You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1496 lines
47KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "bitstream.h"
  31. #include "dsputil.h"
  32. #include "mathops.h"
  33. #define VLC_BITS 11
  34. #ifdef WORDS_BIGENDIAN
  35. #define B 3
  36. #define G 2
  37. #define R 1
  38. #else
  39. #define B 0
  40. #define G 1
  41. #define R 2
  42. #endif
  43. typedef enum Predictor{
  44. LEFT= 0,
  45. PLANE,
  46. MEDIAN,
  47. } Predictor;
  48. typedef struct HYuvContext{
  49. AVCodecContext *avctx;
  50. Predictor predictor;
  51. GetBitContext gb;
  52. PutBitContext pb;
  53. int interlaced;
  54. int decorrelate;
  55. int bitstream_bpp;
  56. int version;
  57. int yuy2; //use yuy2 instead of 422P
  58. int bgr32; //use bgr32 instead of bgr24
  59. int width, height;
  60. int flags;
  61. int context;
  62. int picture_number;
  63. int last_slice_end;
  64. uint8_t *temp[3];
  65. uint64_t stats[3][256];
  66. uint8_t len[3][256];
  67. uint32_t bits[3][256];
  68. uint32_t pix_bgr_map[1<<VLC_BITS];
  69. VLC vlc[6]; //Y,U,V,YY,YU,YV
  70. AVFrame picture;
  71. uint8_t *bitstream_buffer;
  72. unsigned int bitstream_buffer_size;
  73. DSPContext dsp;
  74. }HYuvContext;
  75. static const unsigned char classic_shift_luma[] = {
  76. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  77. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  78. 69,68, 0
  79. };
  80. static const unsigned char classic_shift_chroma[] = {
  81. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  82. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  83. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  84. };
  85. static const unsigned char classic_add_luma[256] = {
  86. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  87. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  88. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  89. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  90. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  91. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  92. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  93. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  94. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  95. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  96. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  97. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  98. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  99. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  100. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  101. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  102. };
  103. static const unsigned char classic_add_chroma[256] = {
  104. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  105. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  106. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  107. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  108. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  109. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  110. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  111. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  112. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  113. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  114. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  115. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  116. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  117. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  118. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  119. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  120. };
  121. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  122. int i;
  123. for(i=0; i<w-1; i++){
  124. acc+= src[i];
  125. dst[i]= acc;
  126. i++;
  127. acc+= src[i];
  128. dst[i]= acc;
  129. }
  130. for(; i<w; i++){
  131. acc+= src[i];
  132. dst[i]= acc;
  133. }
  134. return acc;
  135. }
  136. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  137. int i;
  138. uint8_t l, lt;
  139. l= *left;
  140. lt= *left_top;
  141. for(i=0; i<w; i++){
  142. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  143. lt= src1[i];
  144. dst[i]= l;
  145. }
  146. *left= l;
  147. *left_top= lt;
  148. }
  149. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  150. int i;
  151. int r,g,b;
  152. r= *red;
  153. g= *green;
  154. b= *blue;
  155. for(i=0; i<w; i++){
  156. b+= src[4*i+B];
  157. g+= src[4*i+G];
  158. r+= src[4*i+R];
  159. dst[4*i+B]= b;
