You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3549 lines
121KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #if HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #if HAVE_VIRTUALALLOC
  67. #define WIN32_LEAN_AND_MEAN
  68. #include <windows.h>
  69. #endif
  70. #include "swscale.h"
  71. #include "swscale_internal.h"
  72. #include "rgb2rgb.h"
  73. #include "libavutil/x86_cpu.h"
  74. #include "libavutil/bswap.h"
  75. unsigned swscale_version(void)
  76. {
  77. return LIBSWSCALE_VERSION_INT;
  78. }
  79. #undef MOVNTQ
  80. #undef PAVGB
  81. //#undef HAVE_MMX2
  82. //#define HAVE_AMD3DNOW
  83. //#undef HAVE_MMX
  84. //#undef ARCH_X86
  85. //#define WORDS_BIGENDIAN
  86. #define DITHER1XBPP
  87. #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
  88. #define RET 0xC3 //near return opcode for x86
  89. #ifdef M_PI
  90. #define PI M_PI
  91. #else
  92. #define PI 3.14159265358979323846
  93. #endif
  94. #define isSupportedIn(x) ( \
  95. (x)==PIX_FMT_YUV420P \
  96. || (x)==PIX_FMT_YUVA420P \
  97. || (x)==PIX_FMT_YUYV422 \
  98. || (x)==PIX_FMT_UYVY422 \
  99. || (x)==PIX_FMT_RGB32 \
  100. || (x)==PIX_FMT_RGB32_1 \
  101. || (x)==PIX_FMT_BGR24 \
  102. || (x)==PIX_FMT_BGR565 \
  103. || (x)==PIX_FMT_BGR555 \
  104. || (x)==PIX_FMT_BGR32 \
  105. || (x)==PIX_FMT_BGR32_1 \
  106. || (x)==PIX_FMT_RGB24 \
  107. || (x)==PIX_FMT_RGB565 \
  108. || (x)==PIX_FMT_RGB555 \
  109. || (x)==PIX_FMT_GRAY8 \
  110. || (x)==PIX_FMT_YUV410P \
  111. || (x)==PIX_FMT_YUV440P \
  112. || (x)==PIX_FMT_GRAY16BE \
  113. || (x)==PIX_FMT_GRAY16LE \
  114. || (x)==PIX_FMT_YUV444P \
  115. || (x)==PIX_FMT_YUV422P \
  116. || (x)==PIX_FMT_YUV411P \
  117. || (x)==PIX_FMT_PAL8 \
  118. || (x)==PIX_FMT_BGR8 \
  119. || (x)==PIX_FMT_RGB8 \
  120. || (x)==PIX_FMT_BGR4_BYTE \
  121. || (x)==PIX_FMT_RGB4_BYTE \
  122. || (x)==PIX_FMT_YUV440P \
  123. || (x)==PIX_FMT_MONOWHITE \
  124. || (x)==PIX_FMT_MONOBLACK \
  125. || (x)==PIX_FMT_YUV420PLE \
  126. || (x)==PIX_FMT_YUV422PLE \
  127. || (x)==PIX_FMT_YUV444PLE \
  128. || (x)==PIX_FMT_YUV420PBE \
  129. || (x)==PIX_FMT_YUV422PBE \
  130. || (x)==PIX_FMT_YUV444PBE \
  131. )
  132. #define isSupportedOut(x) ( \
  133. (x)==PIX_FMT_YUV420P \
  134. || (x)==PIX_FMT_YUVA420P \
  135. || (x)==PIX_FMT_YUYV422 \
  136. || (x)==PIX_FMT_UYVY422 \
  137. || (x)==PIX_FMT_YUV444P \
  138. || (x)==PIX_FMT_YUV422P \
  139. || (x)==PIX_FMT_YUV411P \
  140. || isRGB(x) \
  141. || isBGR(x) \
  142. || (x)==PIX_FMT_NV12 \
  143. || (x)==PIX_FMT_NV21 \
  144. || (x)==PIX_FMT_GRAY16BE \
  145. || (x)==PIX_FMT_GRAY16LE \
  146. || (x)==PIX_FMT_GRAY8 \
  147. || (x)==PIX_FMT_YUV410P \
  148. || (x)==PIX_FMT_YUV440P \
  149. || (x)==PIX_FMT_YUV420PLE \
  150. || (x)==PIX_FMT_YUV422PLE \
  151. || (x)==PIX_FMT_YUV444PLE \
  152. || (x)==PIX_FMT_YUV420PBE \
  153. || (x)==PIX_FMT_YUV422PBE \
  154. || (x)==PIX_FMT_YUV444PBE \
  155. )
  156. #define isPacked(x) ( \
  157. (x)==PIX_FMT_PAL8 \
  158. || (x)==PIX_FMT_YUYV422 \
  159. || (x)==PIX_FMT_UYVY422 \
  160. || isRGB(x) \
  161. || isBGR(x) \
  162. )
  163. #define usePal(x) ( \
  164. (x)==PIX_FMT_PAL8 \
  165. || (x)==PIX_FMT_BGR4_BYTE \
  166. || (x)==PIX_FMT_RGB4_BYTE \
  167. || (x)==PIX_FMT_BGR8 \
  168. || (x)==PIX_FMT_RGB8 \
  169. )
  170. #define RGB2YUV_SHIFT 15
  171. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  172. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  173. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  174. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  175. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  176. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  177. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  178. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  179. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  180. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  181. static const double rgb2yuv_table[8][9]={
  182. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  183. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  184. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  185. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  186. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  187. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  188. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  189. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  190. };
  191. /*
  192. NOTES
  193. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  194. TODO
  195. more intelligent misalignment avoidance for the horizontal scaler
  196. write special vertical cubic upscale version
  197. optimize C code (YV12 / minmax)
  198. add support for packed pixel YUV input & output
  199. add support for Y8 output
  200. optimize BGR24 & BGR32
  201. add BGR4 output support
  202. write special BGR->BGR scaler
  203. */
  204. #if ARCH_X86 && CONFIG_GPL
  205. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  206. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  207. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  208. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  209. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  210. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  211. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  212. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  213. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  214. 0x0103010301030103LL,
  215. 0x0200020002000200LL,};
  216. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  217. 0x0602060206020602LL,
  218. 0x0004000400040004LL,};
  219. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  220. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  221. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  222. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  223. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  224. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  225. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  226. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  227. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  228. #ifdef FAST_BGR2YV12
  229. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  230. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  231. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  232. #else
  233. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  234. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  235. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  236. #endif /* FAST_BGR2YV12 */
  237. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  238. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  239. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  240. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  241. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  242. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  243. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  244. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  245. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  246. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  247. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  248. };
  249. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  250. #endif /* ARCH_X86 && CONFIG_GPL */
  251. // clipping helper table for C implementations:
  252. static unsigned char clip_table[768];
  253. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  254. static const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  255. { 1, 3, 1, 3, 1, 3, 1, 3, },
  256. { 2, 0, 2, 0, 2, 0, 2, 0, },
  257. };
  258. static const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  259. { 6, 2, 6, 2, 6, 2, 6, 2, },
  260. { 0, 4, 0, 4, 0, 4, 0, 4, },
  261. };
  262. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  263. { 17, 9, 23, 15, 16, 8, 22, 14, },
