You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

383 lines
13KB

  1. /*
  2. * Nellymoser encoder
  3. * This code is developed as part of Google Summer of Code 2008 Program.
  4. *
  5. * Copyright (c) 2008 Bartlomiej Wolowiec
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file nellymoserenc.c
  25. * Nellymoser encoder
  26. * by Bartlomiej Wolowiec
  27. *
  28. * Generic codec information: libavcodec/nellymoserdec.c
  29. *
  30. * Some information also from: http://samples.mplayerhq.hu/A-codecs/Nelly_Moser/ASAO/ASAO.zip
  31. * (Copyright Joseph Artsimovich and UAB "DKD")
  32. *
  33. * for more information about nellymoser format, visit:
  34. * http://wiki.multimedia.cx/index.php?title=Nellymoser
  35. */
  36. #include "nellymoser.h"
  37. #include "avcodec.h"
  38. #include "dsputil.h"
  39. #define BITSTREAM_WRITER_LE
  40. #include "bitstream.h"
  41. #define POW_TABLE_SIZE (1<<11)
  42. #define POW_TABLE_OFFSET 3
  43. typedef struct NellyMoserEncodeContext {
  44. AVCodecContext *avctx;
  45. int last_frame;
  46. int bufsel;
  47. int have_saved;
  48. DSPContext dsp;
  49. MDCTContext mdct_ctx;
  50. DECLARE_ALIGNED_16(float, mdct_out[NELLY_SAMPLES]);
  51. DECLARE_ALIGNED_16(float, buf[2][3 * NELLY_BUF_LEN]); ///< sample buffer
  52. } NellyMoserEncodeContext;
  53. static float pow_table[POW_TABLE_SIZE]; ///< -pow(2, -i / 2048.0 - 3.0);
  54. static const uint8_t sf_lut[96] = {
  55. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4,
  56. 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 11, 11, 12, 13, 13, 14,
  57. 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 25, 26,
  58. 27, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40,
  59. 41, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 52, 53,
  60. 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 60, 60, 61, 61, 61, 62,
  61. };
  62. static const uint8_t sf_delta_lut[78] = {
  63. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4,
  64. 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12,
  65. 13, 13, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23,
  66. 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 28,
  67. 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 30,
  68. };
  69. static const uint8_t quant_lut[230] = {
  70. 0,
  71. 0, 1, 2,
  72. 0, 1, 2, 3, 4, 5, 6,
  73. 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11,
  74. 12, 13, 13, 13, 14,
  75. 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8,
  76. 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
  77. 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 29,
  78. 30,
  79. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3,
  80. 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9,
  81. 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
  82. 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20,
  83. 21, 21, 22, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32,
  84. 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 44, 45, 45,
  85. 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52,
  86. 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 57,
  87. 58, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61, 61,
  88. 61, 61, 61, 61, 62,
  89. };
  90. static const float quant_lut_mul[7] = { 0.0, 0.0, 2.0, 2.0, 5.0, 12.0, 36.6 };
  91. static const float quant_lut_add[7] = { 0.0, 0.0, 2.0, 7.0, 21.0, 56.0, 157.0 };
  92. static const uint8_t quant_lut_offset[8] = { 0, 0, 1, 4, 11, 32, 81, 230 };
  93. void apply_mdct(NellyMoserEncodeContext *s)
  94. {
  95. DECLARE_ALIGNED_16(float, in_buff[NELLY_SAMPLES]);
  96. memcpy(in_buff, s->buf[s->bufsel], NELLY_BUF_LEN * sizeof(float));
  97. s->dsp.vector_fmul(in_buff, ff_sine_128, NELLY_BUF_LEN);
  98. s->dsp.vector_fmul_reverse(in_buff + NELLY_BUF_LEN, s->buf[s->bufsel] + NELLY_BUF_LEN, ff_sine_128,
  99. NELLY_BUF_LEN);
  100. ff_mdct_calc(&s->mdct_ctx, s->mdct_out, in_buff);
  101. s->dsp.vector_fmul(s->buf[s->bufsel] + NELLY_BUF_LEN, ff_sine_128, NELLY_BUF_LEN);
