You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1640 lines
52KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "put_bits.h"
  29. #include "dsputil.h"
  30. #include "rangecoder.h"
  31. #include "golomb.h"
  32. #include "mathops.h"
  33. #include "libavutil/avassert.h"
  34. #define MAX_PLANES 4
  35. #define CONTEXT_SIZE 32
  36. #define MAX_QUANT_TABLES 8
  37. #define MAX_CONTEXT_INPUTS 5
  38. extern const uint8_t ff_log2_run[32];
  39. static const int8_t quant3[256]={
  40. 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  44. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  45. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  46. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  47. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  48. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  49. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  50. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  51. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  52. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  53. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  54. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  55. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,
  56. };
  57. static const int8_t quant5_10bit[256]={
  58. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  59. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  60. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  61. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  67. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  70. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  71. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  72. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  73. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  74. };
  75. static const int8_t quant5[256]={
  76. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  78. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  79. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  80. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  81. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  82. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  83. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  84. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  85. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  86. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  87. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  88. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  89. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  90. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  91. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  92. };
  93. static const int8_t quant7[256]={
  94. 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  95. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  96. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  97. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  98. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  99. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  100. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  101. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  102. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  103. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  104. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  105. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  106. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  107. -3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,
  108. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  109. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,
  110. };
  111. static const int8_t quant9[256]={
  112. 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  113. 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  114. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  115. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  116. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  117. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  118. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  119. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  120. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  121. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  122. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  123. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  124. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  125. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  126. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,
  127. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1,
  128. };
  129. static const int8_t quant9_10bit[256]={
  130. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  131. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  132. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  133. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  134. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  135. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  136. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  137. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  138. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  139. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  140. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  141. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  142. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  143. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  144. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  145. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  146. };
  147. static const int8_t quant11[256]={