  264. { 5, 29, 3, 27, 4, 28, 2, 26, },
  265. { 21, 13, 19, 11, 20, 12, 18, 10, },
  266. { 0, 24, 6, 30, 1, 25, 7, 31, },
  267. { 16, 8, 22, 14, 17, 9, 23, 15, },
  268. { 4, 28, 2, 26, 5, 29, 3, 27, },
  269. { 20, 12, 18, 10, 21, 13, 19, 11, },
  270. { 1, 25, 7, 31, 0, 24, 6, 30, },
  271. };
  272. #if 0
  273. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  274. { 0, 48, 12, 60, 3, 51, 15, 63, },
  275. { 32, 16, 44, 28, 35, 19, 47, 31, },
  276. { 8, 56, 4, 52, 11, 59, 7, 55, },
  277. { 40, 24, 36, 20, 43, 27, 39, 23, },
  278. { 2, 50, 14, 62, 1, 49, 13, 61, },
  279. { 34, 18, 46, 30, 33, 17, 45, 29, },
  280. { 10, 58, 6, 54, 9, 57, 5, 53, },
  281. { 42, 26, 38, 22, 41, 25, 37, 21, },
  282. };
  283. #endif
  284. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  285. { 0, 55, 14, 68, 3, 58, 17, 72, },
  286. { 37, 18, 50, 32, 40, 22, 54, 35, },
  287. { 9, 64, 5, 59, 13, 67, 8, 63, },
  288. { 46, 27, 41, 23, 49, 31, 44, 26, },
  289. { 2, 57, 16, 71, 1, 56, 15, 70, },
  290. { 39, 21, 52, 34, 38, 19, 51, 33, },
  291. { 11, 66, 7, 62, 10, 65, 6, 60, },
  292. { 48, 30, 43, 25, 47, 29, 42, 24, },
  293. };
  294. #if 0
  295. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  296. { 68, 36, 92, 60, 66, 34, 90, 58, },
  297. { 20, 116, 12, 108, 18, 114, 10, 106, },
  298. { 84, 52, 76, 44, 82, 50, 74, 42, },
  299. { 0, 96, 24, 120, 6, 102, 30, 126, },
  300. { 64, 32, 88, 56, 70, 38, 94, 62, },
  301. { 16, 112, 8, 104, 22, 118, 14, 110, },
  302. { 80, 48, 72, 40, 86, 54, 78, 46, },
  303. { 4, 100, 28, 124, 2, 98, 26, 122, },
  304. };
  305. #endif
  306. #if 1
  307. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  308. {117, 62, 158, 103, 113, 58, 155, 100, },
  309. { 34, 199, 21, 186, 31, 196, 17, 182, },
  310. {144, 89, 131, 76, 141, 86, 127, 72, },
  311. { 0, 165, 41, 206, 10, 175, 52, 217, },
  312. {110, 55, 151, 96, 120, 65, 162, 107, },
  313. { 28, 193, 14, 179, 38, 203, 24, 189, },
  314. {138, 83, 124, 69, 148, 93, 134, 79, },
  315. { 7, 172, 48, 213, 3, 168, 45, 210, },
  316. };
  317. #elif 1
  318. // tries to correct a gamma of 1.5
  319. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  320. { 0, 143, 18, 200, 2, 156, 25, 215, },
  321. { 78, 28, 125, 64, 89, 36, 138, 74, },
  322. { 10, 180, 3, 161, 16, 195, 8, 175, },
  323. {109, 51, 93, 38, 121, 60, 105, 47, },
  324. { 1, 152, 23, 210, 0, 147, 20, 205, },
  325. { 85, 33, 134, 71, 81, 30, 130, 67, },
  326. { 14, 190, 6, 171, 12, 185, 5, 166, },
  327. {117, 57, 101, 44, 113, 54, 97, 41, },
  328. };
  329. #elif 1
  330. // tries to correct a gamma of 2.0
  331. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  332. { 0, 124, 8, 193, 0, 140, 12, 213, },
  333. { 55, 14, 104, 42, 66, 19, 119, 52, },
  334. { 3, 168, 1, 145, 6, 187, 3, 162, },
  335. { 86, 31, 70, 21, 99, 39, 82, 28, },
  336. { 0, 134, 11, 206, 0, 129, 9, 200, },
  337. { 62, 17, 114, 48, 58, 16, 109, 45, },
  338. { 5, 181, 2, 157, 4, 175, 1, 151, },
  339. { 95, 36, 78, 26, 90, 34, 74, 24, },
  340. };
  341. #else
  342. // tries to correct a gamma of 2.5
  343. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  344. { 0, 107, 3, 187, 0, 125, 6, 212, },
  345. { 39, 7, 86, 28, 49, 11, 102, 36, },
  346. { 1, 158, 0, 131, 3, 180, 1, 151, },
  347. { 68, 19, 52, 12, 81, 25, 64, 17, },
  348. { 0, 119, 5, 203, 0, 113, 4, 195, },
  349. { 45, 9, 96, 33, 42, 8, 91, 30, },
  350. { 2, 172, 1, 144, 2, 165, 0, 137, },
  351. { 77, 23, 60, 15, 72, 21, 56, 14, },
  352. };
  353. #endif
  354. const char *sws_format_name(enum PixelFormat format)
  355. {
  356. switch (format) {
  357. case PIX_FMT_YUV420P:
  358. return "yuv420p";
  359. case PIX_FMT_YUVA420P:
  360. return "yuva420p";
  361. case PIX_FMT_YUYV422:
  362. return "yuyv422";
  363. case PIX_FMT_RGB24:
  364. return "rgb24";
  365. case PIX_FMT_BGR24:
  366. return "bgr24";
  367. case PIX_FMT_YUV422P:
  368. return "yuv422p";
  369. case PIX_FMT_YUV444P:
  370. return "yuv444p";
  371. case PIX_FMT_RGB32:
  372. return "rgb32";
  373. case PIX_FMT_YUV410P:
  374. return "yuv410p";
  375. case PIX_FMT_YUV411P:
  376. return "yuv411p";
  377. case PIX_FMT_RGB565:
  378. return "rgb565";
  379. case PIX_FMT_RGB555:
  380. return "rgb555";
  381. case PIX_FMT_GRAY16BE:
  382. return "gray16be";
  383. case PIX_FMT_GRAY16LE:
  384. return "gray16le";
  385. case PIX_FMT_GRAY8:
  386. return "gray8";
  387. case PIX_FMT_MONOWHITE:
  388. return "mono white";
  389. case PIX_FMT_MONOBLACK:
  390. return "mono black";
  391. case PIX_FMT_PAL8:
  392. return "Palette";
  393. case PIX_FMT_YUVJ420P:
  394. return "yuvj420p";
  395. case PIX_FMT_YUVJ422P:
  396. return "yuvj422p";
  397. case PIX_FMT_YUVJ444P:
  398. return "yuvj444p";
  399. case PIX_FMT_XVMC_MPEG2_MC:
  400. return "xvmc_mpeg2_mc";
  401. case PIX_FMT_XVMC_MPEG2_IDCT:
  402. return "xvmc_mpeg2_idct";
  403. case PIX_FMT_UYVY422:
  404. return "uyvy422";
  405. case PIX_FMT_UYYVYY411:
  406. return "uyyvyy411";
  407. case PIX_FMT_RGB32_1:
  408. return "rgb32x";
  409. case PIX_FMT_BGR32_1:
  410. return "bgr32x";
  411. case PIX_FMT_BGR32:
  412. return "bgr32";
  413. case PIX_FMT_BGR565:
  414. return "bgr565";
  415. case PIX_FMT_BGR555:
  416. return "bgr555";
  417. case PIX_FMT_BGR8:
  418. return "bgr8";
  419. case PIX_FMT_BGR4:
  420. return "bgr4";
  421. case PIX_FMT_BGR4_BYTE:
  422. return "bgr4 byte";
  423. case PIX_FMT_RGB8:
  424. return "rgb8";
  425. case PIX_FMT_RGB4:
  426. return "rgb4";
  427. case PIX_FMT_RGB4_BYTE:
  428. return "rgb4 byte";
  429. case PIX_FMT_RGB48BE:
  430. return "rgb48be";
  431. case PIX_FMT_RGB48LE:
  432. return "rgb48le";
  433. case PIX_FMT_NV12:
  434. return "nv12";
  435. case PIX_FMT_NV21:
  436. return "nv21";
  437. case PIX_FMT_YUV440P:
  438. return "yuv440p";
  439. case PIX_FMT_VDPAU_H264:
  440. return "vdpau_h264";
  441. case PIX_FMT_VDPAU_MPEG1:
  442. return "vdpau_mpeg1";
  443. case PIX_FMT_VDPAU_MPEG2:
  444. return "vdpau_mpeg2";
  445. case PIX_FMT_VDPAU_WMV3:
  446. return "vdpau_wmv3";
  447. case PIX_FMT_VDPAU_VC1:
  448. return "vdpau_vc1";
  449. case PIX_FMT_YUV420PLE:
  450. return "yuv420ple";
  451. case PIX_FMT_YUV422PLE:
  452. return "yuv422ple";
  453. case PIX_FMT_YUV444PLE:
  454. return "yuv444ple";
  455. case PIX_FMT_YUV420PBE:
  456. return "yuv420pbe";
  457. case PIX_FMT_YUV422PBE:
  458. return "yuv422pbe";
  459. case PIX_FMT_YUV444PBE:
  460. return "yuv444pbe";
  461. default:
  462. return "Unknown format";
  463. }
  464. }
  465. static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  466. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  467. const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW)
  468. {
  469. //FIXME Optimize (just quickly written not optimized..)
  470. int i;
  471. for (i=0; i<dstW; i++)
  472. {
  473. int val=1<<18;
  474. int j;
  475. for (j=0; j<lumFilterSize; j++)
  476. val += lumSrc[j][i] * lumFilter[j];
  477. dest[i]= av_clip_uint8(val>>19);
  478. }
  479. if (uDest)
  480. for (i=0; i<chrDstW; i++)
  481. {
  482. int u=1<<18;
  483. int v=1<<18;
  484. int j;
  485. for (j=0; j<chrFilterSize; j++)
  486. {
  487. u += chrSrc[j][i] * chrFilter[j];
  488. v += chrSrc[j][i + VOFW] * chrFilter[j];
  489. }
  490. uDest[i]= av_clip_uint8(u>>19);
  491. vDest[i]= av_clip_uint8(v>>19);
  492. }
  493. if (CONFIG_SWSCALE_ALPHA && aDest)
  494. for (i=0; i<dstW; i++){
  495. int val=1<<18;
  496. int j;
  497. for (j=0; j<lumFilterSize; j++)
  498. val += alpSrc[j][i] * lumFilter[j];
  499. aDest[i]= av_clip_uint8(val>>19);
  500. }
  501. }
  502. static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  503. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  504. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  505. {
  506. //FIXME Optimize (just quickly written not optimized..)