  102. s->dsp.vector_fmul_reverse(s->buf[s->bufsel] + 2 * NELLY_BUF_LEN, s->buf[1 - s->bufsel], ff_sine_128,
  103. NELLY_BUF_LEN);
  104. ff_mdct_calc(&s->mdct_ctx, s->mdct_out + NELLY_BUF_LEN, s->buf[s->bufsel] + NELLY_BUF_LEN);
  105. }
  106. static av_cold int encode_init(AVCodecContext *avctx)
  107. {
  108. NellyMoserEncodeContext *s = avctx->priv_data;
  109. int i;
  110. if (avctx->channels != 1) {
  111. av_log(avctx, AV_LOG_ERROR, "Nellymoser supports only 1 channel\n");
  112. return -1;
  113. }
  114. if (avctx->sample_rate != 8000 && avctx->sample_rate != 11025 &&
  115. avctx->sample_rate != 22050 && avctx->sample_rate != 44100 &&
  116. avctx->strict_std_compliance >= FF_COMPLIANCE_NORMAL) {
  117. av_log(avctx, AV_LOG_ERROR, "Nellymoser works only with 8000, 11025, 22050 and 44100 sample rate\n");
  118. return -1;
  119. }
  120. avctx->frame_size = NELLY_SAMPLES;
  121. s->avctx = avctx;
  122. ff_mdct_init(&s->mdct_ctx, 8, 0);
  123. dsputil_init(&s->dsp, avctx);
  124. /* Generate overlap window */
  125. ff_sine_window_init(ff_sine_128, 128);
  126. for (i = 0; i < POW_TABLE_SIZE; i++)
  127. pow_table[i] = -pow(2, -i / 2048.0 - 3.0 + POW_TABLE_OFFSET);
  128. return 0;
  129. }
  130. static av_cold int encode_end(AVCodecContext *avctx)
  131. {
  132. NellyMoserEncodeContext *s = avctx->priv_data;
  133. ff_mdct_end(&s->mdct_ctx);
  134. return 0;
  135. }
  136. #define find_best(val, table, LUT, LUT_add, LUT_size) \
  137. best_idx = \
  138. LUT[av_clip ((lrintf(val) >> 8) + LUT_add, 0, LUT_size - 1)]; \
  139. if (fabs(val - table[best_idx]) > fabs(val - table[best_idx + 1])) \
  140. best_idx++;
  141. static void get_exponent_greedy(NellyMoserEncodeContext *s, float *cand, int *idx_table)
  142. {
  143. int band, best_idx, power_idx = 0;
  144. float power_candidate;
  145. //base exponent
  146. find_best(cand[0], ff_nelly_init_table, sf_lut, -20, 96);
  147. idx_table[0] = best_idx;
  148. power_idx = ff_nelly_init_table[best_idx];
  149. for (band = 1; band < NELLY_BANDS; band++) {
  150. power_candidate = cand[band] - power_idx;
  151. find_best(power_candidate, ff_nelly_delta_table, sf_delta_lut, 37, 78);
  152. idx_table[band] = best_idx;
  153. power_idx += ff_nelly_delta_table[best_idx];
  154. }
  155. }
  156. #define OPT_SIZE ((1<<15) + 3000)
  157. static inline float distance(float x, float y, int band)
  158. {
  159. //return pow(fabs(x-y), 2.0);
  160. float tmp = x - y;
  161. return tmp * tmp;
  162. }
  163. static void get_exponent_dynamic(NellyMoserEncodeContext *s, float *cand, int *idx_table)
  164. {
  165. int i, j, band, best_idx;
  166. float power_candidate, best_val;
  167. float opt[NELLY_BANDS][OPT_SIZE];
  168. int path[NELLY_BANDS][OPT_SIZE];
  169. for (i = 0; i < NELLY_BANDS * OPT_SIZE; i++) {
  170. opt[0][i] = INFINITY;
  171. }
  172. for (i = 0; i < 64; i++) {
  173. opt[0][ff_nelly_init_table[i]] = distance(cand[0], ff_nelly_init_table[i], 0);
  174. path[0][ff_nelly_init_table[i]] = i;
  175. }
  176. for (band = 1; band < NELLY_BANDS; band++) {
  177. int q, c = 0;
  178. float tmp;
  179. int idx_min, idx_max, idx;
  180. power_candidate = cand[band];
  181. for (q = 1000; !c && q < OPT_SIZE; q <<= 2) {
  182. idx_min = FFMAX(0, cand[band] - q);
  183. idx_max = FFMIN(OPT_SIZE, cand[band - 1] + q);
  184. for (i = FFMAX(0, cand[band - 1] - q); i < FFMIN(OPT_SIZE, cand[band - 1] + q); i++) {
  185. if ( isinf(opt[band - 1][i]) )
  186. continue;
  187. for (j = 0; j < 32; j++) {
  188. idx = i + ff_nelly_delta_table[j];
  189. if (idx > idx_max)
  190. break;
  191. if (idx >= idx_min) {
  192. tmp = opt[band - 1][i] + distance(idx, power_candidate, band);
  193. if (opt[band][idx] > tmp) {
  194. opt[band][idx] = tmp;
  195. path[band][idx] = j;
  196. c = 1;
  197. }
  198. }
  199. }
  200. }
  201. }
  202. assert(c); //FIXME
  203. }
  204. best_val = INFINITY;
  205. best_idx = -1;
  206. band = NELLY_BANDS - 1;
  207. for (i = 0; i < OPT_SIZE; i++) {
  208. if (best_val > opt[band][i]) {
  209. best_val = opt[band][i];
  210. best_idx = i;
  211. }
  212. }
  213. for (band = NELLY_BANDS - 1; band >= 0; band--) {