  148. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  149. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  150. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  151. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  152. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  153. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  154. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  155. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  156. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  157. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  158. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  159. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  160. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  161. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  162. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  163. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  164. };
  165. static const int8_t quant13[256]={
  166. 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  167. 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  168. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  169. 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  170. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  171. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  172. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  173. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  174. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  175. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  176. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  177. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  178. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5,
  179. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  180. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  181. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1,
  182. };
  183. static const uint8_t ver2_state[256]= {
  184. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  185. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  186. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  187. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  188. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  189. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  190. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  191. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  192. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  193. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  194. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  195. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  196. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  197. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  198. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  199. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  200. };
  201. typedef struct VlcState{
  202. int16_t drift;
  203. uint16_t error_sum;
  204. int8_t bias;
  205. uint8_t count;
  206. } VlcState;
  207. typedef struct PlaneContext{
  208. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  209. int quant_table_index;
  210. int context_count;
  211. uint8_t (*state)[CONTEXT_SIZE];
  212. VlcState *vlc_state;
  213. uint8_t interlace_bit_state[2];
  214. } PlaneContext;
  215. #define MAX_SLICES 256
  216. typedef struct FFV1Context{
  217. AVCodecContext *avctx;
  218. RangeCoder c;
  219. GetBitContext gb;
  220. PutBitContext pb;
  221. uint64_t rc_stat[256][2];
  222. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  223. int version;
  224. int width, height;
  225. int chroma_h_shift, chroma_v_shift;
  226. int flags;
  227. int picture_number;
  228. AVFrame picture;
  229. int plane_count;
  230. int ac; ///< 1=range coder <-> 0=golomb rice
  231. PlaneContext plane[MAX_PLANES];
  232. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  233. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  234. int context_count[MAX_QUANT_TABLES];
  235. uint8_t state_transition[256];
  236. int run_index;
  237. int colorspace;
  238. int_fast16_t *sample_buffer;
  239. int quant_table_count;
  240. DSPContext dsp;
  241. struct FFV1Context *slice_context[MAX_SLICES];
  242. int slice_count;
  243. int num_v_slices;
  244. int num_h_slices;
  245. int slice_width;
  246. int slice_height;
  247. int slice_x;
  248. int slice_y;
  249. }FFV1Context;
  250. static av_always_inline int fold(int diff, int bits){
  251. if(bits==8)
  252. diff= (int8_t)diff;
  253. else{
  254. diff+= 1<<(bits-1);
  255. diff&=(1<<bits)-1;
  256. diff-= 1<<(bits-1);
  257. }
  258. return diff;
  259. }
  260. static inline int predict(int_fast16_t *src, int_fast16_t *last){
  261. const int LT= last[-1];
  262. const int T= last[ 0];
  263. const int L = src[-1];
  264. return mid_pred(L, L + T - LT, T);
  265. }
  266. static inline int get_context(PlaneContext *p, int_fast16_t *src, int_fast16_t *last, int_fast16_t *last2){
  267. const int LT= last[-1];
  268. const int T= last[ 0];
  269. const int RT= last[ 1];
  270. const int L = src[-1];
  271. if(p->quant_table[3][127]){
  272. const int TT= last2[0];
  273. const int LL= src[-2];
  274. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  275. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  276. }else
  277. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  278. }
  279. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  280. int i;
  281. #define put_rac(C,S,B) \
  282. do{\
  283. if(rc_stat){\
  284. rc_stat[*(S)][B]++;\
  285. rc_stat2[(S)-state][B]++;\
  286. }\
  287. put_rac(C,S,B);\
  288. }while(0)
  289. if(v){
  290. const int a= FFABS(v);
  291. const int e= av_log2(a);
  292. put_rac(c, state+0, 0);
  293. if(e<=9){
  294. for(i=0; i<e; i++){
  295. put_rac(c, state+1+i, 1); //1..10
  296. }
  297. put_rac(c, state+1+i, 0);
  298. for(i=e-1; i>=0; i--){
  299. put_rac(c, state+22+i, (a>>i)&1); //22..31
  300. }
  301. if(is_signed)
  302. put_rac(c, state+11 + e, v < 0); //11..21
  303. }else{
  304. for(i=0; i<e; i++){
  305. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  306. }
  307. put_rac(c, state+1+9, 0);
  308. for(i=e-1; i>=0; i--){
  309. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  310. }
  311. if(is_signed)
  312. put_rac(c, state+11 + 10, v < 0); //11..21
  313. }