  160. dst[4*i+G]= g;
  161. dst[4*i+R]= r;
  162. }
  163. *red= r;
  164. *green= g;
  165. *blue= b;
  166. }
  167. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  168. int i;
  169. if(w<32){
  170. for(i=0; i<w; i++){
  171. const int temp= src[i];
  172. dst[i]= temp - left;
  173. left= temp;
  174. }
  175. return left;
  176. }else{
  177. for(i=0; i<16; i++){
  178. const int temp= src[i];
  179. dst[i]= temp - left;
  180. left= temp;
  181. }
  182. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  183. return src[w-1];
  184. }
  185. }
  186. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  187. int i;
  188. int r,g,b;
  189. r= *red;
  190. g= *green;
  191. b= *blue;
  192. for(i=0; i<FFMIN(w,4); i++){
  193. const int rt= src[i*4+R];
  194. const int gt= src[i*4+G];
  195. const int bt= src[i*4+B];
  196. dst[i*4+R]= rt - r;
  197. dst[i*4+G]= gt - g;
  198. dst[i*4+B]= bt - b;
  199. r = rt;
  200. g = gt;
  201. b = bt;
  202. }
  203. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  204. *red= src[(w-1)*4+R];
  205. *green= src[(w-1)*4+G];
  206. *blue= src[(w-1)*4+B];
  207. }
  208. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  209. int i, val, repeat;
  210. for(i=0; i<256;){
  211. repeat= get_bits(gb, 3);
  212. val = get_bits(gb, 5);
  213. if(repeat==0)
  214. repeat= get_bits(gb, 8);
  215. //printf("%d %d\n", val, repeat);
  216. while (repeat--)
  217. dst[i++] = val;
  218. }
  219. }
  220. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  221. int len, index;
  222. uint32_t bits=0;
  223. for(len=32; len>0; len--){
  224. for(index=0; index<256; index++){
  225. if(len_table[index]==len)
  226. dst[index]= bits++;
  227. }
  228. if(bits & 1){
  229. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  230. return -1;
  231. }
  232. bits >>= 1;
  233. }
  234. return 0;
  235. }
  236. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  237. typedef struct {
  238. uint64_t val;
  239. int name;
  240. } HeapElem;
  241. static void heap_sift(HeapElem *h, int root, int size)
  242. {
  243. while(root*2+1 < size) {
  244. int child = root*2+1;
  245. if(child < size-1 && h[child].val > h[child+1].val)
  246. child++;
  247. if(h[root].val > h[child].val) {
  248. FFSWAP(HeapElem, h[root], h[child]);
  249. root = child;
  250. } else
  251. break;
  252. }
  253. }
  254. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  255. HeapElem h[size];
  256. int up[2*size];
  257. int len[2*size];
  258. int offset, i, next;
  259. for(offset=1; ; offset<<=1){
  260. for(i=0; i<size; i++){
  261. h[i].name = i;
  262. h[i].val = (stats[i] << 8) + offset;
  263. }
  264. for(i=size/2-1; i>=0; i--)
  265. heap_sift(h, i, size);
  266. for(next=size; next<size*2-1; next++){
  267. // merge the two smallest entries, and put it back in the heap
  268. uint64_t min1v = h[0].val;
  269. up[h[0].name] = next;
  270. h[0].val = INT64_MAX;
  271. heap_sift(h, 0, size);
  272. up[h[0].name] = next;
  273. h[0].name = next;
  274. h[0].val += min1v;
  275. heap_sift(h, 0, size);
  276. }
  277. len[2*size-2] = 0;
  278. for(i=2*size-3; i>=size; i--)
  279. len[i] = len[up[i]] + 1;
  280. for(i=0; i<size; i++) {
  281. dst[i] = len[up[i]] + 1;
  282. if(dst[i] >= 32) break;
  283. }
  284. if(i==size) break;
  285. }
  286. }
  287. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  288. static void generate_joint_tables(HYuvContext *s){
  289. uint16_t symbols[1<<VLC_BITS];
  290. uint16_t bits[1<<VLC_BITS];
  291. uint8_t len[1<<VLC_BITS];
  292. if(s->bitstream_bpp < 24){
  293. int p, i, y, u;
  294. for(p=0; p<3; p++){
  295. for(i=y=0; y<256; y++){
  296. int len0 = s->len[0][y];
  297. int limit = VLC_BITS - len0;
  298. if(limit <= 0)
  299. continue;
  300. for(u=0; u<256; u++){
  301. int len1 = s->len[p][u];
  302. if(len1 > limit)
  303. continue;
  304. len[i] = len0 + len1;
  305. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  306. symbols[i] = (y<<8) + u;
  307. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  308. i++;
  309. }
  310. }
  311. free_vlc(&s->vlc[3+p]);
  312. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  313. }
  314. }else{
  315. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  316. int i, b, g, r, code;
  317. int p0 = s->decorrelate;
  318. int p1 = !s->decorrelate;
  319. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  320. // cover all the combinations that fit in 11 bits total, and it doesn't
  321. // matter if we miss a few rare codes.
