You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3293 lines
91KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using @code{--disable-filters}.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section amerge
  122. Merge two audio streams into a single multi-channel stream.
  123. This filter does not need any argument.
  124. If the channel layouts of the inputs are disjoint, and therefore compatible,
  125. the channel layout of the output will be set accordingly and the channels
  126. will be reordered as necessary. If the channel layouts of the inputs are not
  127. disjoint, the output will have all the channels of the first input then all
  128. the channels of the second input, in that order, and the channel layout of
  129. the output will be the default value corresponding to the total number of
  130. channels.
  131. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  132. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  133. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  134. first input, b1 is the first channel of the second input).
  135. On the other hand, if both input are in stereo, the output channels will be
  136. in the default order: a1, a2, b1, b2, and the channel layout will be
  137. arbitrarily set to 4.0, which may or may not be the expected value.
  138. Both inputs must have the same sample rate, format and packing.
  139. If inputs do not have the same duration, the output will stop with the
  140. shortest.
  141. Example: merge two mono files into a stereo stream:
  142. @example
  143. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  144. @end example
  145. @section anull
  146. Pass the audio source unchanged to the output.
  147. @section aresample
  148. Resample the input audio to the specified sample rate.
  149. The filter accepts exactly one parameter, the output sample rate. If not
  150. specified then the filter will automatically convert between its input
  151. and output sample rates.
  152. For example, to resample the input audio to 44100Hz:
  153. @example
  154. aresample=44100
  155. @end example
  156. @section ashowinfo
  157. Show a line containing various information for each input audio frame.
  158. The input audio is not modified.
  159. The shown line contains a sequence of key/value pairs of the form
  160. @var{key}:@var{value}.
  161. A description of each shown parameter follows:
  162. @table @option
  163. @item n
  164. sequential number of the input frame, starting from 0
  165. @item pts
  166. presentation TimeStamp of the input frame, expressed as a number of
  167. time base units. The time base unit depends on the filter input pad, and
  168. is usually 1/@var{sample_rate}.
  169. @item pts_time
  170. presentation TimeStamp of the input frame, expressed as a number of
  171. seconds
  172. @item pos
  173. position of the frame in the input stream, -1 if this information in
  174. unavailable and/or meaningless (for example in case of synthetic audio)
  175. @item fmt
  176. sample format name
  177. @item chlayout
  178. channel layout description
  179. @item nb_samples
  180. number of samples (per each channel) contained in the filtered frame
  181. @item rate
  182. sample rate for the audio frame
  183. @item planar
  184. if the packing format is planar, 0 if packed
  185. @item checksum
  186. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  187. @item plane_checksum
  188. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  189. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  190. @var{c6} @var{c7}]"
  191. @end table
  192. @section asplit
  193. Pass on the input audio to two outputs. Both outputs are identical to
  194. the input audio.
  195. For example:
  196. @example
  197. [in] asplit[out0], showaudio[out1]
  198. @end example
  199. will create two separate outputs from the same input, one cropped and
  200. one padded.
  201. @section astreamsync
  202. Forward two audio streams and control the order the buffers are forwarded.
  203. The argument to the filter is an expression deciding which stream should be
  204. forwarded next: if the result is negative, the first stream is forwarded; if
  205. the result is positive or zero, the second stream is forwarded. It can use
  206. the following variables:
  207. @table @var
  208. @item b1 b2
  209. number of buffers forwarded so far on each stream
  210. @item s1 s2
  211. number of samples forwarded so far on each stream
  212. @item t1 t2
  213. current timestamp of each stream
  214. @end table
  215. The default value is @code{t1-t2}, which means to always forward the stream
  216. that has a smaller timestamp.
  217. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  218. input, while avoiding too much of a desynchronization:
  219. @example
  220. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  221. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  222. [a2] [b2] amerge
  223. @end example
  224. @section earwax
  225. Make audio easier to listen to on headphones.
  226. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  227. so that when listened to on headphones the stereo image is moved from
  228. inside your head (standard for headphones) to outside and in front of
  229. the listener (standard for speakers).
  230. Ported from SoX.
  231. @section pan
  232. Mix channels with specific gain levels. The filter accepts the output
  233. channel layout followed by a set of channels definitions.
  234. The filter accepts parameters of the form:
  235. "@var{l}:@var{outdef}:@var{outdef}:..."
  236. @table @option
  237. @item l
  238. output channel layout or number of channels
  239. @item outdef
  240. output channel specification, of the form:
  241. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  242. @item out_name
  243. output channel to define, either a channel name (FL, FR, etc.) or a channel
  244. number (c0, c1, etc.)
  245. @item gain
  246. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  247. @item in_name
  248. input channel to use, see out_name for details; it is not possible to mix
  249. named and numbered input channels
  250. @end table
  251. If the `=' in a channel specification is replaced by `<', then the gains for
  252. that specification will be renormalized so that the total is 1, thus
  253. avoiding clipping noise.
  254. For example, if you want to down-mix from stereo to mono, but with a bigger
  255. factor for the left channel:
  256. @example
  257. pan=1:c0=0.9*c0+0.1*c1
  258. @end example
  259. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  260. 7-channels surround:
  261. @example
  262. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  263. @end example
  264. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  265. that should be preferred (see "-ac" option) unless you have very specific
  266. needs.
  267. @section silencedetect
  268. Detect silence in an audio stream.
  269. This filter logs a message when it detects that the input audio volume is less
  270. or equal to a noise tolerance value for a duration greater or equal to the
  271. minimum detected noise duration.
  272. The printed times and duration are expressed in seconds.
  273. @table @option
  274. @item duration, d
  275. Set silence duration until notification (default is 2 seconds).
  276. @item noise, n
  277. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  278. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  279. @end table
  280. Detect 5 seconds of silence with -50dB noise tolerance:
  281. @example
  282. silencedetect=n=-50dB:d=5
  283. @end example
  284. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  285. tolerance in @file{silence.mp3}:
  286. @example
  287. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  288. @end example
  289. @section volume
  290. Adjust the input audio volume.
  291. The filter accepts exactly one parameter @var{vol}, which expresses
  292. how the audio volume will be increased or decreased.
  293. Output values are clipped to the maximum value.
  294. If @var{vol} is expressed as a decimal number, the output audio
  295. volume is given by the relation:
  296. @example
  297. @var{output_volume} = @var{vol} * @var{input_volume}
  298. @end example
  299. If @var{vol} is expressed as a decimal number followed by the string
  300. "dB", the value represents the requested change in decibels of the
  301. input audio power, and the output audio volume is given by the
  302. relation:
  303. @example
  304. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  305. @end example
  306. Otherwise @var{vol} is considered an expression and its evaluated
  307. value is used for computing the output audio volume according to the
  308. first relation.
  309. Default value for @var{vol} is 1.0.
  310. @subsection Examples
  311. @itemize
  312. @item
  313. Half the input audio volume:
  314. @example
  315. volume=0.5
  316. @end example
  317. The above example is equivalent to:
  318. @example
  319. volume=1/2
  320. @end example
  321. @item
  322. Decrease input audio power by 12 decibels:
  323. @example
  324. volume=-12dB
  325. @end example
  326. @end itemize
  327. @c man end AUDIO FILTERS
  328. @chapter Audio Sources
  329. @c man begin AUDIO SOURCES
  330. Below is a description of the currently available audio sources.
  331. @section abuffer
  332. Buffer audio frames, and make them available to the filter chain.
  333. This source is mainly intended for a programmatic use, in particular
  334. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  335. It accepts the following mandatory parameters:
  336. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  337. @table @option
  338. @item sample_rate
  339. The sample rate of the incoming audio buffers.
  340. @item sample_fmt
  341. The sample format of the incoming audio buffers.
  342. Either a sample format name or its corresponging integer representation from
  343. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  344. @item channel_layout
  345. The channel layout of the incoming audio buffers.
  346. Either a channel layout name from channel_layout_map in
  347. @file{libavutil/audioconvert.c} or its corresponding integer representation
  348. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  349. @item packing
  350. Either "packed" or "planar", or their integer representation: 0 or 1
  351. respectively.
  352. @end table
  353. For example:
  354. @example
  355. abuffer=44100:s16:stereo:planar
  356. @end example
  357. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  358. Since the sample format with name "s16" corresponds to the number
  359. 1 and the "stereo" channel layout corresponds to the value 3, this is
  360. equivalent to:
  361. @example
  362. abuffer=44100:1:3:1
  363. @end example
  364. @section aevalsrc
  365. Generate an audio signal specified by an expression.
  366. This source accepts in input one or more expressions (one for each
  367. channel), which are evaluated and used to generate a corresponding
  368. audio signal.
  369. It accepts the syntax: @var{exprs}[::@var{options}].
  370. @var{exprs} is a list of expressions separated by ":", one for each
  371. separate channel. The output channel layout depends on the number of
  372. provided expressions, up to 8 channels are supported.
  373. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  374. separated by ":".
  375. The description of the accepted options follows.
  376. @table @option
  377. @item duration, d
  378. Set the minimum duration of the sourced audio. See the function
  379. @code{av_parse_time()} for the accepted format.
  380. Note that the resulting duration may be greater than the specified
  381. duration, as the generated audio is always cut at the end of a
  382. complete frame.
  383. If not specified, or the expressed duration is negative, the audio is
  384. supposed to be generated forever.
  385. @item nb_samples, n
  386. Set the number of samples per channel per each output frame,
  387. default to 1024.
  388. @item sample_rate, s
  389. Specify the sample rate, default to 44100.
  390. @end table
  391. Each expression in @var{exprs} can contain the following constants:
  392. @table @option
  393. @item n
  394. number of the evaluated sample, starting from 0
  395. @item t
  396. time of the evaluated sample expressed in seconds, starting from 0
  397. @item s
  398. sample rate
  399. @end table
  400. @subsection Examples
  401. @itemize
  402. @item
  403. Generate silence:
  404. @example
  405. aevalsrc=0
  406. @end example
  407. @item
  408. Generate a sin signal with frequency of 440 Hz, set sample rate to
  409. 8000 Hz:
  410. @example
  411. aevalsrc="sin(440*2*PI*t)::s=8000"
  412. @end example
  413. @item
  414. Generate white noise:
  415. @example
  416. aevalsrc="-2+random(0)"
  417. @end example
  418. @item
  419. Generate an amplitude modulated signal:
  420. @example
  421. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  422. @end example
  423. @item
  424. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  425. @example
  426. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  427. @end example
  428. @end itemize
  429. @section amovie
  430. Read an audio stream from a movie container.
  431. It accepts the syntax: @var{movie_name}[:@var{options}] where
  432. @var{movie_name} is the name of the resource to read (not necessarily
  433. a file but also a device or a stream accessed through some protocol),
  434. and @var{options} is an optional sequence of @var{key}=@var{value}
  435. pairs, separated by ":".