  507. int i;
  508. for (i=0; i<dstW; i++)
  509. {
  510. int val=1<<18;
  511. int j;
  512. for (j=0; j<lumFilterSize; j++)
  513. val += lumSrc[j][i] * lumFilter[j];
  514. dest[i]= av_clip_uint8(val>>19);
  515. }
  516. if (!uDest)
  517. return;
  518. if (dstFormat == PIX_FMT_NV12)
  519. for (i=0; i<chrDstW; i++)
  520. {
  521. int u=1<<18;
  522. int v=1<<18;
  523. int j;
  524. for (j=0; j<chrFilterSize; j++)
  525. {
  526. u += chrSrc[j][i] * chrFilter[j];
  527. v += chrSrc[j][i + VOFW] * chrFilter[j];
  528. }
  529. uDest[2*i]= av_clip_uint8(u>>19);
  530. uDest[2*i+1]= av_clip_uint8(v>>19);
  531. }
  532. else
  533. for (i=0; i<chrDstW; i++)
  534. {
  535. int u=1<<18;
  536. int v=1<<18;
  537. int j;
  538. for (j=0; j<chrFilterSize; j++)
  539. {
  540. u += chrSrc[j][i] * chrFilter[j];
  541. v += chrSrc[j][i + VOFW] * chrFilter[j];
  542. }
  543. uDest[2*i]= av_clip_uint8(v>>19);
  544. uDest[2*i+1]= av_clip_uint8(u>>19);
  545. }
  546. }
  547. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \
  548. for (i=0; i<(dstW>>1); i++){\
  549. int j;\
  550. int Y1 = 1<<18;\
  551. int Y2 = 1<<18;\
  552. int U = 1<<18;\
  553. int V = 1<<18;\
  554. int av_unused A1, A2;\
  555. type av_unused *r, *b, *g;\
  556. const int i2= 2*i;\
  557. \
  558. for (j=0; j<lumFilterSize; j++)\
  559. {\
  560. Y1 += lumSrc[j][i2] * lumFilter[j];\
  561. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  562. }\
  563. for (j=0; j<chrFilterSize; j++)\
  564. {\
  565. U += chrSrc[j][i] * chrFilter[j];\
  566. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  567. }\
  568. Y1>>=19;\
  569. Y2>>=19;\
  570. U >>=19;\
  571. V >>=19;\
  572. if (alpha){\
  573. A1 = 1<<18;\
  574. A2 = 1<<18;\
  575. for (j=0; j<lumFilterSize; j++){\
  576. A1 += alpSrc[j][i2 ] * lumFilter[j];\
  577. A2 += alpSrc[j][i2+1] * lumFilter[j];\
  578. }\
  579. A1>>=19;\
  580. A2>>=19;\
  581. }\
  582. #define YSCALE_YUV_2_PACKEDX_C(type,alpha) \
  583. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\
  584. if ((Y1|Y2|U|V)&256)\
  585. {\
  586. if (Y1>255) Y1=255; \
  587. else if (Y1<0)Y1=0; \
  588. if (Y2>255) Y2=255; \
  589. else if (Y2<0)Y2=0; \
  590. if (U>255) U=255; \
  591. else if (U<0) U=0; \
  592. if (V>255) V=255; \
  593. else if (V<0) V=0; \
  594. }\
  595. if (alpha && ((A1|A2)&256)){\
  596. A1=av_clip_uint8(A1);\
  597. A2=av_clip_uint8(A2);\
  598. }
  599. #define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \
  600. for (i=0; i<dstW; i++){\
  601. int j;\
  602. int Y = 0;\
  603. int U = -128<<19;\
  604. int V = -128<<19;\
  605. int av_unused A;\
  606. int R,G,B;\
  607. \
  608. for (j=0; j<lumFilterSize; j++){\
  609. Y += lumSrc[j][i ] * lumFilter[j];\
  610. }\
  611. for (j=0; j<chrFilterSize; j++){\
  612. U += chrSrc[j][i ] * chrFilter[j];\
  613. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  614. }\
  615. Y >>=10;\
  616. U >>=10;\
  617. V >>=10;\
  618. if (alpha){\
  619. A = rnd;\
  620. for (j=0; j<lumFilterSize; j++)\
  621. A += alpSrc[j][i ] * lumFilter[j];\
  622. A >>=19;\
  623. if (A&256)\
  624. A = av_clip_uint8(A);\
  625. }\
  626. #define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \
  627. YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\
  628. Y-= c->yuv2rgb_y_offset;\
  629. Y*= c->yuv2rgb_y_coeff;\
  630. Y+= rnd;\
  631. R= Y + V*c->yuv2rgb_v2r_coeff;\
  632. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  633. B= Y + U*c->yuv2rgb_u2b_coeff;\
  634. if ((R|G|B)&(0xC0000000)){\
  635. if (R>=(256<<22)) R=(256<<22)-1; \
  636. else if (R<0)R=0; \
  637. if (G>=(256<<22)) G=(256<<22)-1; \
  638. else if (G<0)G=0; \
  639. if (B>=(256<<22)) B=(256<<22)-1; \
  640. else if (B<0)B=0; \
  641. }\
  642. #define YSCALE_YUV_2_GRAY16_C \
  643. for (i=0; i<(dstW>>1); i++){\
  644. int j;\
  645. int Y1 = 1<<18;\
  646. int Y2 = 1<<18;\
  647. int U = 1<<18;\
  648. int V = 1<<18;\
  649. \
  650. const int i2= 2*i;\
  651. \
  652. for (j=0; j<lumFilterSize; j++)\
  653. {\
  654. Y1 += lumSrc[j][i2] * lumFilter[j];\
  655. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  656. }\
  657. Y1>>=11;\
  658. Y2>>=11;\
  659. if ((Y1|Y2|U|V)&65536)\
  660. {\
  661. if (Y1>65535) Y1=65535; \
  662. else if (Y1<0)Y1=0; \
  663. if (Y2>65535) Y2=65535; \
  664. else if (Y2<0)Y2=0; \
  665. }
  666. #define YSCALE_YUV_2_RGBX_C(type,alpha) \
  667. YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
  668. r = (type *)c->table_rV[V]; \
  669. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  670. b = (type *)c->table_bU[U]; \
  671. #define YSCALE_YUV_2_PACKED2_C(type,alpha) \
  672. for (i=0; i<(dstW>>1); i++){ \
  673. const int i2= 2*i; \
  674. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  675. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  676. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  677. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  678. type av_unused *r, *b, *g; \
  679. int av_unused A1, A2; \
  680. if (alpha){\
  681. A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \
  682. A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \
  683. }\
  684. #define YSCALE_YUV_2_GRAY16_2_C \
  685. for (i=0; i<(dstW>>1); i++){ \
  686. const int i2= 2*i; \
  687. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  688. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  689. #define YSCALE_YUV_2_RGB2_C(type,alpha) \
  690. YSCALE_YUV_2_PACKED2_C(type,alpha)\
  691. r = (type *)c->table_rV[V];\
  692. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  693. b = (type *)c->table_bU[U];\
  694. #define YSCALE_YUV_2_PACKED1_C(type,alpha) \
  695. for (i=0; i<(dstW>>1); i++){\
  696. const int i2= 2*i;\
  697. int Y1= buf0[i2 ]>>7;\
  698. int Y2= buf0[i2+1]>>7;\
  699. int U= (uvbuf1[i ])>>7;\
  700. int V= (uvbuf1[i+VOFW])>>7;\
  701. type av_unused *r, *b, *g;\
  702. int av_unused A1, A2;\
  703. if (alpha){\
  704. A1= abuf0[i2 ]>>7;\
  705. A2= abuf0[i2+1]>>7;\
  706. }\
  707. #define YSCALE_YUV_2_GRAY16_1_C \
  708. for (i=0; i<(dstW>>1); i++){\
  709. const int i2= 2*i;\
  710. int Y1= buf0[i2 ]<<1;\
  711. int Y2= buf0[i2+1]<<1;\
  712. #define YSCALE_YUV_2_RGB1_C(type,alpha) \
  713. YSCALE_YUV_2_PACKED1_C(type,alpha)\
  714. r = (type *)c->table_rV[V];\
  715. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  716. b = (type *)c->table_bU[U];\
  717. #define YSCALE_YUV_2_PACKED1B_C(type,alpha) \
  718. for (i=0; i<(dstW>>1); i++){\
  719. const int i2= 2*i;\
  720. int Y1= buf0[i2 ]>>7;\
  721. int Y2= buf0[i2+1]>>7;\
  722. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  723. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  724. type av_unused *r, *b, *g;\
  725. int av_unused A1, A2;\
  726. if (alpha){\
  727. A1= abuf0[i2 ]>>7;\
  728. A2= abuf0[i2+1]>>7;\
  729. }\
  730. #define YSCALE_YUV_2_RGB1B_C(type,alpha) \
  731. YSCALE_YUV_2_PACKED1B_C(type,alpha)\
  732. r = (type *)c->table_rV[V];\
  733. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  734. b = (type *)c->table_bU[U];\
  735. #define YSCALE_YUV_2_MONO2_C \
  736. const uint8_t * const d128=dither_8x8_220[y&7];\
  737. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  738. for (i=0; i<dstW-7; i+=8){\
  739. int acc;\
  740. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  741. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  742. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  743. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  744. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  745. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  746. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  747. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  748. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  749. dest++;\
  750. }\
  751. #define YSCALE_YUV_2_MONOX_C \
  752. const uint8_t * const d128=dither_8x8_220[y&7];\
  753. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  754. int acc=0;\
  755. for (i=0; i<dstW-1; i+=2){\
  756. int j;\
  757. int Y1=1<<18;\
  758. int Y2=1<<18;\
  759. \
  760. for (j=0; j<lumFilterSize; j++)\
  761. {\
  762. Y1 += lumSrc[j][i] * lumFilter[j];\
  763. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  764. }\
  765. Y1>>=19;\
  766. Y2>>=19;\
  767. if ((Y1|Y2)&256)\
  768. {\
  769. if (Y1>255) Y1=255;\
  770. else if (Y1<0)Y1=0;\
  771. if (Y2>255) Y2=255;\
  772. else if (Y2<0)Y2=0;\
  773. }\
  774. acc+= acc + g[Y1+d128[(i+0)&7]];\
  775. acc+= acc + g[Y2+d128[(i+1)&7]];\
  776. if ((i&7)==6){\
  777. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  778. dest++;\
  779. }\
  780. }
  781. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  782. switch(c->dstFormat)\
  783. {\
  784. case PIX_FMT_RGBA:\
  785. case PIX_FMT_BGRA:\
  786. if (CONFIG_SMALL){\
  787. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  788. func(uint32_t,needAlpha)\
  789. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\
  790. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\
  791. }\
  792. }else{\
  793. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  794. func(uint32_t,1)\
  795. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\
  796. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\
  797. }\
  798. }else{\
  799. func(uint32_t,0)\
  800. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  801. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  802. }\
  803. }\
  804. }\
  805. break;\
  806. case PIX_FMT_ARGB:\
  807. case PIX_FMT_ABGR:\
  808. if (CONFIG_SMALL){\
  809. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  810. func(uint32_t,needAlpha)\
  811. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\
  812. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\
  813. }\
  814. }else{\
  815. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  816. func(uint32_t,1)\
  817. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\
  818. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\
  819. }\
  820. }else{\
  821. func(uint32_t,0)\
  822. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  823. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  824. }\
  825. }\
  826. } \
  827. break;\
  828. case PIX_FMT_RGB24:\
  829. func(uint8_t,0)\
  830. ((uint8_t*)dest)[0]= r[Y1];\
  831. ((uint8_t*)dest)[1]= g[Y1];\
  832. ((uint8_t*)dest)[2]= b[Y1];\
  833. ((uint8_t*)dest)[3]= r[Y2];\
  834. ((uint8_t*)dest)[4]= g[Y2];\
  835. ((uint8_t*)dest)[5]= b[Y2];\
  836. dest+=6;\
  837. }\
  838. break;\
  839. case PIX_FMT_BGR24:\
  840. func(uint8_t,0)\
  841. ((uint8_t*)dest)[0]= b[Y1];\
  842. ((uint8_t*)dest)[1]= g[Y1];\
  843. ((uint8_t*)dest)[2]= r[Y1];\