  322. for(i=0, g=-16; g<16; g++){
  323. int len0 = s->len[p0][g&255];
  324. int limit0 = VLC_BITS - len0;
  325. if(limit0 < 2)
  326. continue;
  327. for(b=-16; b<16; b++){
  328. int len1 = s->len[p1][b&255];
  329. int limit1 = limit0 - len1;
  330. if(limit1 < 1)
  331. continue;
  332. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  333. for(r=-16; r<16; r++){
  334. int len2 = s->len[2][r&255];
  335. if(len2 > limit1)
  336. continue;
  337. len[i] = len0 + len1 + len2;
  338. bits[i] = (code << len2) + s->bits[2][r&255];
  339. if(s->decorrelate){
  340. map[i][G] = g;
  341. map[i][B] = g+b;
  342. map[i][R] = g+r;
  343. }else{
  344. map[i][B] = g;
  345. map[i][G] = b;
  346. map[i][R] = r;
  347. }
  348. i++;
  349. }
  350. }
  351. }
  352. free_vlc(&s->vlc[3]);
  353. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  354. }
  355. }
  356. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  357. GetBitContext gb;
  358. int i;
  359. init_get_bits(&gb, src, length*8);
  360. for(i=0; i<3; i++){
  361. read_len_table(s->len[i], &gb);
  362. if(generate_bits_table(s->bits[i], s->len[i])<0){
  363. return -1;
  364. }
  365. #if 0
  366. for(j=0; j<256; j++){
  367. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  368. }
  369. #endif
  370. free_vlc(&s->vlc[i]);
  371. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  372. }
  373. generate_joint_tables(s);
  374. return (get_bits_count(&gb)+7)/8;
  375. }
  376. static int read_old_huffman_tables(HYuvContext *s){
  377. #if 1
  378. GetBitContext gb;
  379. int i;
  380. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  381. read_len_table(s->len[0], &gb);
  382. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  383. read_len_table(s->len[1], &gb);
  384. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  385. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  386. if(s->bitstream_bpp >= 24){
  387. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  388. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  389. }
  390. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  391. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  392. for(i=0; i<3; i++){
  393. free_vlc(&s->vlc[i]);
  394. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  395. }
  396. generate_joint_tables(s);
  397. return 0;
  398. #else
  399. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  400. return -1;
  401. #endif
  402. }
  403. static void alloc_temp(HYuvContext *s){
  404. int i;
  405. if(s->bitstream_bpp<24){
  406. for(i=0; i<3; i++){
  407. s->temp[i]= av_malloc(s->width + 16);
  408. }
  409. }else{
  410. for(i=0; i<2; i++){
  411. s->temp[i]= av_malloc(4*s->width + 16);
  412. }
  413. }
  414. }
  415. static int common_init(AVCodecContext *avctx){
  416. HYuvContext *s = avctx->priv_data;
  417. s->avctx= avctx;
  418. s->flags= avctx->flags;
  419. dsputil_init(&s->dsp, avctx);
  420. s->width= avctx->width;
  421. s->height= avctx->height;
  422. assert(s->width>0 && s->height>0);
  423. return 0;
  424. }
  425. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  426. static av_cold int decode_init(AVCodecContext *avctx)
  427. {
  428. HYuvContext *s = avctx->priv_data;
  429. common_init(avctx);
  430. memset(s->vlc, 0, 3*sizeof(VLC));
  431. avctx->coded_frame= &s->picture;
  432. s->interlaced= s->height > 288;
  433. s->bgr32=1;
  434. //if(avctx->extradata)
  435. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  436. if(avctx->extradata_size){
  437. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  438. s->version=1; // do such files exist at all?
  439. else
  440. s->version=2;
  441. }else
  442. s->version=0;
  443. if(s->version==2){
  444. int method, interlace;
  445. method= ((uint8_t*)avctx->extradata)[0];
  446. s->decorrelate= method&64 ? 1 : 0;
  447. s->predictor= method&63;
  448. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  449. if(s->bitstream_bpp==0)
  450. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  451. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  452. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  453. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  454. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  455. return -1;
  456. }else{
  457. switch(avctx->bits_per_coded_sample&7){
  458. case 1:
  459. s->predictor= LEFT;
  460. s->decorrelate= 0;
  461. break;
  462. case 2:
  463. s->predictor= LEFT;
  464. s->decorrelate= 1;
  465. break;
  466. case 3:
  467. s->predictor= PLANE;
  468. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  469. break;
  470. case 4:
  471. s->predictor= MEDIAN;
  472. s->decorrelate= 0;
  473. break;
  474. default:
  475. s->predictor= LEFT; //OLD
  476. s->decorrelate= 0;
  477. break;
  478. }
  479. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  480. s->context= 0;
  481. if(read_old_huffman_tables(s) < 0)
  482. return -1;
  483. }
  484. switch(s->bitstream_bpp){
  485. case 12:
  486. avctx->pix_fmt = PIX_FMT_YUV420P;
  487. break;
  488. case 16:
  489. if(s->yuy2){
  490. avctx->pix_fmt = PIX_FMT_YUYV422;
  491. }else{
  492. avctx->pix_fmt = PIX_FMT_YUV422P;
  493. }
  494. break;
  495. case 24:
  496. case 32:
  497. if(s->bgr32){
  498. avctx->pix_fmt = PIX_FMT_RGB32;