  436. The description of the accepted options follows.
  437. @table @option
  438. @item format_name, f
  439. Specify the format assumed for the movie to read, and can be either
  440. the name of a container or an input device. If not specified the
  441. format is guessed from @var{movie_name} or by probing.
  442. @item seek_point, sp
  443. Specify the seek point in seconds, the frames will be output
  444. starting from this seek point, the parameter is evaluated with
  445. @code{av_strtod} so the numerical value may be suffixed by an IS
  446. postfix. Default value is "0".
  447. @item stream_index, si
  448. Specify the index of the audio stream to read. If the value is -1,
  449. the best suited audio stream will be automatically selected. Default
  450. value is "-1".
  451. @end table
  452. @section anullsrc
  453. Null audio source, return unprocessed audio frames. It is mainly useful
  454. as a template and to be employed in analysis / debugging tools, or as
  455. the source for filters which ignore the input data (for example the sox
  456. synth filter).
  457. It accepts an optional sequence of @var{key}=@var{value} pairs,
  458. separated by ":".
  459. The description of the accepted options follows.
  460. @table @option
  461. @item sample_rate, s
  462. Specify the sample rate, and defaults to 44100.
  463. @item channel_layout, cl
  464. Specify the channel layout, and can be either an integer or a string
  465. representing a channel layout. The default value of @var{channel_layout}
  466. is "stereo".
  467. Check the channel_layout_map definition in
  468. @file{libavcodec/audioconvert.c} for the mapping between strings and
  469. channel layout values.
  470. @item nb_samples, n
  471. Set the number of samples per requested frames.
  472. @end table
  473. Follow some examples:
  474. @example
  475. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  476. anullsrc=r=48000:cl=4
  477. # same as
  478. anullsrc=r=48000:cl=mono
  479. @end example
  480. @c man end AUDIO SOURCES
  481. @chapter Audio Sinks
  482. @c man begin AUDIO SINKS
  483. Below is a description of the currently available audio sinks.
  484. @section abuffersink
  485. Buffer audio frames, and make them available to the end of filter chain.
  486. This sink is mainly intended for programmatic use, in particular
  487. through the interface defined in @file{libavfilter/buffersink.h}.
  488. It requires a pointer to an AVABufferSinkContext structure, which
  489. defines the incoming buffers' formats, to be passed as the opaque
  490. parameter to @code{avfilter_init_filter} for initialization.
  491. @section anullsink
  492. Null audio sink, do absolutely nothing with the input audio. It is
  493. mainly useful as a template and to be employed in analysis / debugging
  494. tools.
  495. @c man end AUDIO SINKS
  496. @chapter Video Filters
  497. @c man begin VIDEO FILTERS
  498. When you configure your FFmpeg build, you can disable any of the
  499. existing filters using @code{--disable-filters}.
  500. The configure output will show the video filters included in your
  501. build.
  502. Below is a description of the currently available video filters.
  503. @section ass
  504. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  505. using the libass library.
  506. To enable compilation of this filter you need to configure FFmpeg with
  507. @code{--enable-libass}.
  508. This filter accepts in input the name of the ass file to render.
  509. For example, to render the file @file{sub.ass} on top of the input
  510. video, use the command:
  511. @example
  512. ass=sub.ass
  513. @end example
  514. @section blackframe
  515. Detect frames that are (almost) completely black. Can be useful to
  516. detect chapter transitions or commercials. Output lines consist of
  517. the frame number of the detected frame, the percentage of blackness,
  518. the position in the file if known or -1 and the timestamp in seconds.
  519. In order to display the output lines, you need to set the loglevel at
  520. least to the AV_LOG_INFO value.
  521. The filter accepts the syntax:
  522. @example
  523. blackframe[=@var{amount}:[@var{threshold}]]
  524. @end example
  525. @var{amount} is the percentage of the pixels that have to be below the
  526. threshold, and defaults to 98.
  527. @var{threshold} is the threshold below which a pixel value is
  528. considered black, and defaults to 32.
  529. @section boxblur
  530. Apply boxblur algorithm to the input video.
  531. This filter accepts the parameters:
  532. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  533. Chroma and alpha parameters are optional, if not specified they default
  534. to the corresponding values set for @var{luma_radius} and
  535. @var{luma_power}.
  536. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  537. the radius in pixels of the box used for blurring the corresponding
  538. input plane. They are expressions, and can contain the following
  539. constants:
  540. @table @option
  541. @item w, h
  542. the input width and height in pixels
  543. @item cw, ch
  544. the input chroma image width and height in pixels
  545. @item hsub, vsub
  546. horizontal and vertical chroma subsample values. For example for the
  547. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  548. @end table
  549. The radius must be a non-negative number, and must not be greater than
  550. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  551. and of @code{min(cw,ch)/2} for the chroma planes.
  552. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  553. how many times the boxblur filter is applied to the corresponding
  554. plane.
  555. Some examples follow:
  556. @itemize
  557. @item
  558. Apply a boxblur filter with luma, chroma, and alpha radius
  559. set to 2:
  560. @example
  561. boxblur=2:1
  562. @end example
  563. @item
  564. Set luma radius to 2, alpha and chroma radius to 0
  565. @example
  566. boxblur=2:1:0:0:0:0
  567. @end example
  568. @item
  569. Set luma and chroma radius to a fraction of the video dimension
  570. @example
  571. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  572. @end example
  573. @end itemize
  574. @section copy
  575. Copy the input source unchanged to the output. Mainly useful for
  576. testing purposes.
  577. @section crop
  578. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  579. The parameters are expressions containing the following constants:
  580. @table @option
  581. @item x, y
  582. the computed values for @var{x} and @var{y}. They are evaluated for
  583. each new frame.
  584. @item in_w, in_h
  585. the input width and height
  586. @item iw, ih
  587. same as @var{in_w} and @var{in_h}
  588. @item out_w, out_h
  589. the output (cropped) width and height
  590. @item ow, oh
  591. same as @var{out_w} and @var{out_h}
  592. @item a
  593. same as @var{iw} / @var{ih}
  594. @item sar
  595. input sample aspect ratio
  596. @item dar
  597. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  598. @item hsub, vsub
  599. horizontal and vertical chroma subsample values. For example for the
  600. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  601. @item n
  602. the number of input frame, starting from 0
  603. @item pos
  604. the position in the file of the input frame, NAN if unknown
  605. @item t
  606. timestamp expressed in seconds, NAN if the input timestamp is unknown
  607. @end table
  608. The @var{out_w} and @var{out_h} parameters specify the expressions for
  609. the width and height of the output (cropped) video. They are
  610. evaluated just at the configuration of the filter.
  611. The default value of @var{out_w} is "in_w", and the default value of
  612. @var{out_h} is "in_h".
  613. The expression for @var{out_w} may depend on the value of @var{out_h},
  614. and the expression for @var{out_h} may depend on @var{out_w}, but they
  615. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  616. evaluated after @var{out_w} and @var{out_h}.
  617. The @var{x} and @var{y} parameters specify the expressions for the
  618. position of the top-left corner of the output (non-cropped) area. They
  619. are evaluated for each frame. If the evaluated value is not valid, it
  620. is approximated to the nearest valid value.
  621. The default value of @var{x} is "(in_w-out_w)/2", and the default
  622. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  623. the center of the input image.
  624. The expression for @var{x} may depend on @var{y}, and the expression
  625. for @var{y} may depend on @var{x}.
  626. Follow some examples:
  627. @example
  628. # crop the central input area with size 100x100
  629. crop=100:100
  630. # crop the central input area with size 2/3 of the input video
  631. "crop=2/3*in_w:2/3*in_h"
  632. # crop the input video central square
  633. crop=in_h
  634. # delimit the rectangle with the top-left corner placed at position
  635. # 100:100 and the right-bottom corner corresponding to the right-bottom
  636. # corner of the input image.
  637. crop=in_w-100:in_h-100:100:100
  638. # crop 10 pixels from the left and right borders, and 20 pixels from
  639. # the top and bottom borders
  640. "crop=in_w-2*10:in_h-2*20"
  641. # keep only the bottom right quarter of the input image
  642. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  643. # crop height for getting Greek harmony
  644. "crop=in_w:1/PHI*in_w"
  645. # trembling effect
  646. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  647. # erratic camera effect depending on timestamp
  648. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  649. # set x depending on the value of y
  650. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  651. @end example
  652. @section cropdetect
  653. Auto-detect crop size.
  654. Calculate necessary cropping parameters and prints the recommended
  655. parameters through the logging system. The detected dimensions
  656. correspond to the non-black area of the input video.
  657. It accepts the syntax:
  658. @example
  659. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  660. @end example
  661. @table @option
  662. @item limit
  663. Threshold, which can be optionally specified from nothing (0) to
  664. everything (255), defaults to 24.
  665. @item round
  666. Value which the width/height should be divisible by, defaults to
  667. 16. The offset is automatically adjusted to center the video. Use 2 to
  668. get only even dimensions (needed for 4:2:2 video). 16 is best when
  669. encoding to most video codecs.
  670. @item reset
  671. Counter that determines after how many frames cropdetect will reset
  672. the previously detected largest video area and start over to detect
  673. the current optimal crop area. Defaults to 0.
  674. This can be useful when channel logos distort the video area. 0
  675. indicates never reset and return the largest area encountered during
  676. playback.
  677. @end table
  678. @section delogo
  679. Suppress a TV station logo by a simple interpolation of the surrounding
  680. pixels. Just set a rectangle covering the logo and watch it disappear
  681. (and sometimes something even uglier appear - your mileage may vary).
  682. The filter accepts parameters as a string of the form
  683. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  684. @var{key}=@var{value} pairs, separated by ":".
  685. The description of the accepted parameters follows.
  686. @table @option
  687. @item x, y
  688. Specify the top left corner coordinates of the logo. They must be
  689. specified.
  690. @item w, h
  691. Specify the width and height of the logo to clear. They must be
  692. specified.
  693. @item band, t
  694. Specify the thickness of the fuzzy edge of the rectangle (added to
  695. @var{w} and @var{h}). The default value is 4.
  696. @item show
  697. When set to 1, a green rectangle is drawn on the screen to simplify
  698. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  699. @var{band} is set to 4. The default value is 0.
  700. @end table
  701. Some examples follow.
  702. @itemize
  703. @item
  704. Set a rectangle covering the area with top left corner coordinates 0,0
  705. and size 100x77, setting a band of size 10:
  706. @example
  707. delogo=0:0:100:77:10
  708. @end example
  709. @item
  710. As the previous example, but use named options:
  711. @example
  712. delogo=x=0:y=0:w=100:h=77:band=10
  713. @end example
  714. @end itemize
  715. @section deshake
  716. Attempt to fix small changes in horizontal and/or vertical shift. This
  717. filter helps remove camera shake from hand-holding a camera, bumping a
  718. tripod, moving on a vehicle, etc.