  314. }else{
  315. put_rac(c, state+0, 1);
  316. }
  317. #undef put_rac
  318. }
  319. static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  320. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  321. }
  322. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  323. if(get_rac(c, state+0))
  324. return 0;
  325. else{
  326. int i, e, a;
  327. e= 0;
  328. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  329. e++;
  330. }
  331. a= 1;
  332. for(i=e-1; i>=0; i--){
  333. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  334. }
  335. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  336. return (a^e)-e;
  337. }
  338. }
  339. static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  340. return get_symbol_inline(c, state, is_signed);
  341. }
  342. static inline void update_vlc_state(VlcState * const state, const int v){
  343. int drift= state->drift;
  344. int count= state->count;
  345. state->error_sum += FFABS(v);
  346. drift += v;
  347. if(count == 128){ //FIXME variable
  348. count >>= 1;
  349. drift >>= 1;
  350. state->error_sum >>= 1;
  351. }
  352. count++;
  353. if(drift <= -count){
  354. if(state->bias > -128) state->bias--;
  355. drift += count;
  356. if(drift <= -count)
  357. drift= -count + 1;
  358. }else if(drift > 0){
  359. if(state->bias < 127) state->bias++;
  360. drift -= count;
  361. if(drift > 0)
  362. drift= 0;
  363. }
  364. state->drift= drift;
  365. state->count= count;
  366. }
  367. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  368. int i, k, code;
  369. //printf("final: %d ", v);
  370. v = fold(v - state->bias, bits);
  371. i= state->count;
  372. k=0;
  373. while(i < state->error_sum){ //FIXME optimize
  374. k++;
  375. i += i;
  376. }
  377. assert(k<=8);
  378. #if 0 // JPEG LS
  379. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  380. else code= v;
  381. #else
  382. code= v ^ ((2*state->drift + state->count)>>31);
  383. #endif
  384. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  385. set_sr_golomb(pb, code, k, 12, bits);
  386. update_vlc_state(state, v);
  387. }
  388. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  389. int k, i, v, ret;
  390. i= state->count;
  391. k=0;
  392. while(i < state->error_sum){ //FIXME optimize
  393. k++;
  394. i += i;
  395. }
  396. assert(k<=8);
  397. v= get_sr_golomb(gb, k, 12, bits);
  398. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  399. #if 0 // JPEG LS
  400. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  401. #else
  402. v ^= ((2*state->drift + state->count)>>31);
  403. #endif
  404. ret= fold(v + state->bias, bits);
  405. update_vlc_state(state, v);
  406. //printf("final: %d\n", ret);
  407. return ret;
  408. }
  409. #if CONFIG_FFV1_ENCODER
  410. static av_always_inline int encode_line(FFV1Context *s, int w, int_fast16_t *sample[2], int plane_index, int bits){
  411. PlaneContext * const p= &s->plane[plane_index];
  412. RangeCoder * const c= &s->c;
  413. int x;
  414. int run_index= s->run_index;
  415. int run_count=0;
  416. int run_mode=0;
  417. if(s->ac){
  418. if(c->bytestream_end - c->bytestream < w*20){
  419. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  420. return -1;
  421. }
  422. }else{
  423. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  424. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  425. return -1;
  426. }
  427. }
  428. for(x=0; x<w; x++){
  429. int diff, context;
  430. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  431. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  432. if(context < 0){
  433. context = -context;
  434. diff= -diff;
  435. }
  436. diff= fold(diff, bits);
  437. if(s->ac){
  438. if(s->flags & CODEC_FLAG_PASS1){
  439. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  440. }else{
  441. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  442. }
  443. }else{
  444. if(context == 0) run_mode=1;
  445. if(run_mode){
  446. if(diff){
  447. while(run_count >= 1<<ff_log2_run[run_index]){
  448. run_count -= 1<<ff_log2_run[run_index];
  449. run_index++;
  450. put_bits(&s->pb, 1, 1);
  451. }
  452. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  453. if(run_index) run_index--;
  454. run_count=0;
  455. run_mode=0;
  456. if(diff>0) diff--;
  457. }else{
  458. run_count++;
  459. }
  460. }
  461. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  462. if(run_mode == 0)
  463. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  464. }
  465. }
  466. if(run_mode){
  467. while(run_count >= 1<<ff_log2_run[run_index]){
  468. run_count -= 1<<ff_log2_run[run_index];
  469. run_index++;
  470. put_bits(&s->pb, 1, 1);
  471. }
  472. if(run_count)
  473. put_bits(&s->pb, 1, 1);
  474. }
  475. s->run_index= run_index;
  476. return 0;
  477. }
  478. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  479. int x,y,i;
  480. const int ring_size= s->avctx->context_model ? 3 : 2;
  481. int_fast16_t *sample[3];
  482. s->run_index=0;
  483. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  484. for(y=0; y<h; y++){
  485. for(i=0; i<ring_size; i++)
  486. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  487. sample[0][-1]= sample[1][0 ];
  488. sample[1][ w]= sample[1][w-1];
  489. //{START_TIMER
  490. if(s->avctx->bits_per_raw_sample<=8){
  491. for(x=0; x<w; x++){
  492. sample[0][x]= src[x + stride*y];
  493. }
  494. encode_line(s, w, sample, plane_index, 8);
  495. }else{
  496. for(x=0; x<w; x++){
  497. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->avctx->bits_per_raw_sample);
  498. }
  499. encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  500. }
  501. //STOP_TIMER("encode line")}
  502. }
  503. }
  504. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  505. int x, y, p, i;
  506. const int ring_size= s->avctx->context_model ? 3 : 2;
  507. int_fast16_t *sample[3][3];
  508. s->run_index=0;
  509. memset(s->sample_buffer, 0, ring_size*3*(w+6)*sizeof(*s->sample_buffer));
  510. for(y=0; y<h; y++){
  511. for(i=0; i<ring_size; i++)
  512. for(p=0; p<3; p++)