  499. }else{
  500. avctx->pix_fmt = PIX_FMT_BGR24;
  501. }
  502. break;
  503. default:
  504. assert(0);
  505. }
  506. alloc_temp(s);
  507. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  508. return 0;
  509. }
  510. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  511. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  512. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  513. int i;
  514. int index= 0;
  515. for(i=0; i<256;){
  516. int val= len[i];
  517. int repeat=0;
  518. for(; i<256 && len[i]==val && repeat<255; i++)
  519. repeat++;
  520. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  521. if(repeat>7){
  522. buf[index++]= val;
  523. buf[index++]= repeat;
  524. }else{
  525. buf[index++]= val | (repeat<<5);
  526. }
  527. }
  528. return index;
  529. }
  530. static av_cold int encode_init(AVCodecContext *avctx)
  531. {
  532. HYuvContext *s = avctx->priv_data;
  533. int i, j;
  534. common_init(avctx);
  535. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  536. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  537. s->version=2;
  538. avctx->coded_frame= &s->picture;
  539. switch(avctx->pix_fmt){
  540. case PIX_FMT_YUV420P:
  541. s->bitstream_bpp= 12;
  542. break;
  543. case PIX_FMT_YUV422P:
  544. s->bitstream_bpp= 16;
  545. break;
  546. case PIX_FMT_RGB32:
  547. s->bitstream_bpp= 24;
  548. break;
  549. default:
  550. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  551. return -1;
  552. }
  553. avctx->bits_per_coded_sample= s->bitstream_bpp;
  554. s->decorrelate= s->bitstream_bpp >= 24;
  555. s->predictor= avctx->prediction_method;
  556. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  557. if(avctx->context_model==1){
  558. s->context= avctx->context_model;
  559. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  560. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  561. return -1;
  562. }
  563. }else s->context= 0;
  564. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  565. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  566. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  567. return -1;
  568. }
  569. if(avctx->context_model){
  570. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  571. return -1;
  572. }
  573. if(s->interlaced != ( s->height > 288 ))
  574. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  575. }
  576. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  577. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  578. return -1;
  579. }
  580. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  581. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  582. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  583. if(s->context)
  584. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  585. ((uint8_t*)avctx->extradata)[3]= 0;
  586. s->avctx->extradata_size= 4;
  587. if(avctx->stats_in){
  588. char *p= avctx->stats_in;
  589. for(i=0; i<3; i++)
  590. for(j=0; j<256; j++)
  591. s->stats[i][j]= 1;
  592. for(;;){
  593. for(i=0; i<3; i++){
  594. char *next;
  595. for(j=0; j<256; j++){
  596. s->stats[i][j]+= strtol(p, &next, 0);
  597. if(next==p) return -1;
  598. p=next;
  599. }
  600. }
  601. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  602. }
  603. }else{
  604. for(i=0; i<3; i++)
  605. for(j=0; j<256; j++){
  606. int d= FFMIN(j, 256-j);
  607. s->stats[i][j]= 100000000/(d+1);
  608. }
  609. }
  610. for(i=0; i<3; i++){
  611. generate_len_table(s->len[i], s->stats[i], 256);
  612. if(generate_bits_table(s->bits[i], s->len[i])<0){
  613. return -1;
  614. }
  615. s->avctx->extradata_size+=
  616. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  617. }
  618. if(s->context){
  619. for(i=0; i<3; i++){
  620. int pels = s->width*s->height / (i?40:10);
  621. for(j=0; j<256; j++){
  622. int d= FFMIN(j, 256-j);
  623. s->stats[i][j]= pels/(d+1);
  624. }
  625. }
  626. }else{
  627. for(i=0; i<3; i++)
  628. for(j=0; j<256; j++)
  629. s->stats[i][j]= 0;
  630. }
  631. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  632. alloc_temp(s);
  633. s->picture_number=0;
  634. return 0;
  635. }
  636. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  637. /* TODO instead of restarting the read when the code isn't in the first level
  638. * of the joint table, jump into the 2nd level of the individual table. */
  639. #define READ_2PIX(dst0, dst1, plane1){\
  640. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  641. if(code != 0xffff){\
  642. dst0 = code>>8;\
  643. dst1 = code;\
  644. }else{\
  645. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  646. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  647. }\
  648. }
  649. static void decode_422_bitstream(HYuvContext *s, int count){
  650. int i;
  651. count/=2;
  652. for(i=0; i<count; i++){
  653. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  654. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  655. }
  656. }
  657. static void decode_gray_bitstream(HYuvContext *s, int count){
  658. int i;
  659. count/=2;
  660. for(i=0; i<count; i++){
  661. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  662. }
  663. }
  664. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  665. static int encode_422_bitstream(HYuvContext *s, int count){