  719. The filter accepts parameters as a string of the form
  720. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  721. A description of the accepted parameters follows.
  722. @table @option
  723. @item x, y, w, h
  724. Specify a rectangular area where to limit the search for motion
  725. vectors.
  726. If desired the search for motion vectors can be limited to a
  727. rectangular area of the frame defined by its top left corner, width
  728. and height. These parameters have the same meaning as the drawbox
  729. filter which can be used to visualise the position of the bounding
  730. box.
  731. This is useful when simultaneous movement of subjects within the frame
  732. might be confused for camera motion by the motion vector search.
  733. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  734. then the full frame is used. This allows later options to be set
  735. without specifying the bounding box for the motion vector search.
  736. Default - search the whole frame.
  737. @item rx, ry
  738. Specify the maximum extent of movement in x and y directions in the
  739. range 0-64 pixels. Default 16.
  740. @item edge
  741. Specify how to generate pixels to fill blanks at the edge of the
  742. frame. An integer from 0 to 3 as follows:
  743. @table @option
  744. @item 0
  745. Fill zeroes at blank locations
  746. @item 1
  747. Original image at blank locations
  748. @item 2
  749. Extruded edge value at blank locations
  750. @item 3
  751. Mirrored edge at blank locations
  752. @end table
  753. The default setting is mirror edge at blank locations.
  754. @item blocksize
  755. Specify the blocksize to use for motion search. Range 4-128 pixels,
  756. default 8.
  757. @item contrast
  758. Specify the contrast threshold for blocks. Only blocks with more than
  759. the specified contrast (difference between darkest and lightest
  760. pixels) will be considered. Range 1-255, default 125.
  761. @item search
  762. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  763. search. Default - exhaustive search.
  764. @item filename
  765. If set then a detailed log of the motion search is written to the
  766. specified file.
  767. @end table
  768. @section drawbox
  769. Draw a colored box on the input image.
  770. It accepts the syntax:
  771. @example
  772. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  773. @end example
  774. @table @option
  775. @item x, y
  776. Specify the top left corner coordinates of the box. Default to 0.
  777. @item width, height
  778. Specify the width and height of the box, if 0 they are interpreted as
  779. the input width and height. Default to 0.
  780. @item color
  781. Specify the color of the box to write, it can be the name of a color
  782. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  783. @end table
  784. Follow some examples:
  785. @example
  786. # draw a black box around the edge of the input image
  787. drawbox
  788. # draw a box with color red and an opacity of 50%
  789. drawbox=10:20:200:60:red@@0.5"
  790. @end example
  791. @section drawtext
  792. Draw text string or text from specified file on top of video using the
  793. libfreetype library.
  794. To enable compilation of this filter you need to configure FFmpeg with
  795. @code{--enable-libfreetype}.
  796. The filter also recognizes strftime() sequences in the provided text
  797. and expands them accordingly. Check the documentation of strftime().
  798. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  799. separated by ":".
  800. The description of the accepted parameters follows.
  801. @table @option
  802. @item fontfile
  803. The font file to be used for drawing text. Path must be included.
  804. This parameter is mandatory.
  805. @item text
  806. The text string to be drawn. The text must be a sequence of UTF-8
  807. encoded characters.
  808. This parameter is mandatory if no file is specified with the parameter
  809. @var{textfile}.
  810. @item textfile
  811. A text file containing text to be drawn. The text must be a sequence
  812. of UTF-8 encoded characters.
  813. This parameter is mandatory if no text string is specified with the
  814. parameter @var{text}.
  815. If both text and textfile are specified, an error is thrown.
  816. @item x, y
  817. The expressions which specify the offsets where text will be drawn
  818. within the video frame. They are relative to the top/left border of the
  819. output image.
  820. The default value of @var{x} and @var{y} is "0".
  821. See below for the list of accepted constants.
  822. @item fontsize
  823. The font size to be used for drawing text.
  824. The default value of @var{fontsize} is 16.
  825. @item fontcolor
  826. The color to be used for drawing fonts.
  827. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  828. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  829. The default value of @var{fontcolor} is "black".
  830. @item boxcolor
  831. The color to be used for drawing box around text.
  832. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  833. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  834. The default value of @var{boxcolor} is "white".
  835. @item box
  836. Used to draw a box around text using background color.
  837. Value should be either 1 (enable) or 0 (disable).
  838. The default value of @var{box} is 0.
  839. @item shadowx, shadowy
  840. The x and y offsets for the text shadow position with respect to the
  841. position of the text. They can be either positive or negative
  842. values. Default value for both is "0".
  843. @item shadowcolor
  844. The color to be used for drawing a shadow behind the drawn text. It
  845. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  846. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  847. The default value of @var{shadowcolor} is "black".
  848. @item ft_load_flags
  849. Flags to be used for loading the fonts.
  850. The flags map the corresponding flags supported by libfreetype, and are
  851. a combination of the following values:
  852. @table @var
  853. @item default
  854. @item no_scale
  855. @item no_hinting
  856. @item render
  857. @item no_bitmap
  858. @item vertical_layout
  859. @item force_autohint
  860. @item crop_bitmap
  861. @item pedantic
  862. @item ignore_global_advance_width
  863. @item no_recurse
  864. @item ignore_transform
  865. @item monochrome
  866. @item linear_design
  867. @item no_autohint
  868. @item end table
  869. @end table
  870. Default value is "render".
  871. For more information consult the documentation for the FT_LOAD_*
  872. libfreetype flags.
  873. @item tabsize
  874. The size in number of spaces to use for rendering the tab.
  875. Default value is 4.
  876. @end table
  877. The parameters for @var{x} and @var{y} are expressions containing the
  878. following constants:
  879. @table @option
  880. @item W, H
  881. the input width and height
  882. @item tw, text_w
  883. the width of the rendered text
  884. @item th, text_h
  885. the height of the rendered text
  886. @item lh, line_h
  887. the height of each text line
  888. @item sar
  889. input sample aspect ratio
  890. @item dar
  891. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  892. @item hsub, vsub
  893. horizontal and vertical chroma subsample values. For example for the
  894. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  895. @item max_glyph_w
  896. maximum glyph width, that is the maximum width for all the glyphs
  897. contained in the rendered text
  898. @item max_glyph_h
  899. maximum glyph height, that is the maximum height for all the glyphs
  900. contained in the rendered text, it is equivalent to @var{ascent} -
  901. @var{descent}.
  902. @item max_glyph_a, ascent
  903. the maximum distance from the baseline to the highest/upper grid
  904. coordinate used to place a glyph outline point, for all the rendered
  905. glyphs.
  906. It is a positive value, due to the grid's orientation with the Y axis
  907. upwards.
  908. @item max_glyph_d, descent
  909. the maximum distance from the baseline to the lowest grid coordinate
  910. used to place a glyph outline point, for all the rendered glyphs.
  911. This is a negative value, due to the grid's orientation, with the Y axis
  912. upwards.
  913. @item n
  914. the number of input frame, starting from 0
  915. @item t
  916. timestamp expressed in seconds, NAN if the input timestamp is unknown
  917. @item timecode
  918. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  919. with or without text parameter. @var{rate} option must be specified.
  920. Note that timecode options are @emph{not} effective if FFmpeg is build with
  921. @code{--disable-avcodec}.
  922. @item r, rate
  923. frame rate (timecode only)
  924. @end table
  925. Some examples follow.
  926. @itemize
  927. @item
  928. Draw "Test Text" with font FreeSerif, using the default values for the
  929. optional parameters.
  930. @example
  931. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  932. @end example
  933. @item
  934. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  935. and y=50 (counting from the top-left corner of the screen), text is
  936. yellow with a red box around it. Both the text and the box have an
  937. opacity of 20%.
  938. @example
  939. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  940. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  941. @end example
  942. Note that the double quotes are not necessary if spaces are not used
  943. within the parameter list.
  944. @item
  945. Show the text at the center of the video frame:
  946. @example
  947. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  948. @end example
  949. @item
  950. Show a text line sliding from right to left in the last row of the video
  951. frame. The file @file{LONG_LINE} is assumed to contain a single line
  952. with no newlines.
  953. @example
  954. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  955. @end example
  956. @item
  957. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  958. @example
  959. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  960. @end example
  961. @item
  962. Draw a single green letter "g", at the center of the input video.
  963. The glyph baseline is placed at half screen height.
  964. @example
  965. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  966. @end example
  967. @end itemize
  968. For more information about libfreetype, check:
  969. @url{http://www.freetype.org/}.
  970. @section fade
  971. Apply fade-in/out effect to input video.
  972. It accepts the parameters:
  973. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  974. @var{type} specifies if the effect type, can be either "in" for
  975. fade-in, or "out" for a fade-out effect.
  976. @var{start_frame} specifies the number of the start frame for starting
  977. to apply the fade effect.
  978. @var{nb_frames} specifies the number of frames for which the fade
  979. effect has to last. At the end of the fade-in effect the output video
  980. will have the same intensity as the input video, at the end of the
  981. fade-out transition the output video will be completely black.
  982. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  983. separated by ":". The description of the accepted options follows.
  984. @table @option
  985. @item type, t
  986. See @var{type}.
  987. @item start_frame, s
  988. See @var{start_frame}.
  989. @item nb_frames, n
  990. See @var{nb_frames}.
  991. @item alpha
  992. If set to 1, fade only alpha channel, if one exists on the input.
  993. Default value is 0.
  994. @end table
  995. A few usage examples follow, usable too as test scenarios.
  996. @example
  997. # fade in first 30 frames of video
  998. fade=in:0:30
  999. # fade out last 45 frames of a 200-frame video
  1000. fade=out:155:45
  1001. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1002. fade=in:0:25, fade=out:975:25
  1003. # make first 5 frames black, then fade in from frame 5-24
  1004. fade=in:5:20
  1005. # fade in alpha over first 25 frames of video
  1006. fade=in:0:25:alpha=1
  1007. @end example
  1008. @section fieldorder
  1009. Transform the field order of the input video.
  1010. It accepts one parameter which specifies the required field order that
  1011. the input interlaced video will be transformed to. The parameter can
  1012. assume one of the following values:
  1013. @table @option
  1014. @item 0 or bff
  1015. output bottom field first
  1016. @item 1 or tff
  1017. output top field first
  1018. @end table
  1019. Default value is "tff".
  1020. Transformation is achieved by shifting the picture content up or down
  1021. by one line, and filling the remaining line with appropriate picture content.