  844. ((uint8_t*)dest)[3]= b[Y2];\
  845. ((uint8_t*)dest)[4]= g[Y2];\
  846. ((uint8_t*)dest)[5]= r[Y2];\
  847. dest+=6;\
  848. }\
  849. break;\
  850. case PIX_FMT_RGB565:\
  851. case PIX_FMT_BGR565:\
  852. {\
  853. const int dr1= dither_2x2_8[y&1 ][0];\
  854. const int dg1= dither_2x2_4[y&1 ][0];\
  855. const int db1= dither_2x2_8[(y&1)^1][0];\
  856. const int dr2= dither_2x2_8[y&1 ][1];\
  857. const int dg2= dither_2x2_4[y&1 ][1];\
  858. const int db2= dither_2x2_8[(y&1)^1][1];\
  859. func(uint16_t,0)\
  860. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  861. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  862. }\
  863. }\
  864. break;\
  865. case PIX_FMT_RGB555:\
  866. case PIX_FMT_BGR555:\
  867. {\
  868. const int dr1= dither_2x2_8[y&1 ][0];\
  869. const int dg1= dither_2x2_8[y&1 ][1];\
  870. const int db1= dither_2x2_8[(y&1)^1][0];\
  871. const int dr2= dither_2x2_8[y&1 ][1];\
  872. const int dg2= dither_2x2_8[y&1 ][0];\
  873. const int db2= dither_2x2_8[(y&1)^1][1];\
  874. func(uint16_t,0)\
  875. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  876. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  877. }\
  878. }\
  879. break;\
  880. case PIX_FMT_RGB8:\
  881. case PIX_FMT_BGR8:\
  882. {\
  883. const uint8_t * const d64= dither_8x8_73[y&7];\
  884. const uint8_t * const d32= dither_8x8_32[y&7];\
  885. func(uint8_t,0)\
  886. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  887. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  888. }\
  889. }\
  890. break;\
  891. case PIX_FMT_RGB4:\
  892. case PIX_FMT_BGR4:\
  893. {\
  894. const uint8_t * const d64= dither_8x8_73 [y&7];\
  895. const uint8_t * const d128=dither_8x8_220[y&7];\
  896. func(uint8_t,0)\
  897. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  898. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  899. }\
  900. }\
  901. break;\
  902. case PIX_FMT_RGB4_BYTE:\
  903. case PIX_FMT_BGR4_BYTE:\
  904. {\
  905. const uint8_t * const d64= dither_8x8_73 [y&7];\
  906. const uint8_t * const d128=dither_8x8_220[y&7];\
  907. func(uint8_t,0)\
  908. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  909. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  910. }\
  911. }\
  912. break;\
  913. case PIX_FMT_MONOBLACK:\
  914. case PIX_FMT_MONOWHITE:\
  915. {\
  916. func_monoblack\
  917. }\
  918. break;\
  919. case PIX_FMT_YUYV422:\
  920. func2\
  921. ((uint8_t*)dest)[2*i2+0]= Y1;\
  922. ((uint8_t*)dest)[2*i2+1]= U;\
  923. ((uint8_t*)dest)[2*i2+2]= Y2;\
  924. ((uint8_t*)dest)[2*i2+3]= V;\
  925. } \
  926. break;\
  927. case PIX_FMT_UYVY422:\
  928. func2\
  929. ((uint8_t*)dest)[2*i2+0]= U;\
  930. ((uint8_t*)dest)[2*i2+1]= Y1;\
  931. ((uint8_t*)dest)[2*i2+2]= V;\
  932. ((uint8_t*)dest)[2*i2+3]= Y2;\
  933. } \
  934. break;\
  935. case PIX_FMT_GRAY16BE:\
  936. func_g16\
  937. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  938. ((uint8_t*)dest)[2*i2+1]= Y1;\
  939. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  940. ((uint8_t*)dest)[2*i2+3]= Y2;\
  941. } \
  942. break;\
  943. case PIX_FMT_GRAY16LE:\
  944. func_g16\
  945. ((uint8_t*)dest)[2*i2+0]= Y1;\
  946. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  947. ((uint8_t*)dest)[2*i2+2]= Y2;\
  948. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  949. } \
  950. break;\
  951. }\
  952. static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  953. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  954. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  955. {
  956. int i;
  957. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  958. }
  959. static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  960. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  961. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  962. {
  963. int i;
  964. int step= fmt_depth(c->dstFormat)/8;
  965. int aidx= 3;
  966. switch(c->dstFormat){
  967. case PIX_FMT_ARGB:
  968. dest++;
  969. aidx= 0;
  970. case PIX_FMT_RGB24:
  971. aidx--;
  972. case PIX_FMT_RGBA:
  973. if (CONFIG_SMALL){
  974. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  975. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  976. dest[aidx]= needAlpha ? A : 255;
  977. dest[0]= R>>22;
  978. dest[1]= G>>22;
  979. dest[2]= B>>22;
  980. dest+= step;
  981. }
  982. }else{
  983. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  984. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  985. dest[aidx]= A;
  986. dest[0]= R>>22;
  987. dest[1]= G>>22;
  988. dest[2]= B>>22;
  989. dest+= step;
  990. }
  991. }else{
  992. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  993. dest[aidx]= 255;
  994. dest[0]= R>>22;
  995. dest[1]= G>>22;
  996. dest[2]= B>>22;
  997. dest+= step;
  998. }
  999. }
  1000. }
  1001. break;
  1002. case PIX_FMT_ABGR:
  1003. dest++;
  1004. aidx= 0;
  1005. case PIX_FMT_BGR24:
  1006. aidx--;
  1007. case PIX_FMT_BGRA:
  1008. if (CONFIG_SMALL){
  1009. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  1010. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  1011. dest[aidx]= needAlpha ? A : 255;
  1012. dest[0]= B>>22;
  1013. dest[1]= G>>22;
  1014. dest[2]= R>>22;
  1015. dest+= step;
  1016. }
  1017. }else{
  1018. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  1019. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  1020. dest[aidx]= A;
  1021. dest[0]= B>>22;
  1022. dest[1]= G>>22;
  1023. dest[2]= R>>22;
  1024. dest+= step;
  1025. }
  1026. }else{
  1027. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  1028. dest[aidx]= 255;
  1029. dest[0]= B>>22;
  1030. dest[1]= G>>22;
  1031. dest[2]= R>>22;
  1032. dest+= step;
  1033. }
  1034. }
  1035. }
  1036. break;
  1037. default:
  1038. assert(0);
  1039. }
  1040. }
  1041. static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
  1042. int i;
  1043. uint8_t *ptr = plane + stride*y;
  1044. for (i=0; i<height; i++){
  1045. memset(ptr, val, width);
  1046. ptr += stride;
  1047. }
  1048. }
  1049. #define BGR2Y(type, name, shr, shg, shb, maskr, maskg, maskb, RY, GY, BY, S)\
  1050. static inline void name(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)\
  1051. {\
  1052. int i;\
  1053. for (i=0; i<width; i++)\
  1054. {\
  1055. int b= (((const type*)src)[i]>>shb)&maskb;\
  1056. int g= (((const type*)src)[i]>>shg)&maskg;\
  1057. int r= (((const type*)src)[i]>>shr)&maskr;\
  1058. \
  1059. dst[i]= (((RY)*r + (GY)*g + (BY)*b + (33<<((S)-1)))>>(S));\
  1060. }\
  1061. }
  1062. BGR2Y(uint32_t, bgr32ToY,16, 0, 0, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
  1063. BGR2Y(uint32_t, rgb32ToY, 0, 0,16, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
  1064. BGR2Y(uint16_t, bgr16ToY, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RY<<11, GY<<5, BY , RGB2YUV_SHIFT+8)
  1065. BGR2Y(uint16_t, bgr15ToY, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RY<<10, GY<<5, BY , RGB2YUV_SHIFT+7)
  1066. BGR2Y(uint16_t, rgb16ToY, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RY , GY<<5, BY<<11, RGB2YUV_SHIFT+8)
  1067. BGR2Y(uint16_t, rgb15ToY, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RY , GY<<5, BY<<10, RGB2YUV_SHIFT+7)
  1068. static inline void abgrToA(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused){
  1069. int i;
  1070. for (i=0; i<width; i++){
  1071. dst[i]= src[4*i];
  1072. }
  1073. }
  1074. #define BGR2UV(type, name, shr, shg, shb, maska, maskr, maskg, maskb, RU, GU, BU, RV, GV, BV, S)\
  1075. static inline void name(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
  1076. {\
  1077. int i;\
  1078. for (i=0; i<width; i++)\
  1079. {\
  1080. int b= (((const type*)src)[i]&maskb)>>shb;\
  1081. int g= (((const type*)src)[i]&maskg)>>shg;\
  1082. int r= (((const type*)src)[i]&maskr)>>shr;\
  1083. \
  1084. dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<((S)-1)))>>(S);\
  1085. dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<((S)-1)))>>(S);\
  1086. }\
  1087. }\
  1088. static inline void name ## _half(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
  1089. {\
  1090. int i;\
  1091. for (i=0; i<width; i++)\
  1092. {\
  1093. int pix0= ((const type*)src)[2*i+0];\
  1094. int pix1= ((const type*)src)[2*i+1];\
  1095. int g= (pix0&~(maskr|maskb))+(pix1&~(maskr|maskb));\
  1096. int b= ((pix0+pix1-g)&(maskb|(2*maskb)))>>shb;\
  1097. int r= ((pix0+pix1-g)&(maskr|(2*maskr)))>>shr;\
  1098. g&= maskg|(2*maskg);\
  1099. \
  1100. g>>=shg;\
  1101. \
  1102. dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<(S)))>>((S)+1);\
  1103. dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<(S)))>>((S)+1);\
  1104. }\
  1105. }
  1106. BGR2UV(uint32_t, bgr32ToUV,16, 0, 0, 0xFF000000, 0xFF0000, 0xFF00, 0x00FF, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
  1107. BGR2UV(uint32_t, rgb32ToUV, 0, 0,16, 0xFF000000, 0x00FF, 0xFF00, 0xFF0000, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
  1108. BGR2UV(uint16_t, bgr16ToUV, 0, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RU<<11, GU<<5, BU , RV<<11, GV<<5, BV , RGB2YUV_SHIFT+8)
  1109. BGR2UV(uint16_t, bgr15ToUV, 0, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RU<<10, GU<<5, BU , RV<<10, GV<<5, BV , RGB2YUV_SHIFT+7)
  1110. BGR2UV(uint16_t, rgb16ToUV, 0, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RU , GU<<5, BU<<11, RV , GV<<5, BV<<11, RGB2YUV_SHIFT+8)
  1111. BGR2UV(uint16_t, rgb15ToUV, 0, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RU , GU<<5, BU<<10, RV , GV<<5, BV<<10, RGB2YUV_SHIFT+7)
  1112. static inline void palToY(uint8_t *dst, const uint8_t *src, long width, uint32_t *pal)
  1113. {
  1114. int i;
  1115. for (i=0; i<width; i++)
  1116. {
  1117. int d= src[i];
  1118. dst[i]= pal[d] & 0xFF;
  1119. }
  1120. }
  1121. static inline void palToUV(uint8_t *dstU, uint8_t *dstV,
  1122. const uint8_t *src1, const uint8_t *src2,
  1123. long width, uint32_t *pal)
  1124. {
  1125. int i;
  1126. assert(src1 == src2);
  1127. for (i=0; i<width; i++)
  1128. {
  1129. int p= pal[src1[i]];
  1130. dstU[i]= p>>8;
  1131. dstV[i]= p>>16;
  1132. }
  1133. }
  1134. static inline void monowhite2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
  1135. {
  1136. int i, j;
  1137. for (i=0; i<width/8; i++){
  1138. int d= ~src[i];
  1139. for(j=0; j<8; j++)
  1140. dst[8*i+j]= ((d>>(7-j))&1)*255;
  1141. }
  1142. }
  1143. static inline void monoblack2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
  1144. {
  1145. int i, j;
  1146. for (i=0; i<width/8; i++){
  1147. int d= src[i];
  1148. for(j=0; j<8; j++)
  1149. dst[8*i+j]= ((d>>(7-j))&1)*255;
  1150. }
  1151. }
  1152. //Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