  666. int i;
  667. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  668. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  669. return -1;
  670. }
  671. #define LOAD4\
  672. int y0 = s->temp[0][2*i];\
  673. int y1 = s->temp[0][2*i+1];\
  674. int u0 = s->temp[1][i];\
  675. int v0 = s->temp[2][i];
  676. count/=2;
  677. if(s->flags&CODEC_FLAG_PASS1){
  678. for(i=0; i<count; i++){
  679. LOAD4;
  680. s->stats[0][y0]++;
  681. s->stats[1][u0]++;
  682. s->stats[0][y1]++;
  683. s->stats[2][v0]++;
  684. }
  685. }
  686. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  687. return 0;
  688. if(s->context){
  689. for(i=0; i<count; i++){
  690. LOAD4;
  691. s->stats[0][y0]++;
  692. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  693. s->stats[1][u0]++;
  694. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  695. s->stats[0][y1]++;
  696. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  697. s->stats[2][v0]++;
  698. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  699. }
  700. }else{
  701. for(i=0; i<count; i++){
  702. LOAD4;
  703. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  704. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  705. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  706. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  707. }
  708. }
  709. return 0;
  710. }
  711. static int encode_gray_bitstream(HYuvContext *s, int count){
  712. int i;
  713. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  714. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  715. return -1;
  716. }
  717. #define LOAD2\
  718. int y0 = s->temp[0][2*i];\
  719. int y1 = s->temp[0][2*i+1];
  720. #define STAT2\
  721. s->stats[0][y0]++;\
  722. s->stats[0][y1]++;
  723. #define WRITE2\
  724. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  725. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  726. count/=2;
  727. if(s->flags&CODEC_FLAG_PASS1){
  728. for(i=0; i<count; i++){
  729. LOAD2;
  730. STAT2;
  731. }
  732. }
  733. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  734. return 0;
  735. if(s->context){
  736. for(i=0; i<count; i++){
  737. LOAD2;
  738. STAT2;
  739. WRITE2;
  740. }
  741. }else{
  742. for(i=0; i<count; i++){
  743. LOAD2;
  744. WRITE2;
  745. }
  746. }
  747. return 0;
  748. }
  749. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  750. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  751. int i;
  752. for(i=0; i<count; i++){
  753. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  754. if(code != -1){
  755. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  756. }else if(decorrelate){
  757. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  758. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  759. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  760. }else{
  761. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  762. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  763. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  764. }
  765. if(alpha)
  766. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  767. }
  768. }
  769. static void decode_bgr_bitstream(HYuvContext *s, int count){
  770. if(s->decorrelate){
  771. if(s->bitstream_bpp==24)
  772. decode_bgr_1(s, count, 1, 0);
  773. else
  774. decode_bgr_1(s, count, 1, 1);
  775. }else{
  776. if(s->bitstream_bpp==24)
  777. decode_bgr_1(s, count, 0, 0);
  778. else
  779. decode_bgr_1(s, count, 0, 1);
  780. }
  781. }
  782. static int encode_bgr_bitstream(HYuvContext *s, int count){
  783. int i;
  784. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  785. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  786. return -1;
  787. }
  788. #define LOAD3\
  789. int g= s->temp[0][4*i+G];\
  790. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  791. int r= (s->temp[0][4*i+R] - g) & 0xff;
  792. #define STAT3\
  793. s->stats[0][b]++;\
  794. s->stats[1][g]++;\
  795. s->stats[2][r]++;
  796. #define WRITE3\
  797. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  798. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  799. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  800. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  801. for(i=0; i<count; i++){
  802. LOAD3;
  803. STAT3;
  804. }
  805. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  806. for(i=0; i<count; i++){
  807. LOAD3;
  808. STAT3;
  809. WRITE3;
  810. }
  811. }else{
  812. for(i=0; i<count; i++){
  813. LOAD3;
  814. WRITE3;
  815. }
  816. }
  817. return 0;
  818. }
  819. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  820. static void draw_slice(HYuvContext *s, int y){
  821. int h, cy;
  822. int offset[4];
  823. if(s->avctx->draw_horiz_band==NULL)
  824. return;
  825. h= y - s->last_slice_end;
  826. y -= h;
  827. if(s->bitstream_bpp==12){
  828. cy= y>>1;
  829. }else{
  830. cy= y;
  831. }
  832. offset[0] = s->picture.linesize[0]*y;
  833. offset[1] = s->picture.linesize[1]*cy;
  834. offset[2] = s->picture.linesize[2]*cy;
  835. offset[3] = 0;
  836. emms_c();
  837. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  838. s->last_slice_end= y + h;
  839. }
  840. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, const uint8_t *buf, int buf_size){