  1022. This method is consistent with most broadcast field order converters.
  1023. If the input video is not flagged as being interlaced, or it is already
  1024. flagged as being of the required output field order then this filter does
  1025. not alter the incoming video.
  1026. This filter is very useful when converting to or from PAL DV material,
  1027. which is bottom field first.
  1028. For example:
  1029. @example
  1030. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1031. @end example
  1032. @section fifo
  1033. Buffer input images and send them when they are requested.
  1034. This filter is mainly useful when auto-inserted by the libavfilter
  1035. framework.
  1036. The filter does not take parameters.
  1037. @section format
  1038. Convert the input video to one of the specified pixel formats.
  1039. Libavfilter will try to pick one that is supported for the input to
  1040. the next filter.
  1041. The filter accepts a list of pixel format names, separated by ":",
  1042. for example "yuv420p:monow:rgb24".
  1043. Some examples follow:
  1044. @example
  1045. # convert the input video to the format "yuv420p"
  1046. format=yuv420p
  1047. # convert the input video to any of the formats in the list
  1048. format=yuv420p:yuv444p:yuv410p
  1049. @end example
  1050. @anchor{frei0r}
  1051. @section frei0r
  1052. Apply a frei0r effect to the input video.
  1053. To enable compilation of this filter you need to install the frei0r
  1054. header and configure FFmpeg with @code{--enable-frei0r}.
  1055. The filter supports the syntax:
  1056. @example
  1057. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1058. @end example
  1059. @var{filter_name} is the name to the frei0r effect to load. If the
  1060. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1061. is searched in each one of the directories specified by the colon
  1062. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1063. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1064. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1065. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1066. for the frei0r effect.
  1067. A frei0r effect parameter can be a boolean (whose values are specified
  1068. with "y" and "n"), a double, a color (specified by the syntax
  1069. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1070. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1071. description), a position (specified by the syntax @var{X}/@var{Y},
  1072. @var{X} and @var{Y} being float numbers) and a string.
  1073. The number and kind of parameters depend on the loaded effect. If an
  1074. effect parameter is not specified the default value is set.
  1075. Some examples follow:
  1076. @example
  1077. # apply the distort0r effect, set the first two double parameters
  1078. frei0r=distort0r:0.5:0.01
  1079. # apply the colordistance effect, takes a color as first parameter
  1080. frei0r=colordistance:0.2/0.3/0.4
  1081. frei0r=colordistance:violet
  1082. frei0r=colordistance:0x112233
  1083. # apply the perspective effect, specify the top left and top right
  1084. # image positions
  1085. frei0r=perspective:0.2/0.2:0.8/0.2
  1086. @end example
  1087. For more information see:
  1088. @url{http://piksel.org/frei0r}
  1089. @section gradfun
  1090. Fix the banding artifacts that are sometimes introduced into nearly flat
  1091. regions by truncation to 8bit color depth.
  1092. Interpolate the gradients that should go where the bands are, and
  1093. dither them.
  1094. This filter is designed for playback only. Do not use it prior to
  1095. lossy compression, because compression tends to lose the dither and
  1096. bring back the bands.
  1097. The filter takes two optional parameters, separated by ':':
  1098. @var{strength}:@var{radius}
  1099. @var{strength} is the maximum amount by which the filter will change
  1100. any one pixel. Also the threshold for detecting nearly flat
  1101. regions. Acceptable values range from .51 to 255, default value is
  1102. 1.2, out-of-range values will be clipped to the valid range.
  1103. @var{radius} is the neighborhood to fit the gradient to. A larger
  1104. radius makes for smoother gradients, but also prevents the filter from
  1105. modifying the pixels near detailed regions. Acceptable values are
  1106. 8-32, default value is 16, out-of-range values will be clipped to the
  1107. valid range.
  1108. @example
  1109. # default parameters
  1110. gradfun=1.2:16
  1111. # omitting radius
  1112. gradfun=1.2
  1113. @end example
  1114. @section hflip
  1115. Flip the input video horizontally.
  1116. For example to horizontally flip the input video with @command{ffmpeg}:
  1117. @example
  1118. ffmpeg -i in.avi -vf "hflip" out.avi
  1119. @end example
  1120. @section hqdn3d
  1121. High precision/quality 3d denoise filter. This filter aims to reduce
  1122. image noise producing smooth images and making still images really
  1123. still. It should enhance compressibility.
  1124. It accepts the following optional parameters:
  1125. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1126. @table @option
  1127. @item luma_spatial
  1128. a non-negative float number which specifies spatial luma strength,
  1129. defaults to 4.0
  1130. @item chroma_spatial
  1131. a non-negative float number which specifies spatial chroma strength,
  1132. defaults to 3.0*@var{luma_spatial}/4.0
  1133. @item luma_tmp
  1134. a float number which specifies luma temporal strength, defaults to
  1135. 6.0*@var{luma_spatial}/4.0
  1136. @item chroma_tmp
  1137. a float number which specifies chroma temporal strength, defaults to
  1138. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1139. @end table
  1140. @section lut, lutrgb, lutyuv
  1141. Compute a look-up table for binding each pixel component input value
  1142. to an output value, and apply it to input video.
  1143. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1144. to an RGB input video.
  1145. These filters accept in input a ":"-separated list of options, which
  1146. specify the expressions used for computing the lookup table for the
  1147. corresponding pixel component values.
  1148. The @var{lut} filter requires either YUV or RGB pixel formats in
  1149. input, and accepts the options:
  1150. @table @option
  1151. @item c0
  1152. first pixel component
  1153. @item c1
  1154. second pixel component
  1155. @item c2
  1156. third pixel component
  1157. @item c3
  1158. fourth pixel component, corresponds to the alpha component
  1159. @end table
  1160. The exact component associated to each option depends on the format in
  1161. input.
  1162. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1163. accepts the options:
  1164. @table @option
  1165. @item r
  1166. red component
  1167. @item g
  1168. green component
  1169. @item b
  1170. blue component
  1171. @item a
  1172. alpha component
  1173. @end table
  1174. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1175. accepts the options:
  1176. @table @option
  1177. @item y
  1178. Y/luminance component
  1179. @item u
  1180. U/Cb component
  1181. @item v
  1182. V/Cr component
  1183. @item a
  1184. alpha component
  1185. @end table
  1186. The expressions can contain the following constants and functions:
  1187. @table @option
  1188. @item w, h
  1189. the input width and height
  1190. @item val
  1191. input value for the pixel component
  1192. @item clipval
  1193. the input value clipped in the @var{minval}-@var{maxval} range
  1194. @item maxval
  1195. maximum value for the pixel component
  1196. @item minval
  1197. minimum value for the pixel component
  1198. @item negval
  1199. the negated value for the pixel component value clipped in the
  1200. @var{minval}-@var{maxval} range , it corresponds to the expression
  1201. "maxval-clipval+minval"
  1202. @item clip(val)
  1203. the computed value in @var{val} clipped in the
  1204. @var{minval}-@var{maxval} range
  1205. @item gammaval(gamma)
  1206. the computed gamma correction value of the pixel component value
  1207. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1208. expression
  1209. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1210. @end table
  1211. All expressions default to "val".
  1212. Some examples follow:
  1213. @example
  1214. # negate input video
  1215. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1216. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1217. # the above is the same as
  1218. lutrgb="r=negval:g=negval:b=negval"
  1219. lutyuv="y=negval:u=negval:v=negval"
  1220. # negate luminance
  1221. lutyuv=y=negval
  1222. # remove chroma components, turns the video into a graytone image
  1223. lutyuv="u=128:v=128"
  1224. # apply a luma burning effect
  1225. lutyuv="y=2*val"
  1226. # remove green and blue components
  1227. lutrgb="g=0:b=0"
  1228. # set a constant alpha channel value on input
  1229. format=rgba,lutrgb=a="maxval-minval/2"
  1230. # correct luminance gamma by a 0.5 factor
  1231. lutyuv=y=gammaval(0.5)
  1232. @end example
  1233. @section mp
  1234. Apply an MPlayer filter to the input video.
  1235. This filter provides a wrapper around most of the filters of
  1236. MPlayer/MEncoder.
  1237. This wrapper is considered experimental. Some of the wrapped filters
  1238. may not work properly and we may drop support for them, as they will
  1239. be implemented natively into FFmpeg. Thus you should avoid
  1240. depending on them when writing portable scripts.
  1241. The filters accepts the parameters:
  1242. @var{filter_name}[:=]@var{filter_params}
  1243. @var{filter_name} is the name of a supported MPlayer filter,
  1244. @var{filter_params} is a string containing the parameters accepted by
  1245. the named filter.
  1246. The list of the currently supported filters follows:
  1247. @table @var
  1248. @item 2xsai
  1249. @item decimate
  1250. @item denoise3d
  1251. @item detc
  1252. @item dint
  1253. @item divtc
  1254. @item down3dright
  1255. @item dsize
  1256. @item eq2
  1257. @item eq
  1258. @item field
  1259. @item fil
  1260. @item fixpts
  1261. @item framestep
  1262. @item fspp
  1263. @item geq
  1264. @item harddup
  1265. @item hqdn3d
  1266. @item hue
  1267. @item il
  1268. @item ilpack
  1269. @item ivtc
  1270. @item kerndeint
  1271. @item mcdeint
  1272. @item mirror
  1273. @item noise
  1274. @item ow
  1275. @item palette
  1276. @item perspective
  1277. @item phase
  1278. @item pp7
  1279. @item pullup
  1280. @item qp
  1281. @item rectangle
  1282. @item remove-logo
  1283. @item rotate
  1284. @item sab
  1285. @item screenshot
  1286. @item smartblur
  1287. @item softpulldown
  1288. @item softskip
  1289. @item spp
  1290. @item swapuv
  1291. @item telecine
  1292. @item tile
  1293. @item tinterlace
  1294. @item unsharp
  1295. @item uspp
  1296. @item yuvcsp
  1297. @item yvu9
  1298. @end table
  1299. The parameter syntax and behavior for the listed filters are the same
  1300. of the corresponding MPlayer filters. For detailed instructions check
  1301. the "VIDEO FILTERS" section in the MPlayer manual.
  1302. Some examples follow:
  1303. @example
  1304. # remove a logo by interpolating the surrounding pixels
  1305. mp=delogo=200:200:80:20:1
  1306. # adjust gamma, brightness, contrast
  1307. mp=eq2=1.0:2:0.5
  1308. # tweak hue and saturation
  1309. mp=hue=100:-10
  1310. @end example
  1311. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1312. @section negate
  1313. Negate input video.
  1314. This filter accepts an integer in input, if non-zero it negates the
  1315. alpha component (if available). The default value in input is 0.
  1316. @section noformat
  1317. Force libavfilter not to use any of the specified pixel formats for the
  1318. input to the next filter.