  1153. //Plain C versions
  1154. #if !HAVE_MMX || CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL
  1155. #define COMPILE_C
  1156. #endif
  1157. #if ARCH_PPC
  1158. #if (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1159. #undef COMPILE_C
  1160. #define COMPILE_ALTIVEC
  1161. #endif
  1162. #endif //ARCH_PPC
  1163. #if ARCH_X86
  1164. #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1165. #define COMPILE_MMX
  1166. #endif
  1167. #if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1168. #define COMPILE_MMX2
  1169. #endif
  1170. #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1171. #define COMPILE_3DNOW
  1172. #endif
  1173. #endif //ARCH_X86
  1174. #undef HAVE_MMX
  1175. #undef HAVE_MMX2
  1176. #undef HAVE_AMD3DNOW
  1177. #undef HAVE_ALTIVEC
  1178. #define HAVE_MMX 0
  1179. #define HAVE_MMX2 0
  1180. #define HAVE_AMD3DNOW 0
  1181. #define HAVE_ALTIVEC 0
  1182. #ifdef COMPILE_C
  1183. #define RENAME(a) a ## _C
  1184. #include "swscale_template.c"
  1185. #endif
  1186. #ifdef COMPILE_ALTIVEC
  1187. #undef RENAME
  1188. #undef HAVE_ALTIVEC
  1189. #define HAVE_ALTIVEC 1
  1190. #define RENAME(a) a ## _altivec
  1191. #include "swscale_template.c"
  1192. #endif
  1193. #if ARCH_X86
  1194. //MMX versions
  1195. #ifdef COMPILE_MMX
  1196. #undef RENAME
  1197. #undef HAVE_MMX
  1198. #undef HAVE_MMX2
  1199. #undef HAVE_AMD3DNOW
  1200. #define HAVE_MMX 1
  1201. #define HAVE_MMX2 0
  1202. #define HAVE_AMD3DNOW 0
  1203. #define RENAME(a) a ## _MMX
  1204. #include "swscale_template.c"
  1205. #endif
  1206. //MMX2 versions
  1207. #ifdef COMPILE_MMX2
  1208. #undef RENAME
  1209. #undef HAVE_MMX
  1210. #undef HAVE_MMX2
  1211. #undef HAVE_AMD3DNOW
  1212. #define HAVE_MMX 1
  1213. #define HAVE_MMX2 1
  1214. #define HAVE_AMD3DNOW 0
  1215. #define RENAME(a) a ## _MMX2
  1216. #include "swscale_template.c"
  1217. #endif
  1218. //3DNOW versions
  1219. #ifdef COMPILE_3DNOW
  1220. #undef RENAME
  1221. #undef HAVE_MMX
  1222. #undef HAVE_MMX2
  1223. #undef HAVE_AMD3DNOW
  1224. #define HAVE_MMX 1
  1225. #define HAVE_MMX2 0
  1226. #define HAVE_AMD3DNOW 1
  1227. #define RENAME(a) a ## _3DNow
  1228. #include "swscale_template.c"
  1229. #endif
  1230. #endif //ARCH_X86
  1231. // minor note: the HAVE_xyz are messed up after this line so don't use them
  1232. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  1233. {
  1234. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  1235. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  1236. else return getSplineCoeff( 0.0,
  1237. b+ 2.0*c + 3.0*d,
  1238. c + 3.0*d,
  1239. -b- 3.0*c - 6.0*d,
  1240. dist-1.0);
  1241. }
  1242. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  1243. int srcW, int dstW, int filterAlign, int one, int flags,
  1244. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  1245. {
  1246. int i;
  1247. int filterSize;
  1248. int filter2Size;
  1249. int minFilterSize;
  1250. int64_t *filter=NULL;
  1251. int64_t *filter2=NULL;
  1252. const int64_t fone= 1LL<<54;
  1253. int ret= -1;
  1254. #if ARCH_X86
  1255. if (flags & SWS_CPU_CAPS_MMX)
  1256. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  1257. #endif
  1258. // NOTE: the +1 is for the MMX scaler which reads over the end
  1259. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  1260. if (FFABS(xInc - 0x10000) <10) // unscaled
  1261. {
  1262. int i;
  1263. filterSize= 1;
  1264. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  1265. for (i=0; i<dstW; i++)
  1266. {
  1267. filter[i*filterSize]= fone;
  1268. (*filterPos)[i]=i;
  1269. }
  1270. }
  1271. else if (flags&SWS_POINT) // lame looking point sampling mode
  1272. {
  1273. int i;
  1274. int xDstInSrc;
  1275. filterSize= 1;
  1276. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1277. xDstInSrc= xInc/2 - 0x8000;
  1278. for (i=0; i<dstW; i++)
  1279. {
  1280. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1281. (*filterPos)[i]= xx;
  1282. filter[i]= fone;
  1283. xDstInSrc+= xInc;
  1284. }
  1285. }
  1286. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1287. {
  1288. int i;
  1289. int xDstInSrc;
  1290. if (flags&SWS_BICUBIC) filterSize= 4;
  1291. else if (flags&SWS_X ) filterSize= 4;
  1292. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1293. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1294. xDstInSrc= xInc/2 - 0x8000;
  1295. for (i=0; i<dstW; i++)
  1296. {
  1297. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1298. int j;
  1299. (*filterPos)[i]= xx;
  1300. //bilinear upscale / linear interpolate / area averaging
  1301. for (j=0; j<filterSize; j++)
  1302. {
  1303. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1304. if (coeff<0) coeff=0;
  1305. filter[i*filterSize + j]= coeff;
  1306. xx++;
  1307. }
  1308. xDstInSrc+= xInc;
  1309. }
  1310. }
  1311. else
  1312. {
  1313. int xDstInSrc;
  1314. int sizeFactor;
  1315. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1316. else if (flags&SWS_X) sizeFactor= 8;
  1317. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1318. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1319. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1320. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1321. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1322. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1323. else {
  1324. sizeFactor= 0; //GCC warning killer
  1325. assert(0);
  1326. }
  1327. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1328. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1329. if (filterSize > srcW-2) filterSize=srcW-2;
  1330. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1331. xDstInSrc= xInc - 0x10000;
  1332. for (i=0; i<dstW; i++)
  1333. {
  1334. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1335. int j;
  1336. (*filterPos)[i]= xx;
  1337. for (j=0; j<filterSize; j++)
  1338. {
  1339. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1340. double floatd;
  1341. int64_t coeff;
  1342. if (xInc > 1<<16)
  1343. d= d*dstW/srcW;
  1344. floatd= d * (1.0/(1<<30));
  1345. if (flags & SWS_BICUBIC)
  1346. {
  1347. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1348. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1349. int64_t dd = ( d*d)>>30;
  1350. int64_t ddd= (dd*d)>>30;
  1351. if (d < 1LL<<30)
  1352. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1353. else if (d < 1LL<<31)
  1354. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1355. else
  1356. coeff=0.0;
  1357. coeff *= fone>>(30+24);
  1358. }
  1359. /* else if (flags & SWS_X)
  1360. {
  1361. double p= param ? param*0.01 : 0.3;
  1362. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1363. coeff*= pow(2.0, - p*d*d);
  1364. }*/
  1365. else if (flags & SWS_X)
  1366. {
  1367. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1368. double c;
  1369. if (floatd<1.0)
  1370. c = cos(floatd*PI);
  1371. else
  1372. c=-1.0;
  1373. if (c<0.0) c= -pow(-c, A);
  1374. else c= pow( c, A);
  1375. coeff= (c*0.5 + 0.5)*fone;
  1376. }
  1377. else if (flags & SWS_AREA)
  1378. {
  1379. int64_t d2= d - (1<<29);
  1380. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1381. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1382. else coeff=0.0;
  1383. coeff *= fone>>(30+16);
  1384. }
  1385. else if (flags & SWS_GAUSS)
  1386. {
  1387. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1388. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1389. }
  1390. else if (flags & SWS_SINC)
  1391. {
  1392. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1393. }
  1394. else if (flags & SWS_LANCZOS)
  1395. {
  1396. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1397. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1398. if (floatd>p) coeff=0;
  1399. }
  1400. else if (flags & SWS_BILINEAR)
  1401. {
  1402. coeff= (1<<30) - d;
  1403. if (coeff<0) coeff=0;
  1404. coeff *= fone >> 30;
  1405. }
  1406. else if (flags & SWS_SPLINE)
  1407. {
  1408. double p=-2.196152422706632;
  1409. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1410. }
  1411. else {
  1412. coeff= 0.0; //GCC warning killer
  1413. assert(0);
  1414. }
  1415. filter[i*filterSize + j]= coeff;
  1416. xx++;
  1417. }
  1418. xDstInSrc+= 2*xInc;
  1419. }
  1420. }
  1421. /* apply src & dst Filter to filter -> filter2
  1422. av_free(filter);
  1423. */
  1424. assert(filterSize>0);
  1425. filter2Size= filterSize;
  1426. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1427. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1428. assert(filter2Size>0);
  1429. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1430. for (i=0; i<dstW; i++)
  1431. {
  1432. int j, k;
  1433. if(srcFilter){
  1434. for (k=0; k<srcFilter->length; k++){
  1435. for (j=0; j<filterSize; j++)
  1436. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1437. }
  1438. }else{
  1439. for (j=0; j<filterSize; j++)
  1440. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1441. }
  1442. //FIXME dstFilter
  1443. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1444. }
  1445. av_freep(&filter);
  1446. /* try to reduce the filter-size (step1 find size and shift left) */
  1447. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1448. minFilterSize= 0;
  1449. for (i=dstW-1; i>=0; i--)
  1450. {
  1451. int min= filter2Size;
  1452. int j;
  1453. int64_t cutOff=0.0;
  1454. /* get rid off near zero elements on the left by shifting left */
  1455. for (j=0; j<filter2Size; j++)
  1456. {
  1457. int k;
  1458. cutOff += FFABS(filter2[i*filter2Size]);
  1459. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1460. /* preserve monotonicity because the core can't handle the filter otherwise */
  1461. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1462. // move filter coefficients left
  1463. for (k=1; k<filter2Size; k++)
  1464. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1465. filter2[i*filter2Size + k - 1]= 0;
  1466. (*filterPos)[i]++;
  1467. }
  1468. cutOff=0;
  1469. /* count near zeros on the right */
  1470. for (j=filter2Size-1; j>0; j--)
  1471. {
  1472. cutOff += FFABS(filter2[i*filter2Size + j]);
  1473. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1474. min--;
  1475. }
  1476. if (min>minFilterSize) minFilterSize= min;
  1477. }
  1478. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1479. // we can handle the special case 4,
  1480. // so we don't want to go to the full 8
  1481. if (minFilterSize < 5)
  1482. filterAlign = 4;
  1483. // We really don't want to waste our time
  1484. // doing useless computation, so fall back on
  1485. // the scalar C code for very small filters.