  841. HYuvContext *s = avctx->priv_data;
  842. const int width= s->width;
  843. const int width2= s->width>>1;
  844. const int height= s->height;
  845. int fake_ystride, fake_ustride, fake_vstride;
  846. AVFrame * const p= &s->picture;
  847. int table_size= 0;
  848. AVFrame *picture = data;
  849. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  850. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  851. if(p->data[0])
  852. avctx->release_buffer(avctx, p);
  853. p->reference= 0;
  854. if(avctx->get_buffer(avctx, p) < 0){
  855. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  856. return -1;
  857. }
  858. if(s->context){
  859. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  860. if(table_size < 0)
  861. return -1;
  862. }
  863. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  864. return -1;
  865. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  866. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  867. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  868. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  869. s->last_slice_end= 0;
  870. if(s->bitstream_bpp<24){
  871. int y, cy;
  872. int lefty, leftu, leftv;
  873. int lefttopy, lefttopu, lefttopv;
  874. if(s->yuy2){
  875. p->data[0][3]= get_bits(&s->gb, 8);
  876. p->data[0][2]= get_bits(&s->gb, 8);
  877. p->data[0][1]= get_bits(&s->gb, 8);
  878. p->data[0][0]= get_bits(&s->gb, 8);
  879. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  880. return -1;
  881. }else{
  882. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  883. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  884. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  885. p->data[0][0]= get_bits(&s->gb, 8);
  886. switch(s->predictor){
  887. case LEFT:
  888. case PLANE:
  889. decode_422_bitstream(s, width-2);
  890. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  891. if(!(s->flags&CODEC_FLAG_GRAY)){
  892. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  893. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  894. }
  895. for(cy=y=1; y<s->height; y++,cy++){
  896. uint8_t *ydst, *udst, *vdst;
  897. if(s->bitstream_bpp==12){
  898. decode_gray_bitstream(s, width);
  899. ydst= p->data[0] + p->linesize[0]*y;
  900. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  901. if(s->predictor == PLANE){
  902. if(y>s->interlaced)
  903. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  904. }
  905. y++;
  906. if(y>=s->height) break;
  907. }
  908. draw_slice(s, y);
  909. ydst= p->data[0] + p->linesize[0]*y;
  910. udst= p->data[1] + p->linesize[1]*cy;
  911. vdst= p->data[2] + p->linesize[2]*cy;
  912. decode_422_bitstream(s, width);
  913. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  914. if(!(s->flags&CODEC_FLAG_GRAY)){
  915. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  916. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  917. }
  918. if(s->predictor == PLANE){
  919. if(cy>s->interlaced){
  920. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  921. if(!(s->flags&CODEC_FLAG_GRAY)){
  922. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  923. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  924. }
  925. }
  926. }
  927. }
  928. draw_slice(s, height);
  929. break;
  930. case MEDIAN:
  931. /* first line except first 2 pixels is left predicted */
  932. decode_422_bitstream(s, width-2);
  933. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  934. if(!(s->flags&CODEC_FLAG_GRAY)){
  935. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  936. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  937. }
  938. cy=y=1;
  939. /* second line is left predicted for interlaced case */
  940. if(s->interlaced){
  941. decode_422_bitstream(s, width);
  942. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  943. if(!(s->flags&CODEC_FLAG_GRAY)){
  944. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  945. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  946. }
  947. y++; cy++;
  948. }
  949. /* next 4 pixels are left predicted too */
  950. decode_422_bitstream(s, 4);
  951. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  952. if(!(s->flags&CODEC_FLAG_GRAY)){
  953. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  954. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  955. }
  956. /* next line except the first 4 pixels is median predicted */
  957. lefttopy= p->data[0][3];
  958. decode_422_bitstream(s, width-4);
  959. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  960. if(!(s->flags&CODEC_FLAG_GRAY)){
  961. lefttopu= p->data[1][1];
  962. lefttopv= p->data[2][1];
  963. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  964. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  965. }
  966. y++; cy++;
  967. for(; y<height; y++,cy++){
  968. uint8_t *ydst, *udst, *vdst;
  969. if(s->bitstream_bpp==12){
  970. while(2*cy > y){
  971. decode_gray_bitstream(s, width);
  972. ydst= p->data[0] + p->linesize[0]*y;
  973. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  974. y++;
  975. }
  976. if(y>=height) break;
  977. }
  978. draw_slice(s, y);
  979. decode_422_bitstream(s, width);
  980. ydst= p->data[0] + p->linesize[0]*y;
  981. udst= p->data[1] + p->linesize[1]*cy;
  982. vdst= p->data[2] + p->linesize[2]*cy;