  1319. The filter accepts a list of pixel format names, separated by ":",
  1320. for example "yuv420p:monow:rgb24".
  1321. Some examples follow:
  1322. @example
  1323. # force libavfilter to use a format different from "yuv420p" for the
  1324. # input to the vflip filter
  1325. noformat=yuv420p,vflip
  1326. # convert the input video to any of the formats not contained in the list
  1327. noformat=yuv420p:yuv444p:yuv410p
  1328. @end example
  1329. @section null
  1330. Pass the video source unchanged to the output.
  1331. @section ocv
  1332. Apply video transform using libopencv.
  1333. To enable this filter install libopencv library and headers and
  1334. configure FFmpeg with @code{--enable-libopencv}.
  1335. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1336. @var{filter_name} is the name of the libopencv filter to apply.
  1337. @var{filter_params} specifies the parameters to pass to the libopencv
  1338. filter. If not specified the default values are assumed.
  1339. Refer to the official libopencv documentation for more precise
  1340. information:
  1341. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1342. Follows the list of supported libopencv filters.
  1343. @anchor{dilate}
  1344. @subsection dilate
  1345. Dilate an image by using a specific structuring element.
  1346. This filter corresponds to the libopencv function @code{cvDilate}.
  1347. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1348. @var{struct_el} represents a structuring element, and has the syntax:
  1349. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1350. @var{cols} and @var{rows} represent the number of columns and rows of
  1351. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1352. point, and @var{shape} the shape for the structuring element, and
  1353. can be one of the values "rect", "cross", "ellipse", "custom".
  1354. If the value for @var{shape} is "custom", it must be followed by a
  1355. string of the form "=@var{filename}". The file with name
  1356. @var{filename} is assumed to represent a binary image, with each
  1357. printable character corresponding to a bright pixel. When a custom
  1358. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1359. or columns and rows of the read file are assumed instead.
  1360. The default value for @var{struct_el} is "3x3+0x0/rect".
  1361. @var{nb_iterations} specifies the number of times the transform is
  1362. applied to the image, and defaults to 1.
  1363. Follow some example:
  1364. @example
  1365. # use the default values
  1366. ocv=dilate
  1367. # dilate using a structuring element with a 5x5 cross, iterate two times
  1368. ocv=dilate=5x5+2x2/cross:2
  1369. # read the shape from the file diamond.shape, iterate two times
  1370. # the file diamond.shape may contain a pattern of characters like this:
  1371. # *
  1372. # ***
  1373. # *****
  1374. # ***
  1375. # *
  1376. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1377. ocv=0x0+2x2/custom=diamond.shape:2
  1378. @end example
  1379. @subsection erode
  1380. Erode an image by using a specific structuring element.
  1381. This filter corresponds to the libopencv function @code{cvErode}.
  1382. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1383. with the same syntax and semantics as the @ref{dilate} filter.
  1384. @subsection smooth
  1385. Smooth the input video.
  1386. The filter takes the following parameters:
  1387. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1388. @var{type} is the type of smooth filter to apply, and can be one of
  1389. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1390. "bilateral". The default value is "gaussian".
  1391. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1392. parameters whose meanings depend on smooth type. @var{param1} and
  1393. @var{param2} accept integer positive values or 0, @var{param3} and
  1394. @var{param4} accept float values.
  1395. The default value for @var{param1} is 3, the default value for the
  1396. other parameters is 0.
  1397. These parameters correspond to the parameters assigned to the
  1398. libopencv function @code{cvSmooth}.
  1399. @anchor{overlay}
  1400. @section overlay
  1401. Overlay one video on top of another.
  1402. It takes two inputs and one output, the first input is the "main"
  1403. video on which the second input is overlayed.
  1404. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1405. @var{x} is the x coordinate of the overlayed video on the main video,
  1406. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1407. the following parameters:
  1408. @table @option
  1409. @item main_w, main_h
  1410. main input width and height
  1411. @item W, H
  1412. same as @var{main_w} and @var{main_h}
  1413. @item overlay_w, overlay_h
  1414. overlay input width and height
  1415. @item w, h
  1416. same as @var{overlay_w} and @var{overlay_h}
  1417. @end table
  1418. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1419. separated by ":".
  1420. The description of the accepted options follows.
  1421. @table @option
  1422. @item rgb
  1423. If set to 1, force the filter to accept inputs in the RGB
  1424. color space. Default value is 0.
  1425. @end table
  1426. Be aware that frames are taken from each input video in timestamp
  1427. order, hence, if their initial timestamps differ, it is a a good idea
  1428. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1429. have them begin in the same zero timestamp, as it does the example for
  1430. the @var{movie} filter.
  1431. Follow some examples:
  1432. @example
  1433. # draw the overlay at 10 pixels from the bottom right
  1434. # corner of the main video.
  1435. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1436. # insert a transparent PNG logo in the bottom left corner of the input
  1437. movie=logo.png [logo];
  1438. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1439. # insert 2 different transparent PNG logos (second logo on bottom
  1440. # right corner):
  1441. movie=logo1.png [logo1];
  1442. movie=logo2.png [logo2];
  1443. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1444. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1445. # add a transparent color layer on top of the main video,
  1446. # WxH specifies the size of the main input to the overlay filter
  1447. color=red@.3:WxH [over]; [in][over] overlay [out]
  1448. @end example
  1449. You can chain together more overlays but the efficiency of such
  1450. approach is yet to be tested.
  1451. @section pad
  1452. Add paddings to the input image, and places the original input at the
  1453. given coordinates @var{x}, @var{y}.
  1454. It accepts the following parameters:
  1455. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1456. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1457. expressions containing the following constants:
  1458. @table @option
  1459. @item in_w, in_h
  1460. the input video width and height
  1461. @item iw, ih
  1462. same as @var{in_w} and @var{in_h}
  1463. @item out_w, out_h
  1464. the output width and height, that is the size of the padded area as
  1465. specified by the @var{width} and @var{height} expressions
  1466. @item ow, oh
  1467. same as @var{out_w} and @var{out_h}
  1468. @item x, y
  1469. x and y offsets as specified by the @var{x} and @var{y}
  1470. expressions, or NAN if not yet specified
  1471. @item a
  1472. same as @var{iw} / @var{ih}
  1473. @item sar
  1474. input sample aspect ratio
  1475. @item dar
  1476. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1477. @item hsub, vsub
  1478. horizontal and vertical chroma subsample values. For example for the
  1479. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1480. @end table
  1481. Follows the description of the accepted parameters.
  1482. @table @option
  1483. @item width, height
  1484. Specify the size of the output image with the paddings added. If the
  1485. value for @var{width} or @var{height} is 0, the corresponding input size
  1486. is used for the output.
  1487. The @var{width} expression can reference the value set by the
  1488. @var{height} expression, and vice versa.
  1489. The default value of @var{width} and @var{height} is 0.
  1490. @item x, y
  1491. Specify the offsets where to place the input image in the padded area
  1492. with respect to the top/left border of the output image.
  1493. The @var{x} expression can reference the value set by the @var{y}
  1494. expression, and vice versa.
  1495. The default value of @var{x} and @var{y} is 0.
  1496. @item color
  1497. Specify the color of the padded area, it can be the name of a color
  1498. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1499. The default value of @var{color} is "black".
  1500. @end table
  1501. Some examples follow:
  1502. @example
  1503. # Add paddings with color "violet" to the input video. Output video
  1504. # size is 640x480, the top-left corner of the input video is placed at
  1505. # column 0, row 40.
  1506. pad=640:480:0:40:violet
  1507. # pad the input to get an output with dimensions increased bt 3/2,
  1508. # and put the input video at the center of the padded area
  1509. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1510. # pad the input to get a squared output with size equal to the maximum
  1511. # value between the input width and height, and put the input video at
  1512. # the center of the padded area
  1513. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1514. # pad the input to get a final w/h ratio of 16:9
  1515. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1516. # for anamorphic video, in order to set the output display aspect ratio,
  1517. # it is necessary to use sar in the expression, according to the relation:
  1518. # (ih * X / ih) * sar = output_dar
  1519. # X = output_dar / sar
  1520. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1521. # double output size and put the input video in the bottom-right
  1522. # corner of the output padded area
  1523. pad="2*iw:2*ih:ow-iw:oh-ih"
  1524. @end example
  1525. @section pixdesctest
  1526. Pixel format descriptor test filter, mainly useful for internal
  1527. testing. The output video should be equal to the input video.
  1528. For example:
  1529. @example
  1530. format=monow, pixdesctest
  1531. @end example
  1532. can be used to test the monowhite pixel format descriptor definition.
  1533. @section scale
  1534. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1535. The parameters @var{width} and @var{height} are expressions containing
  1536. the following constants:
  1537. @table @option
  1538. @item in_w, in_h
  1539. the input width and height
  1540. @item iw, ih
  1541. same as @var{in_w} and @var{in_h}
  1542. @item out_w, out_h
  1543. the output (cropped) width and height
  1544. @item ow, oh
  1545. same as @var{out_w} and @var{out_h}
  1546. @item a
  1547. same as @var{iw} / @var{ih}
  1548. @item sar
  1549. input sample aspect ratio
  1550. @item dar
  1551. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1552. @item hsub, vsub
  1553. horizontal and vertical chroma subsample values. For example for the
  1554. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1555. @end table
  1556. If the input image format is different from the format requested by
  1557. the next filter, the scale filter will convert the input to the
  1558. requested format.
  1559. If the value for @var{width} or @var{height} is 0, the respective input
  1560. size is used for the output.
  1561. If the value for @var{width} or @var{height} is -1, the scale filter will
  1562. use, for the respective output size, a value that maintains the aspect
  1563. ratio of the input image.
  1564. The default value of @var{width} and @var{height} is 0.
  1565. Valid values for the optional parameter @var{interl} are:
  1566. @table @option
  1567. @item 1
  1568. force interlaced aware scaling
  1569. @item -1
  1570. select interlaced aware scaling depending on whether the source frames
  1571. are flagged as interlaced or not
  1572. @end table
  1573. Some examples follow:
  1574. @example
  1575. # scale the input video to a size of 200x100.
  1576. scale=200:100
  1577. # scale the input to 2x
  1578. scale=2*iw:2*ih
  1579. # the above is the same as
  1580. scale=2*in_w:2*in_h
  1581. # scale the input to half size
  1582. scale=iw/2:ih/2
  1583. # increase the width, and set the height to the same size
  1584. scale=3/2*iw:ow
  1585. # seek for Greek harmony
  1586. scale=iw:1/PHI*iw
  1587. scale=ih*PHI:ih
  1588. # increase the height, and set the width to 3/2 of the height
  1589. scale=3/2*oh:3/5*ih
  1590. # increase the size, but make the size a multiple of the chroma
  1591. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1592. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1593. scale='min(500\, iw*3/2):-1'
  1594. @end example
  1595. @section select
  1596. Select frames to pass in output.
  1597. It accepts in input an expression, which is evaluated for each input
  1598. frame. If the expression is evaluated to a non-zero value, the frame
  1599. is selected and passed to the output, otherwise it is discarded.
