  723. * @param trans the type of transform
  724. */
  725. int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
  726. void ff_rdft_calc(RDFTContext *s, FFTSample *data);
  727. void ff_rdft_end(RDFTContext *s);
  728. #define WRAPPER8_16(name8, name16)\
  729. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  730. return name8(s, dst , src , stride, h)\
  731. +name8(s, dst+8 , src+8 , stride, h);\
  732. }
  733. #define WRAPPER8_16_SQ(name8, name16)\
  734. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  735. int score=0;\
  736. score +=name8(s, dst , src , stride, 8);\
  737. score +=name8(s, dst+8 , src+8 , stride, 8);\
  738. if(h==16){\
  739. dst += 8*stride;\
  740. src += 8*stride;\
  741. score +=name8(s, dst , src , stride, 8);\
  742. score +=name8(s, dst+8 , src+8 , stride, 8);\
  743. }\
  744. return score;\
  745. }
  746. static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  747. {
  748. int i;
  749. for(i=0; i<h; i++)
  750. {
  751. AV_WN16(dst , AV_RN16(src ));
  752. dst+=dstStride;
  753. src+=srcStride;
  754. }
  755. }
  756. static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  757. {
  758. int i;
  759. for(i=0; i<h; i++)
  760. {
  761. AV_WN32(dst , AV_RN32(src ));
  762. dst+=dstStride;
  763. src+=srcStride;
  764. }
  765. }
  766. static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  767. {
  768. int i;
  769. for(i=0; i<h; i++)
  770. {
  771. AV_WN32(dst , AV_RN32(src ));
  772. AV_WN32(dst+4 , AV_RN32(src+4 ));
  773. dst+=dstStride;
  774. src+=srcStride;
  775. }
  776. }
  777. static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  778. {
  779. int i;
  780. for(i=0; i<h; i++)
  781. {
  782. AV_WN32(dst , AV_RN32(src ));
  783. AV_WN32(dst+4 , AV_RN32(src+4 ));
  784. dst[8]= src[8];
  785. dst+=dstStride;
  786. src+=srcStride;
  787. }
  788. }
  789. static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  790. {
  791. int i;
  792. for(i=0; i<h; i++)
  793. {
  794. AV_WN32(dst , AV_RN32(src ));
  795. AV_WN32(dst+4 , AV_RN32(src+4 ));
  796. AV_WN32(dst+8 , AV_RN32(src+8 ));
  797. AV_WN32(dst+12, AV_RN32(src+12));
  798. dst+=dstStride;
  799. src+=srcStride;
  800. }
  801. }
  802. static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  803. {
  804. int i;
  805. for(i=0; i<h; i++)
  806. {
  807. AV_WN32(dst , AV_RN32(src ));
  808. AV_WN32(dst+4 , AV_RN32(src+4 ));
  809. AV_WN32(dst+8 , AV_RN32(src+8 ));
  810. AV_WN32(dst+12, AV_RN32(src+12));
  811. dst[16]= src[16];
  812. dst+=dstStride;
  813. src+=srcStride;
  814. }
  815. }
  816. #endif /* AVCODEC_DSPUTIL_H */