  983. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  984. if(!(s->flags&CODEC_FLAG_GRAY)){
  985. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  986. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  987. }
  988. }
  989. draw_slice(s, height);
  990. break;
  991. }
  992. }
  993. }else{
  994. int y;
  995. int leftr, leftg, leftb;
  996. const int last_line= (height-1)*p->linesize[0];
  997. if(s->bitstream_bpp==32){
  998. skip_bits(&s->gb, 8);
  999. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1000. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1001. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1002. }else{
  1003. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1004. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1005. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1006. skip_bits(&s->gb, 8);
  1007. }
  1008. if(s->bgr32){
  1009. switch(s->predictor){
  1010. case LEFT:
  1011. case PLANE:
  1012. decode_bgr_bitstream(s, width-1);
  1013. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  1014. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1015. decode_bgr_bitstream(s, width);
  1016. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  1017. if(s->predictor == PLANE){
  1018. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1019. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1020. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1021. }
  1022. }
  1023. }
  1024. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1025. break;
  1026. default:
  1027. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1028. }
  1029. }else{
  1030. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1031. return -1;
  1032. }
  1033. }
  1034. emms_c();
  1035. *picture= *p;
  1036. *data_size = sizeof(AVFrame);
  1037. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1038. }
  1039. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1040. static int common_end(HYuvContext *s){
  1041. int i;
  1042. for(i=0; i<3; i++){
  1043. av_freep(&s->temp[i]);
  1044. }
  1045. return 0;
  1046. }
  1047. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1048. static av_cold int decode_end(AVCodecContext *avctx)
  1049. {
  1050. HYuvContext *s = avctx->priv_data;
  1051. int i;
  1052. common_end(s);
  1053. av_freep(&s->bitstream_buffer);
  1054. for(i=0; i<6; i++){
  1055. free_vlc(&s->vlc[i]);
  1056. }
  1057. return 0;
  1058. }
  1059. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1060. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1061. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1062. HYuvContext *s = avctx->priv_data;
  1063. AVFrame *pict = data;
  1064. const int width= s->width;
  1065. const int width2= s->width>>1;
  1066. const int height= s->height;
  1067. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1068. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1069. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1070. AVFrame * const p= &s->picture;
  1071. int i, j, size=0;
  1072. *p = *pict;
  1073. p->pict_type= FF_I_TYPE;
  1074. p->key_frame= 1;
  1075. if(s->context){
  1076. for(i=0; i<3; i++){
  1077. generate_len_table(s->len[i], s->stats[i], 256);
  1078. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1079. return -1;
  1080. size+= store_table(s, s->len[i], &buf[size]);
  1081. }
  1082. for(i=0; i<3; i++)
  1083. for(j=0; j<256; j++)
  1084. s->stats[i][j] >>= 1;
  1085. }
  1086. init_put_bits(&s->pb, buf+size, buf_size-size);
  1087. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1088. int lefty, leftu, leftv, y, cy;
  1089. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1090. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1091. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1092. put_bits(&s->pb, 8, p->data[0][0]);
  1093. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  1094. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  1095. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  1096. encode_422_bitstream(s, width-2);
  1097. if(s->predictor==MEDIAN){
  1098. int lefttopy, lefttopu, lefttopv;
  1099. cy=y=1;
  1100. if(s->interlaced){
  1101. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1102. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1103. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1104. encode_422_bitstream(s, width);
  1105. y++; cy++;
  1106. }
  1107. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1108. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1109. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1110. encode_422_bitstream(s, 4);
  1111. lefttopy= p->data[0][3];
  1112. lefttopu= p->data[1][1];
  1113. lefttopv= p->data[2][1];
  1114. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1115. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1116. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1117. encode_422_bitstream(s, width-4);
  1118. y++; cy++;
  1119. for(; y<height; y++,cy++){
  1120. uint8_t *ydst, *udst, *vdst;
  1121. if(s->bitstream_bpp==12){
  1122. while(2*cy > y){
  1123. ydst= p->data[0] + p->linesize[0]*y;
  1124. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1125. encode_gray_bitstream(s, width);
  1126. y++;
  1127. }
  1128. if(y>=height) break;