  1600. The expression can contain the following constants:
  1601. @table @option
  1602. @item n
  1603. the sequential number of the filtered frame, starting from 0
  1604. @item selected_n
  1605. the sequential number of the selected frame, starting from 0
  1606. @item prev_selected_n
  1607. the sequential number of the last selected frame, NAN if undefined
  1608. @item TB
  1609. timebase of the input timestamps
  1610. @item pts
  1611. the PTS (Presentation TimeStamp) of the filtered video frame,
  1612. expressed in @var{TB} units, NAN if undefined
  1613. @item t
  1614. the PTS (Presentation TimeStamp) of the filtered video frame,
  1615. expressed in seconds, NAN if undefined
  1616. @item prev_pts
  1617. the PTS of the previously filtered video frame, NAN if undefined
  1618. @item prev_selected_pts
  1619. the PTS of the last previously filtered video frame, NAN if undefined
  1620. @item prev_selected_t
  1621. the PTS of the last previously selected video frame, NAN if undefined
  1622. @item start_pts
  1623. the PTS of the first video frame in the video, NAN if undefined
  1624. @item start_t
  1625. the time of the first video frame in the video, NAN if undefined
  1626. @item pict_type
  1627. the type of the filtered frame, can assume one of the following
  1628. values:
  1629. @table @option
  1630. @item I
  1631. @item P
  1632. @item B
  1633. @item S
  1634. @item SI
  1635. @item SP
  1636. @item BI
  1637. @end table
  1638. @item interlace_type
  1639. the frame interlace type, can assume one of the following values:
  1640. @table @option
  1641. @item PROGRESSIVE
  1642. the frame is progressive (not interlaced)
  1643. @item TOPFIRST
  1644. the frame is top-field-first
  1645. @item BOTTOMFIRST
  1646. the frame is bottom-field-first
  1647. @end table
  1648. @item key
  1649. 1 if the filtered frame is a key-frame, 0 otherwise
  1650. @item pos
  1651. the position in the file of the filtered frame, -1 if the information
  1652. is not available (e.g. for synthetic video)
  1653. @end table
  1654. The default value of the select expression is "1".
  1655. Some examples follow:
  1656. @example
  1657. # select all frames in input
  1658. select
  1659. # the above is the same as:
  1660. select=1
  1661. # skip all frames:
  1662. select=0
  1663. # select only I-frames
  1664. select='eq(pict_type\,I)'
  1665. # select one frame every 100
  1666. select='not(mod(n\,100))'
  1667. # select only frames contained in the 10-20 time interval
  1668. select='gte(t\,10)*lte(t\,20)'
  1669. # select only I frames contained in the 10-20 time interval
  1670. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1671. # select frames with a minimum distance of 10 seconds
  1672. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1673. @end example
  1674. @anchor{setdar}
  1675. @section setdar
  1676. Set the Display Aspect Ratio for the filter output video.
  1677. This is done by changing the specified Sample (aka Pixel) Aspect
  1678. Ratio, according to the following equation:
  1679. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1680. Keep in mind that this filter does not modify the pixel dimensions of
  1681. the video frame. Also the display aspect ratio set by this filter may
  1682. be changed by later filters in the filterchain, e.g. in case of
  1683. scaling or if another "setdar" or a "setsar" filter is applied.
  1684. The filter accepts a parameter string which represents the wanted
  1685. display aspect ratio.
  1686. The parameter can be a floating point number string, or an expression
  1687. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1688. numerator and denominator of the aspect ratio.
  1689. If the parameter is not specified, it is assumed the value "0:1".
  1690. For example to change the display aspect ratio to 16:9, specify:
  1691. @example
  1692. setdar=16:9
  1693. # the above is equivalent to
  1694. setdar=1.77777
  1695. @end example
  1696. See also the @ref{setsar} filter documentation.
  1697. @section setpts
  1698. Change the PTS (presentation timestamp) of the input video frames.
  1699. Accept in input an expression evaluated through the eval API, which
  1700. can contain the following constants:
  1701. @table @option
  1702. @item PTS
  1703. the presentation timestamp in input
  1704. @item N
  1705. the count of the input frame, starting from 0.
  1706. @item STARTPTS
  1707. the PTS of the first video frame
  1708. @item INTERLACED
  1709. tell if the current frame is interlaced
  1710. @item POS
  1711. original position in the file of the frame, or undefined if undefined
  1712. for the current frame
  1713. @item PREV_INPTS
  1714. previous input PTS
  1715. @item PREV_OUTPTS
  1716. previous output PTS
  1717. @end table
  1718. Some examples follow:
  1719. @example
  1720. # start counting PTS from zero
  1721. setpts=PTS-STARTPTS
  1722. # fast motion
  1723. setpts=0.5*PTS
  1724. # slow motion
  1725. setpts=2.0*PTS
  1726. # fixed rate 25 fps
  1727. setpts=N/(25*TB)
  1728. # fixed rate 25 fps with some jitter
  1729. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1730. @end example
  1731. @anchor{setsar}
  1732. @section setsar
  1733. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1734. Note that as a consequence of the application of this filter, the
  1735. output display aspect ratio will change according to the following
  1736. equation:
  1737. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1738. Keep in mind that the sample aspect ratio set by this filter may be
  1739. changed by later filters in the filterchain, e.g. if another "setsar"
  1740. or a "setdar" filter is applied.
  1741. The filter accepts a parameter string which represents the wanted
  1742. sample aspect ratio.
  1743. The parameter can be a floating point number string, or an expression
  1744. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1745. numerator and denominator of the aspect ratio.
  1746. If the parameter is not specified, it is assumed the value "0:1".
  1747. For example to change the sample aspect ratio to 10:11, specify:
  1748. @example
  1749. setsar=10:11
  1750. @end example
  1751. @section settb
  1752. Set the timebase to use for the output frames timestamps.
  1753. It is mainly useful for testing timebase configuration.
  1754. It accepts in input an arithmetic expression representing a rational.
  1755. The expression can contain the constants "AVTB" (the
  1756. default timebase), and "intb" (the input timebase).
  1757. The default value for the input is "intb".
  1758. Follow some examples.
  1759. @example
  1760. # set the timebase to 1/25
  1761. settb=1/25
  1762. # set the timebase to 1/10
  1763. settb=0.1
  1764. #set the timebase to 1001/1000
  1765. settb=1+0.001
  1766. #set the timebase to 2*intb
  1767. settb=2*intb
  1768. #set the default timebase value
  1769. settb=AVTB
  1770. @end example
  1771. @section showinfo
  1772. Show a line containing various information for each input video frame.
  1773. The input video is not modified.
  1774. The shown line contains a sequence of key/value pairs of the form
  1775. @var{key}:@var{value}.
  1776. A description of each shown parameter follows:
  1777. @table @option
  1778. @item n
  1779. sequential number of the input frame, starting from 0
  1780. @item pts
  1781. Presentation TimeStamp of the input frame, expressed as a number of
  1782. time base units. The time base unit depends on the filter input pad.
  1783. @item pts_time
  1784. Presentation TimeStamp of the input frame, expressed as a number of
  1785. seconds
  1786. @item pos
  1787. position of the frame in the input stream, -1 if this information in
  1788. unavailable and/or meaningless (for example in case of synthetic video)
  1789. @item fmt
  1790. pixel format name
  1791. @item sar
  1792. sample aspect ratio of the input frame, expressed in the form
  1793. @var{num}/@var{den}
  1794. @item s
  1795. size of the input frame, expressed in the form
  1796. @var{width}x@var{height}
  1797. @item i
  1798. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1799. for bottom field first)
  1800. @item iskey
  1801. 1 if the frame is a key frame, 0 otherwise
  1802. @item type
  1803. picture type of the input frame ("I" for an I-frame, "P" for a
  1804. P-frame, "B" for a B-frame, "?" for unknown type).
  1805. Check also the documentation of the @code{AVPictureType} enum and of
  1806. the @code{av_get_picture_type_char} function defined in
  1807. @file{libavutil/avutil.h}.
  1808. @item checksum
  1809. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1810. @item plane_checksum
  1811. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1812. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1813. @end table
  1814. @section slicify
  1815. Pass the images of input video on to next video filter as multiple
  1816. slices.
  1817. @example
  1818. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1819. @end example
  1820. The filter accepts the slice height as parameter. If the parameter is
  1821. not specified it will use the default value of 16.
  1822. Adding this in the beginning of filter chains should make filtering
  1823. faster due to better use of the memory cache.
  1824. @section split
  1825. Pass on the input video to two outputs. Both outputs are identical to
  1826. the input video.
  1827. For example:
  1828. @example
  1829. [in] split [splitout1][splitout2];
  1830. [splitout1] crop=100:100:0:0 [cropout];
  1831. [splitout2] pad=200:200:100:100 [padout];
  1832. @end example
  1833. will create two separate outputs from the same input, one cropped and
  1834. one padded.
  1835. @section thumbnail
  1836. Select the most representative frame in a given sequence of consecutive frames.
  1837. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  1838. in a set of @var{N} frames, the filter will pick one of them, and then handle
  1839. the next batch of @var{N} frames until the end.
  1840. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  1841. value will result in a higher memory usage, so a high value is not recommended.
  1842. The following example extract one picture each 50 frames:
  1843. @example
  1844. thumbnail=50
  1845. @end example
  1846. Complete example of a thumbnail creation with @command{ffmpeg}:
  1847. @example
  1848. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  1849. @end example
  1850. @section tinterlace
  1851. Perform various types of temporal field interlacing.
  1852. Frames are counted starting from 1, so the first input frame is
  1853. considered odd.
  1854. This filter accepts a single parameter specifying the mode. Available
  1855. modes are:
  1856. @table @samp
  1857. @item 0
  1858. Move odd frames into the upper field, even into the lower field,
  1859. generating a double height frame at half framerate.
  1860. @item 1
  1861. Only output even frames, odd frames are dropped, generating a frame with
  1862. unchanged height at half framerate.
  1863. @item 2
  1864. Only output odd frames, even frames are dropped, generating a frame with
  1865. unchanged height at half framerate.
  1866. @item 3
  1867. Expand each frame to full height, but pad alternate lines with black,
  1868. generating a frame with double height at the same input framerate.
  1869. @item 4
  1870. Interleave the upper field from odd frames with the lower field from
  1871. even frames, generating a frame with unchanged height at half framerate.