  513. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  514. for(x=0; x<w; x++){
  515. int v= src[x + stride*y];
  516. int b= v&0xFF;
  517. int g= (v>>8)&0xFF;
  518. int r= (v>>16)&0xFF;
  519. b -= g;
  520. r -= g;
  521. g += (b + r)>>2;
  522. b += 0x100;
  523. r += 0x100;
  524. // assert(g>=0 && b>=0 && r>=0);
  525. // assert(g<256 && b<512 && r<512);
  526. sample[0][0][x]= g;
  527. sample[1][0][x]= b;
  528. sample[2][0][x]= r;
  529. }
  530. for(p=0; p<3; p++){
  531. sample[p][0][-1]= sample[p][1][0 ];
  532. sample[p][1][ w]= sample[p][1][w-1];
  533. encode_line(s, w, sample[p], FFMIN(p, 1), 9);
  534. }
  535. }
  536. }
  537. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  538. int last=0;
  539. int i;
  540. uint8_t state[CONTEXT_SIZE];
  541. memset(state, 128, sizeof(state));
  542. for(i=1; i<128 ; i++){
  543. if(quant_table[i] != quant_table[i-1]){
  544. put_symbol(c, state, i-last-1, 0);
  545. last= i;
  546. }
  547. }
  548. put_symbol(c, state, i-last-1, 0);
  549. }
  550. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  551. int i;
  552. for(i=0; i<5; i++)
  553. write_quant_table(c, quant_table[i]);
  554. }
  555. static void write_header(FFV1Context *f){
  556. uint8_t state[CONTEXT_SIZE];
  557. int i, j;
  558. RangeCoder * const c= &f->slice_context[0]->c;
  559. memset(state, 128, sizeof(state));
  560. if(f->version < 2){
  561. put_symbol(c, state, f->version, 0);
  562. put_symbol(c, state, f->ac, 0);
  563. if(f->ac>1){
  564. for(i=1; i<256; i++){
  565. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  566. }
  567. }
  568. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  569. if(f->version>0)
  570. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  571. put_rac(c, state, 1); //chroma planes
  572. put_symbol(c, state, f->chroma_h_shift, 0);
  573. put_symbol(c, state, f->chroma_v_shift, 0);
  574. put_rac(c, state, 0); //no transparency plane
  575. write_quant_tables(c, f->quant_table);
  576. }else{
  577. put_symbol(c, state, f->slice_count, 0);
  578. for(i=0; i<f->slice_count; i++){
  579. FFV1Context *fs= f->slice_context[i];
  580. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  581. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  582. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  583. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  584. for(j=0; j<f->plane_count; j++){
  585. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  586. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  587. }
  588. }
  589. }
  590. }
  591. #endif /* CONFIG_FFV1_ENCODER */
  592. static av_cold int common_init(AVCodecContext *avctx){
  593. FFV1Context *s = avctx->priv_data;
  594. s->avctx= avctx;
  595. s->flags= avctx->flags;
  596. dsputil_init(&s->dsp, avctx);
  597. s->width = avctx->width;
  598. s->height= avctx->height;
  599. assert(s->width && s->height);
  600. //defaults
  601. s->num_h_slices=1;
  602. s->num_v_slices=1;
  603. return 0;
  604. }
  605. static int init_slice_state(FFV1Context *f){
  606. int i, j;
  607. for(i=0; i<f->slice_count; i++){
  608. FFV1Context *fs= f->slice_context[i];
  609. for(j=0; j<f->plane_count; j++){
  610. PlaneContext * const p= &fs->plane[j];
  611. if(fs->ac){
  612. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  613. if(!p-> state)
  614. return AVERROR(ENOMEM);
  615. }else{
  616. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  617. if(!p->vlc_state)
  618. return AVERROR(ENOMEM);
  619. }
  620. }
  621. if (fs->ac>1){
  622. //FIXME only redo if state_transition changed
  623. for(j=1; j<256; j++){
  624. fs->c.one_state [ j]= fs->state_transition[j];
  625. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  626. }
  627. }
  628. }
  629. return 0;
  630. }
  631. static av_cold int init_slice_contexts(FFV1Context *f){
  632. int i;
  633. f->slice_count= f->num_h_slices * f->num_v_slices;
  634. for(i=0; i<f->slice_count; i++){
  635. FFV1Context *fs= av_mallocz(sizeof(*fs));
  636. int sx= i % f->num_h_slices;
  637. int sy= i / f->num_h_slices;
  638. int sxs= f->avctx->width * sx / f->num_h_slices;
  639. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  640. int sys= f->avctx->height* sy / f->num_v_slices;
  641. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  642. f->slice_context[i]= fs;
  643. memcpy(fs, f, sizeof(*fs));
  644. fs->slice_width = sxe - sxs;
  645. fs->slice_height= sye - sys;
  646. fs->slice_x = sxs;
  647. fs->slice_y = sys;
  648. fs->sample_buffer = av_malloc(6 * (fs->width+6) * sizeof(*fs->sample_buffer));
  649. if (!fs->sample_buffer)
  650. return AVERROR(ENOMEM);
  651. }
  652. return 0;
  653. }
  654. #if CONFIG_FFV1_ENCODER
  655. static int write_extra_header(FFV1Context *f){
  656. RangeCoder * const c= &f->c;
  657. uint8_t state[CONTEXT_SIZE];
  658. int i;
  659. memset(state, 128, sizeof(state));
  660. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000);
  661. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  662. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  663. put_symbol(c, state, f->version, 0);
  664. put_symbol(c, state, f->ac, 0);
  665. if(f->ac>1){
  666. for(i=1; i<256; i++){
  667. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  668. }
  669. }
  670. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  671. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  672. put_rac(c, state, 1); //chroma planes
  673. put_symbol(c, state, f->chroma_h_shift, 0);
  674. put_symbol(c, state, f->chroma_v_shift, 0);
  675. put_rac(c, state, 0); //no transparency plane
  676. put_symbol(c, state, f->num_h_slices-1, 0);
  677. put_symbol(c, state, f->num_v_slices-1, 0);
  678. put_symbol(c, state, f->quant_table_count, 0);
  679. for(i=0; i<f->quant_table_count; i++)
  680. write_quant_tables(c, f->quant_tables[i]);
  681. f->avctx->extradata_size= ff_rac_terminate(c);
  682. return 0;
  683. }
  684. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  685. int i,i2,changed,print=0;
  686. do{
  687. changed=0;
  688. for(i=12; i<244; i++){