  1129. }
  1130. ydst= p->data[0] + p->linesize[0]*y;
  1131. udst= p->data[1] + p->linesize[1]*cy;
  1132. vdst= p->data[2] + p->linesize[2]*cy;
  1133. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1134. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1135. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1136. encode_422_bitstream(s, width);
  1137. }
  1138. }else{
  1139. for(cy=y=1; y<height; y++,cy++){
  1140. uint8_t *ydst, *udst, *vdst;
  1141. /* encode a luma only line & y++ */
  1142. if(s->bitstream_bpp==12){
  1143. ydst= p->data[0] + p->linesize[0]*y;
  1144. if(s->predictor == PLANE && s->interlaced < y){
  1145. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1146. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1147. }else{
  1148. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1149. }
  1150. encode_gray_bitstream(s, width);
  1151. y++;
  1152. if(y>=height) break;
  1153. }
  1154. ydst= p->data[0] + p->linesize[0]*y;
  1155. udst= p->data[1] + p->linesize[1]*cy;
  1156. vdst= p->data[2] + p->linesize[2]*cy;
  1157. if(s->predictor == PLANE && s->interlaced < cy){
  1158. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1159. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1160. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1161. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1162. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1163. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1164. }else{
  1165. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1166. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1167. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1168. }
  1169. encode_422_bitstream(s, width);
  1170. }
  1171. }
  1172. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1173. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1174. const int stride = -p->linesize[0];
  1175. const int fake_stride = -fake_ystride;
  1176. int y;
  1177. int leftr, leftg, leftb;
  1178. put_bits(&s->pb, 8, leftr= data[R]);
  1179. put_bits(&s->pb, 8, leftg= data[G]);
  1180. put_bits(&s->pb, 8, leftb= data[B]);
  1181. put_bits(&s->pb, 8, 0);
  1182. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1183. encode_bgr_bitstream(s, width-1);
  1184. for(y=1; y<s->height; y++){
  1185. uint8_t *dst = data + y*stride;
  1186. if(s->predictor == PLANE && s->interlaced < y){
  1187. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1188. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1189. }else{
  1190. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1191. }
  1192. encode_bgr_bitstream(s, width);
  1193. }
  1194. }else{
  1195. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1196. }
  1197. emms_c();
  1198. size+= (put_bits_count(&s->pb)+31)/8;
  1199. size/= 4;
  1200. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1201. int j;
  1202. char *p= avctx->stats_out;
  1203. char *end= p + 1024*30;
  1204. for(i=0; i<3; i++){
  1205. for(j=0; j<256; j++){
  1206. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1207. p+= strlen(p);
  1208. s->stats[i][j]= 0;
  1209. }
  1210. snprintf(p, end-p, "\n");
  1211. p++;
  1212. }
  1213. } else
  1214. avctx->stats_out[0] = '\0';
  1215. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1216. flush_put_bits(&s->pb);
  1217. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1218. }
  1219. s->picture_number++;
  1220. return size*4;
  1221. }
  1222. static av_cold int encode_end(AVCodecContext *avctx)
  1223. {
  1224. HYuvContext *s = avctx->priv_data;
  1225. common_end(s);
  1226. av_freep(&avctx->extradata);
  1227. av_freep(&avctx->stats_out);
  1228. return 0;
  1229. }
  1230. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1231. #if CONFIG_HUFFYUV_DECODER
  1232. AVCodec huffyuv_decoder = {
  1233. "huffyuv",
  1234. CODEC_TYPE_VIDEO,
  1235. CODEC_ID_HUFFYUV,
  1236. sizeof(HYuvContext),
  1237. decode_init,
  1238. NULL,
  1239. decode_end,
  1240. decode_frame,
  1241. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1242. NULL,
  1243. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1244. };
  1245. #endif
  1246. #if CONFIG_FFVHUFF_DECODER
  1247. AVCodec ffvhuff_decoder = {
  1248. "ffvhuff",
  1249. CODEC_TYPE_VIDEO,
  1250. CODEC_ID_FFVHUFF,
  1251. sizeof(HYuvContext),
  1252. decode_init,
  1253. NULL,
  1254. decode_end,
  1255. decode_frame,
  1256. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1257. NULL,
  1258. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1259. };
  1260. #endif
  1261. #if CONFIG_HUFFYUV_ENCODER
  1262. AVCodec huffyuv_encoder = {
  1263. "huffyuv",
  1264. CODEC_TYPE_VIDEO,
  1265. CODEC_ID_HUFFYUV,
  1266. sizeof(HYuvContext),
  1267. encode_init,
  1268. encode_frame,
  1269. encode_end,
  1270. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1271. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1272. };
  1273. #endif
  1274. #if CONFIG_FFVHUFF_ENCODER
  1275. AVCodec ffvhuff_encoder = {
  1276. "ffvhuff",
  1277. CODEC_TYPE_VIDEO,
  1278. CODEC_ID_FFVHUFF,
  1279. sizeof(HYuvContext),
  1280. encode_init,
  1281. encode_frame,
  1282. encode_end,
  1283. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1284. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1285. };
  1286. #endif