  214. idx_table[band] = path[band][best_idx];
  215. if (band) {
  216. best_idx -= ff_nelly_delta_table[path[band][best_idx]];
  217. }
  218. }
  219. }
  220. /**
  221. * Encodes NELLY_SAMPLES samples. It assumes, that samples contains 3 * NELLY_BUF_LEN values
  222. * @param s encoder context
  223. * @param output output buffer
  224. * @param output_size size of output buffer
  225. */
  226. static void encode_block(NellyMoserEncodeContext *s, unsigned char *output, int output_size)
  227. {
  228. PutBitContext pb;
  229. int i, j, band, block, best_idx, power_idx = 0;
  230. float power_val, coeff, coeff_sum;
  231. float pows[NELLY_FILL_LEN];
  232. int bits[NELLY_BUF_LEN], idx_table[NELLY_BANDS];
  233. float cand[NELLY_BANDS];
  234. apply_mdct(s);
  235. init_put_bits(&pb, output, output_size * 8);
  236. i = 0;
  237. for (band = 0; band < NELLY_BANDS; band++) {
  238. coeff_sum = 0;
  239. for (j = 0; j < ff_nelly_band_sizes_table[band]; i++, j++) {
  240. coeff_sum += s->mdct_out[i ] * s->mdct_out[i ]
  241. + s->mdct_out[i + NELLY_BUF_LEN] * s->mdct_out[i + NELLY_BUF_LEN];
  242. }
  243. cand[band] =
  244. log(FFMAX(1.0, coeff_sum / (ff_nelly_band_sizes_table[band] << 7))) * 1024.0 / M_LN2;
  245. }
  246. if (s->avctx->trellis) {
  247. get_exponent_dynamic(s, cand, idx_table);
  248. } else {
  249. get_exponent_greedy(s, cand, idx_table);
  250. }
  251. i = 0;
  252. for (band = 0; band < NELLY_BANDS; band++) {
  253. if (band) {
  254. power_idx += ff_nelly_delta_table[idx_table[band]];
  255. put_bits(&pb, 5, idx_table[band]);
  256. } else {
  257. power_idx = ff_nelly_init_table[idx_table[0]];
  258. put_bits(&pb, 6, idx_table[0]);
  259. }
  260. power_val = pow_table[power_idx & 0x7FF] / (1 << ((power_idx >> 11) + POW_TABLE_OFFSET));
  261. for (j = 0; j < ff_nelly_band_sizes_table[band]; i++, j++) {
  262. s->mdct_out[i] *= power_val;
  263. s->mdct_out[i + NELLY_BUF_LEN] *= power_val;
  264. pows[i] = power_idx;
  265. }
  266. }
  267. ff_nelly_get_sample_bits(pows, bits);
  268. for (block = 0; block < 2; block++) {
  269. for (i = 0; i < NELLY_FILL_LEN; i++) {
  270. if (bits[i] > 0) {
  271. const float *table = ff_nelly_dequantization_table + (1 << bits[i]) - 1;
  272. coeff = s->mdct_out[block * NELLY_BUF_LEN + i];
  273. best_idx =
  274. quant_lut[av_clip (
  275. coeff * quant_lut_mul[bits[i]] + quant_lut_add[bits[i]],
  276. quant_lut_offset[bits[i]],
  277. quant_lut_offset[bits[i]+1] - 1
  278. )];
  279. if (fabs(coeff - table[best_idx]) > fabs(coeff - table[best_idx + 1]))
  280. best_idx++;
  281. put_bits(&pb, bits[i], best_idx);
  282. }
  283. }
  284. if (!block)
  285. put_bits(&pb, NELLY_HEADER_BITS + NELLY_DETAIL_BITS - put_bits_count(&pb), 0);
  286. }
  287. flush_put_bits(&pb);
  288. }
  289. static int encode_frame(AVCodecContext *avctx, uint8_t *frame, int buf_size, void *data)
  290. {
  291. NellyMoserEncodeContext *s = avctx->priv_data;
  292. int16_t *samples = data;
  293. int i;
  294. if (s->last_frame)
  295. return 0;
  296. if (data) {
  297. for (i = 0; i < avctx->frame_size; i++) {
  298. s->buf[s->bufsel][i] = samples[i];
  299. }
  300. for (; i < NELLY_SAMPLES; i++) {
  301. s->buf[s->bufsel][i] = 0;
  302. }
  303. s->bufsel = 1 - s->bufsel;
  304. if (!s->have_saved) {
  305. s->have_saved = 1;
  306. return 0;
  307. }
  308. } else {
  309. memset(s->buf[s->bufsel], 0, sizeof(s->buf[0][0]) * NELLY_BUF_LEN);
  310. s->bufsel = 1 - s->bufsel;
  311. s->last_frame = 1;
  312. }
  313. if (s->have_saved) {
  314. encode_block(s, frame, buf_size);
  315. return NELLY_BLOCK_LEN;
  316. }
  317. return 0;
  318. }
  319. AVCodec nellymoser_encoder = {
  320. .name = "nellymoser",
  321. .type = CODEC_TYPE_AUDIO,
  322. .id = CODEC_ID_NELLYMOSER,
  323. .priv_data_size = sizeof(NellyMoserEncodeContext),
  324. .init = encode_init,
  325. .encode = encode_frame,
  326. .close = encode_end,
  327. .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
  328. .long_name = NULL_IF_CONFIG_SMALL("Nellymoser Asao Codec"),
  329. };