  689. for(i2=i+1; i2<245 && i2<i+4; i2++){
  690. #define COST(old, new) \
  691. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  692. +s->rc_stat[old][1]*-log2( (new) /256.0)
  693. #define COST2(old, new) \
  694. COST(old, new)\
  695. +COST(256-(old), 256-(new))
  696. double size0= COST2(i, i ) + COST2(i2, i2);
  697. double sizeX= COST2(i, i2) + COST2(i2, i );
  698. if(sizeX < size0 && i!=128 && i2!=128){
  699. int j;
  700. FFSWAP(int, stt[ i], stt[ i2]);
  701. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  702. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  703. if(i != 256-i2){
  704. FFSWAP(int, stt[256-i], stt[256-i2]);
  705. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  706. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  707. }
  708. for(j=1; j<256; j++){
  709. if (stt[j] == i ) stt[j] = i2;
  710. else if(stt[j] == i2) stt[j] = i ;
  711. if(i != 256-i2){
  712. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  713. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  714. }
  715. }
  716. print=changed=1;
  717. }
  718. }
  719. }
  720. }while(changed);
  721. return print;
  722. }
  723. static av_cold int encode_init(AVCodecContext *avctx)
  724. {
  725. FFV1Context *s = avctx->priv_data;
  726. int i, j;
  727. common_init(avctx);
  728. s->version=0;
  729. s->ac= avctx->coder_type ? 2:0;
  730. if(s->ac>1)
  731. for(i=1; i<256; i++)
  732. s->state_transition[i]=ver2_state[i];
  733. s->plane_count=2;
  734. for(i=0; i<256; i++){
  735. s->quant_table_count=2;
  736. if(avctx->bits_per_raw_sample <=8){
  737. s->quant_tables[0][0][i]= quant11[i];
  738. s->quant_tables[0][1][i]= 11*quant11[i];
  739. s->quant_tables[0][2][i]= 11*11*quant11[i];
  740. s->quant_tables[1][0][i]= quant11[i];
  741. s->quant_tables[1][1][i]= 11*quant11[i];
  742. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  743. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  744. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  745. }else{
  746. s->quant_tables[0][0][i]= quant9_10bit[i];
  747. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  748. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  749. s->quant_tables[1][0][i]= quant9_10bit[i];
  750. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  751. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  752. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  753. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  754. }
  755. }
  756. s->context_count[0]= (11*11*11+1)/2;
  757. s->context_count[1]= (11*11*5*5*5+1)/2;
  758. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  759. for(i=0; i<s->plane_count; i++){
  760. PlaneContext * const p= &s->plane[i];
  761. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  762. p->quant_table_index= avctx->context_model;
  763. p->context_count= s->context_count[p->quant_table_index];
  764. }
  765. avctx->coded_frame= &s->picture;
  766. switch(avctx->pix_fmt){
  767. case PIX_FMT_YUV444P16:
  768. case PIX_FMT_YUV422P16:
  769. case PIX_FMT_YUV420P16:
  770. if(avctx->bits_per_raw_sample <=8){
  771. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  772. return -1;
  773. }
  774. if(!s->ac){
  775. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  776. return -1;
  777. }
  778. s->version= FFMAX(s->version, 1);
  779. case PIX_FMT_YUV444P:
  780. case PIX_FMT_YUV422P:
  781. case PIX_FMT_YUV420P:
  782. case PIX_FMT_YUV411P:
  783. case PIX_FMT_YUV410P:
  784. s->colorspace= 0;
  785. break;
  786. case PIX_FMT_RGB32:
  787. s->colorspace= 1;
  788. break;
  789. default:
  790. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  791. return -1;
  792. }
  793. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  794. s->picture_number=0;
  795. if(avctx->stats_in){
  796. char *p= avctx->stats_in;
  797. for(;;){
  798. for(j=0; j<256; j++){
  799. for(i=0; i<2; i++){
  800. char *next;
  801. s->rc_stat[j][i]= strtol(p, &next, 0);
  802. if(next==p){
  803. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  804. return -1;
  805. }
  806. p=next;
  807. }
  808. }
  809. while(*p=='\n' || *p==' ') p++;
  810. if(p[0]==0) break;
  811. }
  812. sort_stt(s, s->state_transition);
  813. }
  814. if(s->version>1){
  815. s->num_h_slices=2;
  816. s->num_v_slices=2;
  817. write_extra_header(s);
  818. }
  819. if(init_slice_contexts(s) < 0)
  820. return -1;
  821. if(init_slice_state(s) < 0)
  822. return -1;
  823. #define STATS_OUT_SIZE 1024*30
  824. if(avctx->flags & CODEC_FLAG_PASS1){
  825. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  826. for(i=0; i<s->quant_table_count; i++){
  827. for(j=0; j<s->slice_count; j++){
  828. FFV1Context *sf= s->slice_context[j];
  829. av_assert0(!sf->rc_stat2[i]);
  830. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  831. if(!sf->rc_stat2[i])
  832. return AVERROR(ENOMEM);
  833. }
  834. }
  835. }
  836. return 0;
  837. }
  838. #endif /* CONFIG_FFV1_ENCODER */
  839. static void clear_state(FFV1Context *f){
  840. int i, si, j;
  841. for(si=0; si<f->slice_count; si++){
  842. FFV1Context *fs= f->slice_context[si];
  843. for(i=0; i<f->plane_count; i++){
  844. PlaneContext *p= &fs->plane[i];
  845. p->interlace_bit_state[0]= 128;
  846. p->interlace_bit_state[1]= 128;
  847. if(fs->ac){
  848. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  849. }else{
  850. for(j=0; j<p->context_count; j++){
  851. p->vlc_state[j].drift= 0;
  852. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  853. p->vlc_state[j].bias= 0;
  854. p->vlc_state[j].count= 1;
  855. }
  856. }
  857. }
  858. }
  859. }
  860. #if CONFIG_FFV1_ENCODER
  861. static int encode_slice(AVCodecContext *c, void *arg){
  862. FFV1Context *fs= *(void**)arg;
  863. FFV1Context *f= fs->avctx->priv_data;
  864. int width = fs->slice_width;
  865. int height= fs->slice_height;
  866. int x= fs->slice_x;
  867. int y= fs->slice_y;
  868. AVFrame * const p= &f->picture;
  869. if(f->colorspace==0){
  870. const int chroma_width = -((-width )>>f->chroma_h_shift);
  871. const int chroma_height= -((-height)>>f->chroma_v_shift);