  1486. // Vectorizing is worth it only if you have a
  1487. // decent-sized vector.
  1488. if (minFilterSize < 3)
  1489. filterAlign = 1;
  1490. }
  1491. if (flags & SWS_CPU_CAPS_MMX) {
  1492. // special case for unscaled vertical filtering
  1493. if (minFilterSize == 1 && filterAlign == 2)
  1494. filterAlign= 1;
  1495. }
  1496. assert(minFilterSize > 0);
  1497. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1498. assert(filterSize > 0);
  1499. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1500. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1501. goto error;
  1502. *outFilterSize= filterSize;
  1503. if (flags&SWS_PRINT_INFO)
  1504. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1505. /* try to reduce the filter-size (step2 reduce it) */
  1506. for (i=0; i<dstW; i++)
  1507. {
  1508. int j;
  1509. for (j=0; j<filterSize; j++)
  1510. {
  1511. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1512. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1513. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1514. filter[i*filterSize + j]= 0;
  1515. }
  1516. }
  1517. //FIXME try to align filterPos if possible
  1518. //fix borders
  1519. for (i=0; i<dstW; i++)
  1520. {
  1521. int j;
  1522. if ((*filterPos)[i] < 0)
  1523. {
  1524. // move filter coefficients left to compensate for filterPos
  1525. for (j=1; j<filterSize; j++)
  1526. {
  1527. int left= FFMAX(j + (*filterPos)[i], 0);
  1528. filter[i*filterSize + left] += filter[i*filterSize + j];
  1529. filter[i*filterSize + j]=0;
  1530. }
  1531. (*filterPos)[i]= 0;
  1532. }
  1533. if ((*filterPos)[i] + filterSize > srcW)
  1534. {
  1535. int shift= (*filterPos)[i] + filterSize - srcW;
  1536. // move filter coefficients right to compensate for filterPos
  1537. for (j=filterSize-2; j>=0; j--)
  1538. {
  1539. int right= FFMIN(j + shift, filterSize-1);
  1540. filter[i*filterSize +right] += filter[i*filterSize +j];
  1541. filter[i*filterSize +j]=0;
  1542. }
  1543. (*filterPos)[i]= srcW - filterSize;
  1544. }
  1545. }
  1546. // Note the +1 is for the MMX scaler which reads over the end
  1547. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1548. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1549. /* normalize & store in outFilter */
  1550. for (i=0; i<dstW; i++)
  1551. {
  1552. int j;
  1553. int64_t error=0;
  1554. int64_t sum=0;
  1555. for (j=0; j<filterSize; j++)
  1556. {
  1557. sum+= filter[i*filterSize + j];
  1558. }
  1559. sum= (sum + one/2)/ one;
  1560. for (j=0; j<*outFilterSize; j++)
  1561. {
  1562. int64_t v= filter[i*filterSize + j] + error;
  1563. int intV= ROUNDED_DIV(v, sum);
  1564. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1565. error= v - intV*sum;
  1566. }
  1567. }
  1568. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1569. for (i=0; i<*outFilterSize; i++)
  1570. {
  1571. int j= dstW*(*outFilterSize);
  1572. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1573. }
  1574. ret=0;
  1575. error:
  1576. av_free(filter);
  1577. av_free(filter2);
  1578. return ret;
  1579. }
  1580. #ifdef COMPILE_MMX2
  1581. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1582. {
  1583. uint8_t *fragmentA;
  1584. x86_reg imm8OfPShufW1A;
  1585. x86_reg imm8OfPShufW2A;
  1586. x86_reg fragmentLengthA;
  1587. uint8_t *fragmentB;
  1588. x86_reg imm8OfPShufW1B;
  1589. x86_reg imm8OfPShufW2B;
  1590. x86_reg fragmentLengthB;
  1591. int fragmentPos;
  1592. int xpos, i;
  1593. // create an optimized horizontal scaling routine
  1594. //code fragment
  1595. __asm__ volatile(
  1596. "jmp 9f \n\t"
  1597. // Begin
  1598. "0: \n\t"
  1599. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1600. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1601. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1602. "punpcklbw %%mm7, %%mm1 \n\t"
  1603. "punpcklbw %%mm7, %%mm0 \n\t"
  1604. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1605. "1: \n\t"
  1606. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1607. "2: \n\t"
  1608. "psubw %%mm1, %%mm0 \n\t"
  1609. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1610. "pmullw %%mm3, %%mm0 \n\t"
  1611. "psllw $7, %%mm1 \n\t"
  1612. "paddw %%mm1, %%mm0 \n\t"
  1613. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1614. "add $8, %%"REG_a" \n\t"
  1615. // End
  1616. "9: \n\t"
  1617. // "int $3 \n\t"
  1618. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1619. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1620. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1621. "dec %1 \n\t"
  1622. "dec %2 \n\t"
  1623. "sub %0, %1 \n\t"
  1624. "sub %0, %2 \n\t"
  1625. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1626. "sub %0, %3 \n\t"
  1627. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1628. "=r" (fragmentLengthA)
  1629. );
  1630. __asm__ volatile(
  1631. "jmp 9f \n\t"
  1632. // Begin
  1633. "0: \n\t"
  1634. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1635. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1636. "punpcklbw %%mm7, %%mm0 \n\t"
  1637. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1638. "1: \n\t"
  1639. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1640. "2: \n\t"
  1641. "psubw %%mm1, %%mm0 \n\t"
  1642. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1643. "pmullw %%mm3, %%mm0 \n\t"
  1644. "psllw $7, %%mm1 \n\t"
  1645. "paddw %%mm1, %%mm0 \n\t"
  1646. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1647. "add $8, %%"REG_a" \n\t"
  1648. // End
  1649. "9: \n\t"
  1650. // "int $3 \n\t"
  1651. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1652. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1653. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1654. "dec %1 \n\t"
  1655. "dec %2 \n\t"
  1656. "sub %0, %1 \n\t"
  1657. "sub %0, %2 \n\t"
  1658. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1659. "sub %0, %3 \n\t"
  1660. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1661. "=r" (fragmentLengthB)
  1662. );
  1663. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1664. fragmentPos=0;
  1665. for (i=0; i<dstW/numSplits; i++)
  1666. {
  1667. int xx=xpos>>16;
  1668. if ((i&3) == 0)
  1669. {
  1670. int a=0;
  1671. int b=((xpos+xInc)>>16) - xx;
  1672. int c=((xpos+xInc*2)>>16) - xx;
  1673. int d=((xpos+xInc*3)>>16) - xx;
  1674. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1675. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1676. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1677. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1678. filterPos[i/2]= xx;
  1679. if (d+1<4)
  1680. {
  1681. int maxShift= 3-(d+1);
  1682. int shift=0;
  1683. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1684. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1685. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1686. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1687. a | (b<<2) | (c<<4) | (d<<6);
  1688. if (i+3>=dstW) shift=maxShift; //avoid overread
  1689. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1690. if (shift && i>=shift)
  1691. {
  1692. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1693. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1694. filterPos[i/2]-=shift;
  1695. }
  1696. fragmentPos+= fragmentLengthB;
  1697. }
  1698. else
  1699. {
  1700. int maxShift= 3-d;
  1701. int shift=0;
  1702. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1703. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1704. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1705. a | (b<<2) | (c<<4) | (d<<6);
  1706. if (i+4>=dstW) shift=maxShift; //avoid overread
  1707. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1708. if (shift && i>=shift)
  1709. {
  1710. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1711. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1712. filterPos[i/2]-=shift;
  1713. }
  1714. fragmentPos+= fragmentLengthA;
  1715. }
  1716. funnyCode[fragmentPos]= RET;
  1717. }
  1718. xpos+=xInc;
  1719. }
  1720. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  1721. }
  1722. #endif /* COMPILE_MMX2 */
  1723. static void globalInit(void){
  1724. // generating tables:
  1725. int i;
  1726. for (i=0; i<768; i++){
  1727. int c= av_clip_uint8(i-256);
  1728. clip_table[i]=c;
  1729. }
  1730. }
  1731. static SwsFunc getSwsFunc(SwsContext *c)
  1732. {
  1733. #if CONFIG_RUNTIME_CPUDETECT && CONFIG_GPL
  1734. int flags = c->flags;
  1735. #if ARCH_X86
  1736. // ordered per speed fastest first
  1737. if (flags & SWS_CPU_CAPS_MMX2) {
  1738. sws_init_swScale_MMX2(c);
  1739. return swScale_MMX2;
  1740. } else if (flags & SWS_CPU_CAPS_3DNOW) {
  1741. sws_init_swScale_3DNow(c);
  1742. return swScale_3DNow;
  1743. } else if (flags & SWS_CPU_CAPS_MMX) {
  1744. sws_init_swScale_MMX(c);
  1745. return swScale_MMX;
  1746. } else {
  1747. sws_init_swScale_C(c);
  1748. return swScale_C;
  1749. }
  1750. #else
  1751. #if ARCH_PPC
  1752. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1753. sws_init_swScale_altivec(c);
  1754. return swScale_altivec;
  1755. } else {
  1756. sws_init_swScale_C(c);
  1757. return swScale_C;
  1758. }
  1759. #endif
  1760. sws_init_swScale_C(c);
  1761. return swScale_C;
  1762. #endif /* ARCH_X86 */
  1763. #else //CONFIG_RUNTIME_CPUDETECT
  1764. #if HAVE_MMX2
  1765. sws_init_swScale_MMX2(c);
  1766. return swScale_MMX2;
  1767. #elif HAVE_AMD3DNOW
  1768. sws_init_swScale_3DNow(c);
  1769. return swScale_3DNow;
  1770. #elif HAVE_MMX
  1771. sws_init_swScale_MMX(c);
  1772. return swScale_MMX;
  1773. #elif HAVE_ALTIVEC
  1774. sws_init_swScale_altivec(c);
  1775. return swScale_altivec;
  1776. #else
  1777. sws_init_swScale_C(c);
  1778. return swScale_C;
  1779. #endif
  1780. #endif //!CONFIG_RUNTIME_CPUDETECT
  1781. }
  1782. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1783. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1784. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1785. /* Copy Y plane */
  1786. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1787. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1788. else
  1789. {
  1790. int i;
  1791. const uint8_t *srcPtr= src[0];
  1792. uint8_t *dstPtr= dst;
  1793. for (i=0; i<srcSliceH; i++)
  1794. {
  1795. memcpy(dstPtr, srcPtr, c->srcW);
  1796. srcPtr+= srcStride[0];
  1797. dstPtr+= dstStride[0];
  1798. }
  1799. }
  1800. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1801. if (c->dstFormat == PIX_FMT_NV12)
  1802. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1803. else
  1804. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1805. return srcSliceH;
  1806. }
  1807. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1808. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1809. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1810. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1811. return srcSliceH;
  1812. }
  1813. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1814. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1815. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1816. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1817. return srcSliceH;
  1818. }
  1819. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1820. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1821. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1822. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1823. return srcSliceH;
  1824. }
  1825. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1826. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1827. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1828. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1829. return srcSliceH;