  1872. @item 5
  1873. Interleave the lower field from odd frames with the upper field from
  1874. even frames, generating a frame with unchanged height at half framerate.
  1875. @end table
  1876. Default mode is 0.
  1877. @section transpose
  1878. Transpose rows with columns in the input video and optionally flip it.
  1879. It accepts a parameter representing an integer, which can assume the
  1880. values:
  1881. @table @samp
  1882. @item 0
  1883. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1884. @example
  1885. L.R L.l
  1886. . . -> . .
  1887. l.r R.r
  1888. @end example
  1889. @item 1
  1890. Rotate by 90 degrees clockwise, that is:
  1891. @example
  1892. L.R l.L
  1893. . . -> . .
  1894. l.r r.R
  1895. @end example
  1896. @item 2
  1897. Rotate by 90 degrees counterclockwise, that is:
  1898. @example
  1899. L.R R.r
  1900. . . -> . .
  1901. l.r L.l
  1902. @end example
  1903. @item 3
  1904. Rotate by 90 degrees clockwise and vertically flip, that is:
  1905. @example
  1906. L.R r.R
  1907. . . -> . .
  1908. l.r l.L
  1909. @end example
  1910. @end table
  1911. @section unsharp
  1912. Sharpen or blur the input video.
  1913. It accepts the following parameters:
  1914. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1915. Negative values for the amount will blur the input video, while positive
  1916. values will sharpen. All parameters are optional and default to the
  1917. equivalent of the string '5:5:1.0:5:5:0.0'.
  1918. @table @option
  1919. @item luma_msize_x
  1920. Set the luma matrix horizontal size. It can be an integer between 3
  1921. and 13, default value is 5.
  1922. @item luma_msize_y
  1923. Set the luma matrix vertical size. It can be an integer between 3
  1924. and 13, default value is 5.
  1925. @item luma_amount
  1926. Set the luma effect strength. It can be a float number between -2.0
  1927. and 5.0, default value is 1.0.
  1928. @item chroma_msize_x
  1929. Set the chroma matrix horizontal size. It can be an integer between 3
  1930. and 13, default value is 5.
  1931. @item chroma_msize_y
  1932. Set the chroma matrix vertical size. It can be an integer between 3
  1933. and 13, default value is 5.
  1934. @item chroma_amount
  1935. Set the chroma effect strength. It can be a float number between -2.0
  1936. and 5.0, default value is 0.0.
  1937. @end table
  1938. @example
  1939. # Strong luma sharpen effect parameters
  1940. unsharp=7:7:2.5
  1941. # Strong blur of both luma and chroma parameters
  1942. unsharp=7:7:-2:7:7:-2
  1943. # Use the default values with @command{ffmpeg}
  1944. ffmpeg -i in.avi -vf "unsharp" out.mp4
  1945. @end example
  1946. @section vflip
  1947. Flip the input video vertically.
  1948. @example
  1949. ffmpeg -i in.avi -vf "vflip" out.avi
  1950. @end example
  1951. @section yadif
  1952. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1953. filter").
  1954. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1955. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1956. following values:
  1957. @table @option
  1958. @item 0
  1959. output 1 frame for each frame
  1960. @item 1
  1961. output 1 frame for each field
  1962. @item 2
  1963. like 0 but skips spatial interlacing check
  1964. @item 3
  1965. like 1 but skips spatial interlacing check
  1966. @end table
  1967. Default value is 0.
  1968. @var{parity} specifies the picture field parity assumed for the input
  1969. interlaced video, accepts one of the following values:
  1970. @table @option
  1971. @item 0
  1972. assume top field first
  1973. @item 1
  1974. assume bottom field first
  1975. @item -1
  1976. enable automatic detection
  1977. @end table
  1978. Default value is -1.
  1979. If interlacing is unknown or decoder does not export this information,
  1980. top field first will be assumed.
  1981. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1982. and only deinterlace frames marked as interlaced
  1983. @table @option
  1984. @item 0
  1985. deinterlace all frames
  1986. @item 1
  1987. only deinterlace frames marked as interlaced
  1988. @end table
  1989. Default value is 0.
  1990. @c man end VIDEO FILTERS
  1991. @chapter Video Sources
  1992. @c man begin VIDEO SOURCES
  1993. Below is a description of the currently available video sources.
  1994. @section buffer
  1995. Buffer video frames, and make them available to the filter chain.
  1996. This source is mainly intended for a programmatic use, in particular
  1997. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1998. It accepts the following parameters:
  1999. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  2000. All the parameters but @var{scale_params} need to be explicitly
  2001. defined.
  2002. Follows the list of the accepted parameters.
  2003. @table @option
  2004. @item width, height
  2005. Specify the width and height of the buffered video frames.
  2006. @item pix_fmt_string
  2007. A string representing the pixel format of the buffered video frames.
  2008. It may be a number corresponding to a pixel format, or a pixel format
  2009. name.
  2010. @item timebase_num, timebase_den
  2011. Specify numerator and denomitor of the timebase assumed by the
  2012. timestamps of the buffered frames.
  2013. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  2014. Specify numerator and denominator of the sample aspect ratio assumed
  2015. by the video frames.
  2016. @item scale_params
  2017. Specify the optional parameters to be used for the scale filter which
  2018. is automatically inserted when an input change is detected in the
  2019. input size or format.
  2020. @end table
  2021. For example:
  2022. @example
  2023. buffer=320:240:yuv410p:1:24:1:1
  2024. @end example
  2025. will instruct the source to accept video frames with size 320x240 and
  2026. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2027. square pixels (1:1 sample aspect ratio).
  2028. Since the pixel format with name "yuv410p" corresponds to the number 6
  2029. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2030. this example corresponds to:
  2031. @example
  2032. buffer=320:240:6:1:24:1:1
  2033. @end example
  2034. @section cellauto
  2035. Create a pattern generated by an elementary cellular automaton.
  2036. The initial state of the cellular automaton can be defined through the
  2037. @option{filename}, and @option{pattern} options. If such options are
  2038. not specified an initial state is created randomly.
  2039. At each new frame a new row in the video is filled with the result of
  2040. the cellular automaton next generation. The behavior when the whole
  2041. frame is filled is defined by the @option{scroll} option.
  2042. This source accepts a list of options in the form of
  2043. @var{key}=@var{value} pairs separated by ":". A description of the
  2044. accepted options follows.
  2045. @table @option
  2046. @item filename, f
  2047. Read the initial cellular automaton state, i.e. the starting row, from
  2048. the specified file.
  2049. In the file, each non-whitespace character is considered an alive
  2050. cell, a newline will terminate the row, and further characters in the
  2051. file will be ignored.
  2052. @item pattern, p
  2053. Read the initial cellular automaton state, i.e. the starting row, from
  2054. the specified string.
  2055. Each non-whitespace character in the string is considered an alive
  2056. cell, a newline will terminate the row, and further characters in the
  2057. string will be ignored.
  2058. @item rate, r
  2059. Set the video rate, that is the number of frames generated per second.
  2060. Default is 25.
  2061. @item random_fill_ratio, ratio
  2062. Set the random fill ratio for the initial cellular automaton row. It
  2063. is a floating point number value ranging from 0 to 1, defaults to
  2064. 1/PHI.
  2065. This option is ignored when a file or a pattern is specified.
  2066. @item random_seed, seed
  2067. Set the seed for filling randomly the initial row, must be an integer
  2068. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2069. set to -1, the filter will try to use a good random seed on a best
  2070. effort basis.
  2071. @item rule
  2072. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2073. Default value is 110.
  2074. @item size, s
  2075. Set the size of the output video.
  2076. If @option{filename} or @option{pattern} is specified, the size is set
  2077. by default to the width of the specified initial state row, and the
  2078. height is set to @var{width} * PHI.
  2079. If @option{size} is set, it must contain the width of the specified
  2080. pattern string, and the specified pattern will be centered in the
  2081. larger row.
  2082. If a filename or a pattern string is not specified, the size value
  2083. defaults to "320x518" (used for a randomly generated initial state).
  2084. @item scroll
  2085. If set to 1, scroll the output upward when all the rows in the output
  2086. have been already filled. If set to 0, the new generated row will be
  2087. written over the top row just after the bottom row is filled.
  2088. Defaults to 1.
  2089. @item start_full, full
  2090. If set to 1, completely fill the output with generated rows before
  2091. outputting the first frame.
  2092. This is the default behavior, for disabling set the value to 0.
  2093. @item stitch
  2094. If set to 1, stitch the left and right row edges together.
  2095. This is the default behavior, for disabling set the value to 0.
  2096. @end table
  2097. @subsection Examples
  2098. @itemize
  2099. @item
  2100. Read the initial state from @file{pattern}, and specify an output of
  2101. size 200x400.
  2102. @example
  2103. cellauto=f=pattern:s=200x400
  2104. @end example
  2105. @item
  2106. Generate a random initial row with a width of 200 cells, with a fill
  2107. ratio of 2/3:
  2108. @example
  2109. cellauto=ratio=2/3:s=200x200
  2110. @end example
  2111. @item
  2112. Create a pattern generated by rule 18 starting by a single alive cell
  2113. centered on an initial row with width 100:
  2114. @example
  2115. cellauto=p=@@:s=100x400:full=0:rule=18
  2116. @end example
  2117. @item
  2118. Specify a more elaborated initial pattern:
  2119. @example
  2120. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2121. @end example
  2122. @end itemize
  2123. @section color
  2124. Provide an uniformly colored input.
  2125. It accepts the following parameters:
  2126. @var{color}:@var{frame_size}:@var{frame_rate}
  2127. Follows the description of the accepted parameters.
  2128. @table @option
  2129. @item color
  2130. Specify the color of the source. It can be the name of a color (case
  2131. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2132. alpha specifier. The default value is "black".
  2133. @item frame_size
  2134. Specify the size of the sourced video, it may be a string of the form
  2135. @var{width}x@var{height}, or the name of a size abbreviation. The
  2136. default value is "320x240".
  2137. @item frame_rate
  2138. Specify the frame rate of the sourced video, as the number of frames
  2139. generated per second. It has to be a string in the format
  2140. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2141. number or a valid video frame rate abbreviation. The default value is
  2142. "25".
  2143. @end table
  2144. For example the following graph description will generate a red source
  2145. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2146. frames per second, which will be overlayed over the source connected
  2147. to the pad with identifier "in".
  2148. @example
  2149. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2150. @end example
  2151. @section movie
  2152. Read a video stream from a movie container.
  2153. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2154. @var{movie_name} is the name of the resource to read (not necessarily
  2155. a file but also a device or a stream accessed through some protocol),
  2156. and @var{options} is an optional sequence of @var{key}=@var{value}
  2157. pairs, separated by ":".