  872. const int cx= x>>f->chroma_h_shift;
  873. const int cy= y>>f->chroma_v_shift;
  874. encode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  875. encode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  876. encode_plane(fs, p->data[2] + cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  877. }else{
  878. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  879. }
  880. emms_c();
  881. return 0;
  882. }
  883. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  884. FFV1Context *f = avctx->priv_data;
  885. RangeCoder * const c= &f->slice_context[0]->c;
  886. AVFrame *pict = data;
  887. AVFrame * const p= &f->picture;
  888. int used_count= 0;
  889. uint8_t keystate=128;
  890. uint8_t *buf_p;
  891. int i;
  892. ff_init_range_encoder(c, buf, buf_size);
  893. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  894. *p = *pict;
  895. p->pict_type= FF_I_TYPE;
  896. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  897. put_rac(c, &keystate, 1);
  898. p->key_frame= 1;
  899. write_header(f);
  900. clear_state(f);
  901. }else{
  902. put_rac(c, &keystate, 0);
  903. p->key_frame= 0;
  904. }
  905. if(!f->ac){
  906. used_count += ff_rac_terminate(c);
  907. //printf("pos=%d\n", used_count);
  908. init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count);
  909. }else if (f->ac>1){
  910. int i;
  911. for(i=1; i<256; i++){
  912. c->one_state[i]= f->state_transition[i];
  913. c->zero_state[256-i]= 256-c->one_state[i];
  914. }
  915. }
  916. for(i=1; i<f->slice_count; i++){
  917. FFV1Context *fs= f->slice_context[i];
  918. uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count;
  919. int len= buf_size/f->slice_count;
  920. if(fs->ac){
  921. ff_init_range_encoder(&fs->c, start, len);
  922. }else{
  923. init_put_bits(&fs->pb, start, len);
  924. }
  925. }
  926. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  927. buf_p=buf;
  928. for(i=0; i<f->slice_count; i++){
  929. FFV1Context *fs= f->slice_context[i];
  930. int bytes;
  931. if(fs->ac){
  932. uint8_t state=128;
  933. put_rac(&fs->c, &state, 0);
  934. bytes= ff_rac_terminate(&fs->c);
  935. }else{
  936. flush_put_bits(&fs->pb); //nicer padding FIXME
  937. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  938. used_count= 0;
  939. }
  940. if(i>0){
  941. av_assert0(bytes < buf_size/f->slice_count);
  942. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  943. av_assert0(bytes < (1<<24));
  944. AV_WB24(buf_p+bytes, bytes);
  945. bytes+=3;
  946. }
  947. buf_p += bytes;
  948. }
  949. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  950. int j;
  951. char *p= avctx->stats_out;
  952. char *end= p + STATS_OUT_SIZE;
  953. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  954. for(j=0; j<f->slice_count; j++){
  955. FFV1Context *fs= f->slice_context[j];
  956. for(i=0; i<256; i++){
  957. f->rc_stat[i][0] += fs->rc_stat[i][0];
  958. f->rc_stat[i][1] += fs->rc_stat[i][1];
  959. }
  960. }
  961. for(j=0; j<256; j++){
  962. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  963. p+= strlen(p);
  964. }
  965. snprintf(p, end-p, "\n");
  966. } else if(avctx->flags&CODEC_FLAG_PASS1)
  967. avctx->stats_out[0] = '\0';
  968. f->picture_number++;
  969. return buf_p-buf;
  970. }
  971. #endif /* CONFIG_FFV1_ENCODER */
  972. static av_cold int common_end(AVCodecContext *avctx){
  973. FFV1Context *s = avctx->priv_data;
  974. int i, j;
  975. for(j=0; j<s->slice_count; j++){
  976. FFV1Context *fs= s->slice_context[j];
  977. for(i=0; i<s->plane_count; i++){
  978. PlaneContext *p= &fs->plane[i];
  979. av_freep(&p->state);
  980. av_freep(&p->vlc_state);
  981. }
  982. av_freep(&fs->sample_buffer);
  983. }
  984. av_freep(&avctx->stats_out);
  985. for(j=0; j<s->quant_table_count; j++){
  986. for(i=0; i<s->slice_count; i++){
  987. FFV1Context *sf= s->slice_context[i];
  988. av_freep(&sf->rc_stat2[j]);
  989. }
  990. }
  991. return 0;
  992. }
  993. static av_always_inline void decode_line(FFV1Context *s, int w, int_fast16_t *sample[2], int plane_index, int bits){
  994. PlaneContext * const p= &s->plane[plane_index];
  995. RangeCoder * const c= &s->c;
  996. int x;
  997. int run_count=0;
  998. int run_mode=0;
  999. int run_index= s->run_index;
  1000. for(x=0; x<w; x++){
  1001. int diff, context, sign;
  1002. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1003. if(context < 0){
  1004. context= -context;
  1005. sign=1;
  1006. }else
  1007. sign=0;
  1008. av_assert2(context < p->context_count);
  1009. if(s->ac){
  1010. diff= get_symbol_inline(c, p->state[context], 1);
  1011. }else{
  1012. if(context == 0 && run_mode==0) run_mode=1;
  1013. if(run_mode){
  1014. if(run_count==0 && run_mode==1){
  1015. if(get_bits1(&s->gb)){
  1016. run_count = 1<<ff_log2_run[run_index];
  1017. if(x + run_count <= w) run_index++;
  1018. }else{
  1019. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1020. else run_count=0;
  1021. if(run_index) run_index--;
  1022. run_mode=2;
  1023. }
  1024. }
  1025. run_count--;
  1026. if(run_count < 0){
  1027. run_mode=0;
  1028. run_count=0;
  1029. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1030. if(diff>=0) diff++;
  1031. }else
  1032. diff=0;
  1033. }else
  1034. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1035. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1036. }
  1037. if(sign) diff= -diff;
  1038. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1039. }
  1040. s->run_index= run_index;
  1041. }
  1042. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1043. int x, y;
  1044. int_fast16_t *sample[2];
  1045. sample[0]=s->sample_buffer +3;
  1046. sample[1]=s->sample_buffer+w+6+3;
  1047. s->run_index=0;
  1048. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1049. for(y=0; y<h; y++){
  1050. int_fast16_t *temp= sample[0]; //FIXME try a normal buffer
  1051. sample[0]= sample[1];
  1052. sample[1]= temp;
  1053. sample[1][-1]= sample[0][0 ];
  1054. sample[0][ w]= sample[0][w-1];
  1055. //{START_TIMER
  1056. if(s->avctx->bits_per_raw_sample <= 8){
  1057. decode_line(s, w, sample, plane_index, 8);
  1058. for(x=0; x<w; x++){
  1059. src[x + stride*y]= sample[1][x];
  1060. }
  1061. }else{
  1062. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1063. for(x=0; x<w; x++){
  1064. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1065. }
  1066. }
  1067. //STOP_TIMER("decode-line")}
  1068. }
  1069. }
  1070. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1071. int x, y, p;
  1072. int_fast16_t *sample[3][2];
  1073. for(x=0; x<3; x++){
  1074. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1075. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1076. }
  1077. s->run_index=0;
  1078. memset(s->sample_buffer, 0, 6*(w+6)*sizeof(*s->sample_buffer));
  1079. for(y=0; y<h; y++){
  1080. for(p=0; p<3; p++){
  1081. int_fast16_t *temp= sample[p][0]; //FIXME try a normal buffer
  1082. sample[p][0]= sample[p][1];
  1083. sample[p][1]= temp;
  1084. sample[p][1][-1]= sample[p][0][0 ];
  1085. sample[p][0][ w]= sample[p][0][w-1];
  1086. decode_line(s, w, sample[p], FFMIN(p, 1), 9);
  1087. }
  1088. for(x=0; x<w; x++){
  1089. int g= sample[0][1][x];
  1090. int b= sample[1][1][x];
  1091. int r= sample[2][1][x];
  1092. // assert(g>=0 && b>=0 && r>=0);
  1093. // assert(g<256 && b<512 && r<512);
  1094. b -= 0x100;
  1095. r -= 0x100;
  1096. g -= (b + r)>>2;
  1097. b += g;
  1098. r += g;
  1099. src[x + stride*y]= b + (g<<8) + (r<<16) + (0xFF<<24);
  1100. }
  1101. }
  1102. }
  1103. static int decode_slice(AVCodecContext *c, void *arg){
  1104. FFV1Context *fs= *(void**)arg;
  1105. FFV1Context *f= fs->avctx->priv_data;
  1106. int width = fs->slice_width;
  1107. int height= fs->slice_height;
  1108. int x= fs->slice_x;
  1109. int y= fs->slice_y;
  1110. AVFrame * const p= &f->picture;
  1111. av_assert1(width && height);
  1112. if(f->colorspace==0){
  1113. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1114. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1115. const int cx= x>>f->chroma_h_shift;
  1116. const int cy= y>>f->chroma_v_shift;
  1117. decode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1118. decode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1119. decode_plane(fs, p->data[2] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[2], 1);
  1120. }else{
  1121. decode_rgb_frame(fs, (uint32_t*)p->data[0] + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1122. }
  1123. emms_c();
  1124. return 0;
  1125. }
  1126. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1127. int v;
  1128. int i=0;
  1129. uint8_t state[CONTEXT_SIZE];
  1130. memset(state, 128, sizeof(state));
  1131. for(v=0; i<128 ; v++){
  1132. int len= get_symbol(c, state, 0) + 1;
  1133. if(len + i > 128) return -1;
  1134. while(len--){
  1135. quant_table[i] = scale*v;
  1136. i++;
  1137. //printf("%2d ",v);
  1138. //if(i%16==0) printf("\n");
  1139. }
  1140. }
  1141. for(i=1; i<128; i++){
  1142. quant_table[256-i]= -quant_table[i];
  1143. }
  1144. quant_table[128]= -quant_table[127];
  1145. return 2*v - 1;
  1146. }
  1147. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1148. int i;
  1149. int context_count=1;
  1150. for(i=0; i<5; i++){
  1151. context_count*= read_quant_table(c, quant_table[i], context_count);
  1152. if(context_count > 32768U){
  1153. return -1;
  1154. }
  1155. }
  1156. return (context_count+1)/2;
  1157. }
  1158. static int read_extra_header(FFV1Context *f){
  1159. RangeCoder * const c= &f->c;
  1160. uint8_t state[CONTEXT_SIZE];
  1161. int i;
  1162. memset(state, 128, sizeof(state));
  1163. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1164. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1165. f->version= get_symbol(c, state, 0);
  1166. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1167. if(f->ac>1){
  1168. for(i=1; i<256; i++){
  1169. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1170. }
  1171. }
  1172. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1173. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1174. get_rac(c, state); //no chroma = false
  1175. f->chroma_h_shift= get_symbol(c, state, 0);
  1176. f->chroma_v_shift= get_symbol(c, state, 0);
  1177. get_rac(c, state); //transparency plane
  1178. f->plane_count= 2;
  1179. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1180. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1181. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1182. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1183. return -1;
  1184. }
  1185. f->quant_table_count= get_symbol(c, state, 0);
  1186. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1187. return -1;
  1188. for(i=0; i<f->quant_table_count; i++){
  1189. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1190. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1191. return -1;
  1192. }
  1193. }
  1194. return 0;
  1195. }
  1196. static int read_header(FFV1Context *f){
  1197. uint8_t state[CONTEXT_SIZE];
  1198. int i, j, context_count;
  1199. RangeCoder * const c= &f->slice_context[0]->c;
  1200. memset(state, 128, sizeof(state));
  1201. if(f->version < 2){
  1202. f->version= get_symbol(c, state, 0);
  1203. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1204. if(f->ac>1){
  1205. for(i=1; i<256; i++){
  1206. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1207. }
  1208. }
  1209. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1210. if(f->version>0)
  1211. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1212. get_rac(c, state); //no chroma = false
  1213. f->chroma_h_shift= get_symbol(c, state, 0);
  1214. f->chroma_v_shift= get_symbol(c, state, 0);
  1215. get_rac(c, state); //transparency plane
  1216. f->plane_count= 2;
  1217. }
  1218. if(f->colorspace==0){
  1219. if(f->avctx->bits_per_raw_sample<=8){
  1220. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1221. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1222. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1223. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1224. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1225. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1226. default:
  1227. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1228. return -1;
  1229. }
  1230. }else{
  1231. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1232. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1233. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1234. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1235. default:
  1236. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1237. return -1;
  1238. }
  1239. }
  1240. }else if(f->colorspace==1){
  1241. if(f->chroma_h_shift || f->chroma_v_shift){
  1242. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1243. return -1;
  1244. }
  1245. f->avctx->pix_fmt= PIX_FMT_RGB32;
  1246. }else{
  1247. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1248. return -1;
  1249. }
  1250. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1251. if(f->version < 2){
  1252. context_count= read_quant_tables(c, f->quant_table);
  1253. if(context_count < 0){
  1254. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1255. return -1;
  1256. }
  1257. }else{
  1258. f->slice_count= get_symbol(c, state, 0);
  1259. if(f->slice_count > (unsigned)MAX_SLICES)
  1260. return -1;
  1261. }
  1262. for(j=0; j<f->slice_count; j++){
  1263. FFV1Context *fs= f->slice_context[j];
  1264. fs->ac= f->ac;
  1265. if(f->version >= 2){
  1266. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1267. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1268. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1269. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1270. fs->slice_x /= f->num_h_slices;
  1271. fs->slice_y /= f->num_v_slices;
  1272. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1273. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1274. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1275. return -1;
  1276. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1277. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1278. return -1;
  1279. }
  1280. for(i=0; i<f->plane_count; i++){
  1281. PlaneContext * const p= &fs->plane[i];
  1282. if(f->version >= 2){
  1283. int idx=get_symbol(c, state, 0);
  1284. if(idx > (unsigned)f->quant_table_count){
  1285. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1286. return -1;
  1287. }
  1288. p->quant_table_index= idx;
  1289. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1290. context_count= f->context_count[idx];
  1291. }else{
  1292. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1293. }
  1294. if(p->context_count < context_count){
  1295. av_freep(&p->state);
  1296. av_freep(&p->vlc_state);
  1297. }
  1298. p->context_count= context_count;
  1299. }
  1300. }
  1301. return 0;
  1302. }
  1303. static av_cold int decode_init(AVCodecContext *avctx)
  1304. {
  1305. FFV1Context *f = avctx->priv_data;
  1306. common_init(avctx);
  1307. if(avctx->extradata && read_extra_header(f) < 0)
  1308. return -1;
  1309. if(init_slice_contexts(f) < 0)
  1310. return -1;
  1311. return 0;
  1312. }
  1313. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1314. const uint8_t *buf = avpkt->data;
  1315. int buf_size = avpkt->size;
  1316. FFV1Context *f = avctx->priv_data;
  1317. RangeCoder * const c= &f->slice_context[0]->c;
  1318. AVFrame * const p= &f->picture;
  1319. int bytes_read, i;
  1320. uint8_t keystate= 128;
  1321. const uint8_t *buf_p;
  1322. AVFrame *picture = data;
  1323. ff_init_range_decoder(c, buf, buf_size);
  1324. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1325. p->pict_type= FF_I_TYPE; //FIXME I vs. P
  1326. if(get_rac(c, &keystate)){
  1327. p->key_frame= 1;
  1328. if(read_header(f) < 0)
  1329. return -1;
  1330. if(init_slice_state(f) < 0)
  1331. return -1;
  1332. clear_state(f);
  1333. }else{
  1334. p->key_frame= 0;
  1335. }
  1336. if(f->ac>1){
  1337. int i;
  1338. for(i=1; i<256; i++){
  1339. c->one_state[i]= f->state_transition[i];
  1340. c->zero_state[256-i]= 256-c->one_state[i];
  1341. }
  1342. }
  1343. p->reference= 0;
  1344. if(avctx->get_buffer(avctx, p) < 0){
  1345. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1346. return -1;
  1347. }
  1348. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1349. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1350. if(!f->ac){
  1351. bytes_read = c->bytestream - c->bytestream_start - 1;
  1352. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1353. //printf("pos=%d\n", bytes_read);
  1354. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, buf_size - bytes_read);
  1355. } else {
  1356. bytes_read = 0; /* avoid warning */
  1357. }
  1358. buf_p= buf + buf_size;
  1359. for(i=f->slice_count-1; i>0; i--){
  1360. FFV1Context *fs= f->slice_context[i];
  1361. int v= AV_RB24(buf_p-3)+3;
  1362. if(buf_p - buf <= v){
  1363. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1364. return -1;
  1365. }
  1366. buf_p -= v;
  1367. if(fs->ac){
  1368. ff_init_range_decoder(&fs->c, buf_p, v);
  1369. }else{
  1370. init_get_bits(&fs->gb, buf_p, v);
  1371. }
  1372. }
  1373. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1374. f->picture_number++;
  1375. *picture= *p;
  1376. avctx->release_buffer(avctx, p); //FIXME
  1377. *data_size = sizeof(AVFrame);
  1378. return buf_size;
  1379. }
  1380. AVCodec ffv1_decoder = {
  1381. "ffv1",
  1382. AVMEDIA_TYPE_VIDEO,
  1383. CODEC_ID_FFV1,
  1384. sizeof(FFV1Context),
  1385. decode_init,
  1386. NULL,
  1387. common_end,
  1388. decode_frame,
  1389. CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
  1390. NULL,
  1391. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1392. };
  1393. #if CONFIG_FFV1_ENCODER
  1394. AVCodec ffv1_encoder = {
  1395. "ffv1",
  1396. AVMEDIA_TYPE_VIDEO,
  1397. CODEC_ID_FFV1,
  1398. sizeof(FFV1Context),
  1399. encode_init,
  1400. encode_frame,
  1401. common_end,
  1402. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV444P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_NONE},
  1403. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1404. };
  1405. #endif