  2158. The description of the accepted options follows.
  2159. @table @option
  2160. @item format_name, f
  2161. Specifies the format assumed for the movie to read, and can be either
  2162. the name of a container or an input device. If not specified the
  2163. format is guessed from @var{movie_name} or by probing.
  2164. @item seek_point, sp
  2165. Specifies the seek point in seconds, the frames will be output
  2166. starting from this seek point, the parameter is evaluated with
  2167. @code{av_strtod} so the numerical value may be suffixed by an IS
  2168. postfix. Default value is "0".
  2169. @item stream_index, si
  2170. Specifies the index of the video stream to read. If the value is -1,
  2171. the best suited video stream will be automatically selected. Default
  2172. value is "-1".
  2173. @end table
  2174. This filter allows to overlay a second video on top of main input of
  2175. a filtergraph as shown in this graph:
  2176. @example
  2177. input -----------> deltapts0 --> overlay --> output
  2178. ^
  2179. |
  2180. movie --> scale--> deltapts1 -------+
  2181. @end example
  2182. Some examples follow:
  2183. @example
  2184. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2185. # on top of the input labelled as "in".
  2186. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2187. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2188. # read from a video4linux2 device, and overlay it on top of the input
  2189. # labelled as "in"
  2190. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2191. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2192. @end example
  2193. @section mptestsrc
  2194. Generate various test patterns, as generated by the MPlayer test filter.
  2195. The size of the generated video is fixed, and is 256x256.
  2196. This source is useful in particular for testing encoding features.
  2197. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2198. separated by ":". The description of the accepted options follows.
  2199. @table @option
  2200. @item rate, r
  2201. Specify the frame rate of the sourced video, as the number of frames
  2202. generated per second. It has to be a string in the format
  2203. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2204. number or a valid video frame rate abbreviation. The default value is
  2205. "25".
  2206. @item duration, d
  2207. Set the video duration of the sourced video. The accepted syntax is:
  2208. @example
  2209. [-]HH[:MM[:SS[.m...]]]
  2210. [-]S+[.m...]
  2211. @end example
  2212. See also the function @code{av_parse_time()}.
  2213. If not specified, or the expressed duration is negative, the video is
  2214. supposed to be generated forever.
  2215. @item test, t
  2216. Set the number or the name of the test to perform. Supported tests are:
  2217. @table @option
  2218. @item dc_luma
  2219. @item dc_chroma
  2220. @item freq_luma
  2221. @item freq_chroma
  2222. @item amp_luma
  2223. @item amp_chroma
  2224. @item cbp
  2225. @item mv
  2226. @item ring1
  2227. @item ring2
  2228. @item all
  2229. @end table
  2230. Default value is "all", which will cycle through the list of all tests.
  2231. @end table
  2232. For example the following:
  2233. @example
  2234. testsrc=t=dc_luma
  2235. @end example
  2236. will generate a "dc_luma" test pattern.
  2237. @section frei0r_src
  2238. Provide a frei0r source.
  2239. To enable compilation of this filter you need to install the frei0r
  2240. header and configure FFmpeg with @code{--enable-frei0r}.
  2241. The source supports the syntax:
  2242. @example
  2243. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2244. @end example
  2245. @var{size} is the size of the video to generate, may be a string of the
  2246. form @var{width}x@var{height} or a frame size abbreviation.
  2247. @var{rate} is the rate of the video to generate, may be a string of
  2248. the form @var{num}/@var{den} or a frame rate abbreviation.
  2249. @var{src_name} is the name to the frei0r source to load. For more
  2250. information regarding frei0r and how to set the parameters read the
  2251. section @ref{frei0r} in the description of the video filters.
  2252. Some examples follow:
  2253. @example
  2254. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2255. # which is overlayed on the overlay filter main input
  2256. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2257. @end example
  2258. @section life
  2259. Generate a life pattern.
  2260. This source is based on a generalization of John Conway's life game.
  2261. The sourced input represents a life grid, each pixel represents a cell
  2262. which can be in one of two possible states, alive or dead. Every cell
  2263. interacts with its eight neighbours, which are the cells that are
  2264. horizontally, vertically, or diagonally adjacent.
  2265. At each interaction the grid evolves according to the adopted rule,
  2266. which specifies the number of neighbor alive cells which will make a
  2267. cell stay alive or born. The @option{rule} option allows to specify
  2268. the rule to adopt.
  2269. This source accepts a list of options in the form of
  2270. @var{key}=@var{value} pairs separated by ":". A description of the
  2271. accepted options follows.
  2272. @table @option
  2273. @item filename, f
  2274. Set the file from which to read the initial grid state. In the file,
  2275. each non-whitespace character is considered an alive cell, and newline
  2276. is used to delimit the end of each row.
  2277. If this option is not specified, the initial grid is generated
  2278. randomly.
  2279. @item rate, r
  2280. Set the video rate, that is the number of frames generated per second.
  2281. Default is 25.
  2282. @item random_fill_ratio, ratio
  2283. Set the random fill ratio for the initial random grid. It is a
  2284. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2285. It is ignored when a file is specified.
  2286. @item random_seed, seed
  2287. Set the seed for filling the initial random grid, must be an integer
  2288. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2289. set to -1, the filter will try to use a good random seed on a best
  2290. effort basis.
  2291. @item rule
  2292. Set the life rule.
  2293. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2294. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2295. @var{NS} specifies the number of alive neighbor cells which make a
  2296. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2297. which make a dead cell to become alive (i.e. to "born").
  2298. "s" and "b" can be used in place of "S" and "B", respectively.
  2299. Alternatively a rule can be specified by an 18-bits integer. The 9
  2300. high order bits are used to encode the next cell state if it is alive
  2301. for each number of neighbor alive cells, the low order bits specify
  2302. the rule for "borning" new cells. Higher order bits encode for an
  2303. higher number of neighbor cells.
  2304. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2305. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2306. Default value is "S23/B3", which is the original Conway's game of life
  2307. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2308. cells, and will born a new cell if there are three alive cells around
  2309. a dead cell.
  2310. @item size, s
  2311. Set the size of the output video.
  2312. If @option{filename} is specified, the size is set by default to the
  2313. same size of the input file. If @option{size} is set, it must contain
  2314. the size specified in the input file, and the initial grid defined in
  2315. that file is centered in the larger resulting area.
  2316. If a filename is not specified, the size value defaults to "320x240"
  2317. (used for a randomly generated initial grid).
  2318. @item stitch
  2319. If set to 1, stitch the left and right grid edges together, and the
  2320. top and bottom edges also. Defaults to 1.
  2321. @item mold
  2322. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2323. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2324. value from 0 to 255.
  2325. @item life_color
  2326. Set the color of living (or new born) cells.
  2327. @item death_color
  2328. Set the color of dead cells. If @option{mold} is set, this is the first color
  2329. used to represent a dead cell.
  2330. @item mold_color
  2331. Set mold color, for definitely dead and moldy cells.
  2332. @end table
  2333. @subsection Examples
  2334. @itemize
  2335. @item
  2336. Read a grid from @file{pattern}, and center it on a grid of size
  2337. 300x300 pixels:
  2338. @example
  2339. life=f=pattern:s=300x300
  2340. @end example
  2341. @item
  2342. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2343. @example
  2344. life=ratio=2/3:s=200x200
  2345. @end example
  2346. @item
  2347. Specify a custom rule for evolving a randomly generated grid:
  2348. @example
  2349. life=rule=S14/B34
  2350. @end example
  2351. @item
  2352. Full example with slow death effect (mold) using @command{ffplay}:
  2353. @example
  2354. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2355. @end example
  2356. @end itemize
  2357. @section nullsrc, rgbtestsrc, testsrc
  2358. The @code{nullsrc} source returns unprocessed video frames. It is
  2359. mainly useful to be employed in analysis / debugging tools, or as the
  2360. source for filters which ignore the input data.
  2361. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2362. detecting RGB vs BGR issues. You should see a red, green and blue
  2363. stripe from top to bottom.
  2364. The @code{testsrc} source generates a test video pattern, showing a
  2365. color pattern, a scrolling gradient and a timestamp. This is mainly
  2366. intended for testing purposes.
  2367. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2368. separated by ":". The description of the accepted options follows.
  2369. @table @option
  2370. @item size, s
  2371. Specify the size of the sourced video, it may be a string of the form
  2372. @var{width}x@var{height}, or the name of a size abbreviation. The
  2373. default value is "320x240".
  2374. @item rate, r
  2375. Specify the frame rate of the sourced video, as the number of frames
  2376. generated per second. It has to be a string in the format
  2377. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2378. number or a valid video frame rate abbreviation. The default value is
  2379. "25".
  2380. @item sar
  2381. Set the sample aspect ratio of the sourced video.
  2382. @item duration, d
  2383. Set the video duration of the sourced video. The accepted syntax is:
  2384. @example
  2385. [-]HH[:MM[:SS[.m...]]]
  2386. [-]S+[.m...]
  2387. @end example
  2388. See also the function @code{av_parse_time()}.
  2389. If not specified, or the expressed duration is negative, the video is
  2390. supposed to be generated forever.
  2391. @item decimals, n
  2392. Set the number of decimals to show in the timestamp, only used in the
  2393. @code{testsrc} source.
  2394. The displayed timestamp value will correspond to the original
  2395. timestamp value multiplied by the power of 10 of the specified
  2396. value. Default value is 0.
  2397. @end table
  2398. For example the following:
  2399. @example
  2400. testsrc=duration=5.3:size=qcif:rate=10
  2401. @end example
  2402. will generate a video with a duration of 5.3 seconds, with size
  2403. 176x144 and a frame rate of 10 frames per second.
  2404. If the input content is to be ignored, @code{nullsrc} can be used. The
  2405. following command generates noise in the luminance plane by employing
  2406. the @code{mp=geq} filter:
  2407. @example
  2408. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2409. @end example
  2410. @c man end VIDEO SOURCES
  2411. @chapter Video Sinks
  2412. @c man begin VIDEO SINKS
  2413. Below is a description of the currently available video sinks.
  2414. @section buffersink
  2415. Buffer video frames, and make them available to the end of the filter
  2416. graph.
  2417. This sink is mainly intended for a programmatic use, in particular
  2418. through the interface defined in @file{libavfilter/buffersink.h}.
  2419. It does not require a string parameter in input, but you need to
  2420. specify a pointer to a list of supported pixel formats terminated by
  2421. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2422. when initializing this sink.
  2423. @section nullsink
  2424. Null video sink, do absolutely nothing with the input video. It is
  2425. mainly useful as a template and to be employed in analysis / debugging
  2426. tools.
  2427. @c man end VIDEO SINKS