  1830. }
  1831. static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1832. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1833. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1834. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1835. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1836. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1837. if (dstParam[3])
  1838. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1839. return srcSliceH;
  1840. }
  1841. static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1842. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1843. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1844. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1845. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1846. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1847. return srcSliceH;
  1848. }
  1849. static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1850. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1851. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1852. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1853. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1854. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1855. if (dstParam[3])
  1856. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1857. return srcSliceH;
  1858. }
  1859. static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1860. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1861. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1862. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1863. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1864. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1865. return srcSliceH;
  1866. }
  1867. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1868. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1869. const enum PixelFormat srcFormat= c->srcFormat;
  1870. const enum PixelFormat dstFormat= c->dstFormat;
  1871. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1872. const uint8_t *palette)=NULL;
  1873. int i;
  1874. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1875. uint8_t *srcPtr= src[0];
  1876. if (!usePal(srcFormat))
  1877. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1878. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1879. switch(dstFormat){
  1880. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1881. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1882. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1883. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1884. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1885. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1886. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1887. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1888. }
  1889. for (i=0; i<srcSliceH; i++) {
  1890. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1891. srcPtr+= srcStride[0];
  1892. dstPtr+= dstStride[0];
  1893. }
  1894. return srcSliceH;
  1895. }
  1896. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1897. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1898. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1899. const enum PixelFormat srcFormat= c->srcFormat;
  1900. const enum PixelFormat dstFormat= c->dstFormat;
  1901. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1902. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1903. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1904. const int dstId= fmt_depth(dstFormat) >> 2;
  1905. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1906. /* BGR -> BGR */
  1907. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1908. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1909. switch(srcId | (dstId<<4)){
  1910. case 0x34: conv= rgb16to15; break;
  1911. case 0x36: conv= rgb24to15; break;
  1912. case 0x38: conv= rgb32to15; break;
  1913. case 0x43: conv= rgb15to16; break;
  1914. case 0x46: conv= rgb24to16; break;
  1915. case 0x48: conv= rgb32to16; break;
  1916. case 0x63: conv= rgb15to24; break;
  1917. case 0x64: conv= rgb16to24; break;
  1918. case 0x68: conv= rgb32to24; break;
  1919. case 0x83: conv= rgb15to32; break;
  1920. case 0x84: conv= rgb16to32; break;
  1921. case 0x86: conv= rgb24to32; break;
  1922. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1923. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1924. }
  1925. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1926. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1927. switch(srcId | (dstId<<4)){
  1928. case 0x33: conv= rgb15tobgr15; break;
  1929. case 0x34: conv= rgb16tobgr15; break;
  1930. case 0x36: conv= rgb24tobgr15; break;
  1931. case 0x38: conv= rgb32tobgr15; break;
  1932. case 0x43: conv= rgb15tobgr16; break;
  1933. case 0x44: conv= rgb16tobgr16; break;
  1934. case 0x46: conv= rgb24tobgr16; break;
  1935. case 0x48: conv= rgb32tobgr16; break;
  1936. case 0x63: conv= rgb15tobgr24; break;
  1937. case 0x64: conv= rgb16tobgr24; break;
  1938. case 0x66: conv= rgb24tobgr24; break;
  1939. case 0x68: conv= rgb32tobgr24; break;
  1940. case 0x83: conv= rgb15tobgr32; break;
  1941. case 0x84: conv= rgb16tobgr32; break;
  1942. case 0x86: conv= rgb24tobgr32; break;
  1943. case 0x88: conv= rgb32tobgr32; break;
  1944. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1945. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1946. }
  1947. }else{
  1948. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1949. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1950. }
  1951. if(conv)
  1952. {
  1953. uint8_t *srcPtr= src[0];
  1954. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1955. srcPtr += ALT32_CORR;
  1956. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1957. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1958. else
  1959. {
  1960. int i;
  1961. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1962. for (i=0; i<srcSliceH; i++)
  1963. {
  1964. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1965. srcPtr+= srcStride[0];
  1966. dstPtr+= dstStride[0];
  1967. }
  1968. }
  1969. }
  1970. return srcSliceH;
  1971. }
  1972. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1973. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1974. rgb24toyv12(
  1975. src[0],
  1976. dst[0]+ srcSliceY *dstStride[0],
  1977. dst[1]+(srcSliceY>>1)*dstStride[1],
  1978. dst[2]+(srcSliceY>>1)*dstStride[2],
  1979. c->srcW, srcSliceH,
  1980. dstStride[0], dstStride[1], srcStride[0]);
  1981. if (dst[3])
  1982. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1983. return srcSliceH;
  1984. }
  1985. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1986. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1987. int i;
  1988. /* copy Y */
  1989. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1990. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1991. else{
  1992. uint8_t *srcPtr= src[0];
  1993. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1994. for (i=0; i<srcSliceH; i++)
  1995. {
  1996. memcpy(dstPtr, srcPtr, c->srcW);
  1997. srcPtr+= srcStride[0];
  1998. dstPtr+= dstStride[0];
  1999. }
  2000. }
  2001. if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P){
  2002. planar2x(src[1], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  2003. srcSliceH >> 2, srcStride[1], dstStride[1]);
  2004. planar2x(src[2], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  2005. srcSliceH >> 2, srcStride[2], dstStride[2]);
  2006. }else{
  2007. planar2x(src[1], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  2008. srcSliceH >> 2, srcStride[1], dstStride[2]);
  2009. planar2x(src[2], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  2010. srcSliceH >> 2, srcStride[2], dstStride[1]);
  2011. }
  2012. if (dst[3])
  2013. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  2014. return srcSliceH;
  2015. }
  2016. /* unscaled copy like stuff (assumes nearly identical formats) */
  2017. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2018. int srcSliceH, uint8_t* dst[], int dstStride[])
  2019. {
  2020. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  2021. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  2022. else
  2023. {
  2024. int i;
  2025. uint8_t *srcPtr= src[0];
  2026. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2027. int length=0;
  2028. /* universal length finder */
  2029. while(length+c->srcW <= FFABS(dstStride[0])
  2030. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  2031. assert(length!=0);
  2032. for (i=0; i<srcSliceH; i++)
  2033. {
  2034. memcpy(dstPtr, srcPtr, length);
  2035. srcPtr+= srcStride[0];
  2036. dstPtr+= dstStride[0];
  2037. }
  2038. }
  2039. return srcSliceH;
  2040. }
  2041. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2042. int srcSliceH, uint8_t* dst[], int dstStride[])
  2043. {
  2044. int plane, i, j;
  2045. for (plane=0; plane<4; plane++)
  2046. {
  2047. int length= (plane==0 || plane==3) ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  2048. int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  2049. int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  2050. uint8_t *srcPtr= src[plane];
  2051. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  2052. if (!dst[plane]) continue;
  2053. // ignore palette for GRAY8
  2054. if (plane == 1 && !dst[2]) continue;
  2055. if (!src[plane] || (plane == 1 && !src[2])){
  2056. if(is16BPS(c->dstFormat))
  2057. length*=2;
  2058. fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128);
  2059. }else
  2060. {
  2061. if(is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)){
  2062. if (!isBE(c->srcFormat)) srcPtr++;
  2063. for (i=0; i<height; i++){
  2064. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  2065. srcPtr+= srcStride[plane];
  2066. dstPtr+= dstStride[plane];
  2067. }
  2068. }else if(!is16BPS(c->srcFormat) && is16BPS(c->dstFormat)){
  2069. for (i=0; i<height; i++){
  2070. for (j=0; j<length; j++){
  2071. dstPtr[ j<<1 ] = srcPtr[j];
  2072. dstPtr[(j<<1)+1] = srcPtr[j];
  2073. }
  2074. srcPtr+= srcStride[plane];
  2075. dstPtr+= dstStride[plane];
  2076. }
  2077. }else if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat)
  2078. && isBE(c->srcFormat) != isBE(c->dstFormat)){
  2079. for (i=0; i<height; i++){
  2080. for (j=0; j<length; j++)
  2081. ((uint16_t*)dstPtr)[j] = bswap_16(((uint16_t*)srcPtr)[j]);
  2082. srcPtr+= srcStride[plane];
  2083. dstPtr+= dstStride[plane];
  2084. }
  2085. } else if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  2086. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  2087. else
  2088. {
  2089. if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
  2090. length*=2;
  2091. for (i=0; i<height; i++)
  2092. {
  2093. memcpy(dstPtr, srcPtr, length);
  2094. srcPtr+= srcStride[plane];
  2095. dstPtr+= dstStride[plane];
  2096. }
  2097. }
  2098. }
  2099. }
  2100. return srcSliceH;
  2101. }
  2102. static void getSubSampleFactors(int *h, int *v, int format){
  2103. switch(format){
  2104. case PIX_FMT_UYVY422:
  2105. case PIX_FMT_YUYV422:
  2106. *h=1;
  2107. *v=0;
  2108. break;
  2109. case PIX_FMT_YUV420P:
  2110. case PIX_FMT_YUV420PLE:
  2111. case PIX_FMT_YUV420PBE:
  2112. case PIX_FMT_YUVA420P:
  2113. case PIX_FMT_GRAY16BE:
  2114. case PIX_FMT_GRAY16LE:
  2115. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  2116. case PIX_FMT_NV12:
  2117. case PIX_FMT_NV21:
  2118. *h=1;
  2119. *v=1;
  2120. break;
  2121. case PIX_FMT_YUV440P:
  2122. *h=0;
  2123. *v=1;
  2124. break;
  2125. case PIX_FMT_YUV410P:
  2126. *h=2;
  2127. *v=2;
  2128. break;
  2129. case PIX_FMT_YUV444P:
  2130. case PIX_FMT_YUV444PLE:
  2131. case PIX_FMT_YUV444PBE:
  2132. *h=0;
  2133. *v=0;
  2134. break;
  2135. case PIX_FMT_YUV422P:
  2136. case PIX_FMT_YUV422PLE:
  2137. case PIX_FMT_YUV422PBE:
  2138. *h=1;
  2139. *v=0;
  2140. break;
  2141. case PIX_FMT_YUV411P:
  2142. *h=2;
  2143. *v=0;
  2144. break;
  2145. default:
  2146. *h=0;
  2147. *v=0;
  2148. break;
  2149. }
  2150. }
  2151. static uint16_t roundToInt16(int64_t f){
  2152. int r= (f + (1<<15))>>16;
  2153. if (r<-0x7FFF) return 0x8000;
  2154. else if (r> 0x7FFF) return 0x7FFF;
  2155. else return r;
  2156. }
  2157. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  2158. int64_t crv = inv_table[0];
  2159. int64_t cbu = inv_table[1];
  2160. int64_t cgu = -inv_table[2];
  2161. int64_t cgv = -inv_table[3];
  2162. int64_t cy = 1<<16;
  2163. int64_t oy = 0;
  2164. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  2165. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  2166. c->brightness= brightness;
  2167. c->contrast = contrast;
  2168. c->saturation= saturation;
  2169. c->srcRange = srcRange;
  2170. c->dstRange = dstRange;
  2171. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2172. c->uOffset= 0x0400040004000400LL;
  2173. c->vOffset= 0x0400040004000400LL;
  2174. if (!srcRange){
  2175. cy= (cy*255) / 219;
  2176. oy= 16<<16;
  2177. }else{
  2178. crv= (crv*224) / 255;
  2179. cbu= (cbu*224) / 255;
  2180. cgu= (cgu*224) / 255;
  2181. cgv= (cgv*224) / 255;
  2182. }
  2183. cy = (cy *contrast )>>16;
  2184. crv= (crv*contrast * saturation)>>32;
  2185. cbu= (cbu*contrast * saturation)>>32;
  2186. cgu= (cgu*contrast * saturation)>>32;
  2187. cgv= (cgv*contrast * saturation)>>32;
  2188. oy -= 256*brightness;
  2189. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  2190. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  2191. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  2192. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  2193. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  2194. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  2195. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  2196. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  2197. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  2198. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  2199. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  2200. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  2201. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  2202. //FIXME factorize
  2203. #ifdef COMPILE_ALTIVEC
  2204. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  2205. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  2206. #endif
  2207. return 0;
  2208. }
  2209. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  2210. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2211. *inv_table = c->srcColorspaceTable;
  2212. *table = c->dstColorspaceTable;
  2213. *srcRange = c->srcRange;
  2214. *dstRange = c->dstRange;
  2215. *brightness= c->brightness;
  2216. *contrast = c->contrast;
  2217. *saturation= c->saturation;
  2218. return 0;
  2219. }
  2220. static int handle_jpeg(enum PixelFormat *format)
  2221. {
  2222. switch (*format) {
  2223. case PIX_FMT_YUVJ420P:
  2224. *format = PIX_FMT_YUV420P;
  2225. return 1;
  2226. case PIX_FMT_YUVJ422P:
  2227. *format = PIX_FMT_YUV422P;
  2228. return 1;
  2229. case PIX_FMT_YUVJ444P:
  2230. *format = PIX_FMT_YUV444P;
  2231. return 1;
  2232. case PIX_FMT_YUVJ440P:
  2233. *format = PIX_FMT_YUV440P;
  2234. return 1;
  2235. default:
  2236. return 0;
  2237. }
  2238. }
  2239. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2240. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  2241. {
  2242. SwsContext *c;
  2243. int i;
  2244. int usesVFilter, usesHFilter;
  2245. int unscaled, needsDither;
  2246. int srcRange, dstRange;
  2247. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  2248. #if ARCH_X86
  2249. if (flags & SWS_CPU_CAPS_MMX)
  2250. __asm__ volatile("emms\n\t"::: "memory");
  2251. #endif
  2252. #if !CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL //ensure that the flags match the compiled variant if cpudetect is off
  2253. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  2254. #if HAVE_MMX2
  2255. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  2256. #elif HAVE_AMD3DNOW
  2257. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  2258. #elif HAVE_MMX
  2259. flags |= SWS_CPU_CAPS_MMX;
  2260. #elif HAVE_ALTIVEC
  2261. flags |= SWS_CPU_CAPS_ALTIVEC;
  2262. #elif ARCH_BFIN
  2263. flags |= SWS_CPU_CAPS_BFIN;
  2264. #endif
  2265. #endif /* CONFIG_RUNTIME_CPUDETECT */
  2266. if (clip_table[512] != 255) globalInit();
  2267. if (!rgb15to16) sws_rgb2rgb_init(flags);
  2268. unscaled = (srcW == dstW && srcH == dstH);
  2269. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  2270. && (fmt_depth(dstFormat))<24
  2271. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  2272. srcRange = handle_jpeg(&srcFormat);
  2273. dstRange = handle_jpeg(&dstFormat);
  2274. if (!isSupportedIn(srcFormat))
  2275. {
  2276. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  2277. return NULL;
  2278. }
  2279. if (!isSupportedOut(dstFormat))
  2280. {
  2281. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  2282. return NULL;
  2283. }
  2284. i= flags & ( SWS_POINT
  2285. |SWS_AREA
  2286. |SWS_BILINEAR
  2287. |SWS_FAST_BILINEAR
  2288. |SWS_BICUBIC
  2289. |SWS_X
  2290. |SWS_GAUSS
  2291. |SWS_LANCZOS
  2292. |SWS_SINC
  2293. |SWS_SPLINE
  2294. |SWS_BICUBLIN);
  2295. if(!i || (i & (i-1)))
  2296. {
  2297. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  2298. return NULL;
  2299. }
  2300. /* sanity check */
  2301. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  2302. {
  2303. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  2304. srcW, srcH, dstW, dstH);
  2305. return NULL;
  2306. }
  2307. if(srcW > VOFW || dstW > VOFW){
  2308. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2309. return NULL;
  2310. }
  2311. if (!dstFilter) dstFilter= &dummyFilter;
  2312. if (!srcFilter) srcFilter= &dummyFilter;
  2313. c= av_mallocz(sizeof(SwsContext));
  2314. c->av_class = &sws_context_class;
  2315. c->srcW= srcW;
  2316. c->srcH= srcH;
  2317. c->dstW= dstW;
  2318. c->dstH= dstH;
  2319. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2320. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2321. c->flags= flags;
  2322. c->dstFormat= dstFormat;
  2323. c->srcFormat= srcFormat;
  2324. c->vRounder= 4* 0x0001000100010001ULL;
  2325. usesHFilter= usesVFilter= 0;
  2326. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2327. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2328. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2329. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2330. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2331. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2332. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2333. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2334. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2335. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2336. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  2337. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2338. // drop some chroma lines if the user wants it
  2339. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2340. c->chrSrcVSubSample+= c->vChrDrop;
  2341. // drop every other pixel for chroma calculation unless user wants full chroma
  2342. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2343. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2344. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2345. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2346. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2347. c->chrSrcHSubSample=1;
  2348. if (param){
  2349. c->param[0] = param[0];
  2350. c->param[1] = param[1];
  2351. }else{
  2352. c->param[0] =
  2353. c->param[1] = SWS_PARAM_DEFAULT;
  2354. }
  2355. c->chrIntHSubSample= c->chrDstHSubSample;
  2356. c->chrIntVSubSample= c->chrSrcVSubSample;
  2357. // Note the -((-x)>>y) is so that we always round toward +inf.
  2358. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2359. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2360. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2361. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2362. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2363. /* unscaled special cases */
  2364. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2365. {
  2366. /* yv12_to_nv12 */
  2367. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2368. {
  2369. c->swScale= PlanarToNV12Wrapper;
  2370. }
  2371. /* yuv2bgr */
  2372. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2373. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2374. {
  2375. c->swScale= ff_yuv2rgb_get_func_ptr(c);
  2376. }
  2377. if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT))
  2378. {
  2379. c->swScale= yvu9toyv12Wrapper;
  2380. }
  2381. /* bgr24toYV12 */
  2382. if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND))
  2383. c->swScale= bgr24toyv12Wrapper;
  2384. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  2385. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2386. && (isBGR(dstFormat) || isRGB(dstFormat))
  2387. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2388. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2389. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2390. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2391. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2392. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2393. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2394. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2395. && dstFormat != PIX_FMT_RGB32_1
  2396. && dstFormat != PIX_FMT_BGR32_1
  2397. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2398. c->swScale= rgb2rgbWrapper;
  2399. if ((usePal(srcFormat) && (
  2400. dstFormat == PIX_FMT_RGB32 ||
  2401. dstFormat == PIX_FMT_RGB32_1 ||
  2402. dstFormat == PIX_FMT_RGB24 ||
  2403. dstFormat == PIX_FMT_BGR32 ||
  2404. dstFormat == PIX_FMT_BGR32_1 ||
  2405. dstFormat == PIX_FMT_BGR24)))
  2406. c->swScale= pal2rgbWrapper;
  2407. if (srcFormat == PIX_FMT_YUV422P)
  2408. {
  2409. if (dstFormat == PIX_FMT_YUYV422)
  2410. c->swScale= YUV422PToYuy2Wrapper;
  2411. else if (dstFormat == PIX_FMT_UYVY422)
  2412. c->swScale= YUV422PToUyvyWrapper;
  2413. }
  2414. /* LQ converters if -sws 0 or -sws 4*/
  2415. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2416. /* yv12_to_yuy2 */
  2417. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
  2418. {
  2419. if (dstFormat == PIX_FMT_YUYV422)
  2420. c->swScale= PlanarToYuy2Wrapper;
  2421. else if (dstFormat == PIX_FMT_UYVY422)
  2422. c->swScale= PlanarToUyvyWrapper;
  2423. }
  2424. }
  2425. if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2426. c->swScale= YUYV2YUV420Wrapper;
  2427. if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2428. c->swScale= UYVY2YUV420Wrapper;
  2429. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  2430. c->swScale= YUYV2YUV422Wrapper;
  2431. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  2432. c->swScale= UYVY2YUV422Wrapper;
  2433. #ifdef COMPILE_ALTIVEC
  2434. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2435. !(c->flags & SWS_BITEXACT) &&
  2436. srcFormat == PIX_FMT_YUV420P) {
  2437. // unscaled YV12 -> packed YUV, we want speed
  2438. if (dstFormat == PIX_FMT_YUYV422)
  2439. c->swScale= yv12toyuy2_unscaled_altivec;
  2440. else if (dstFormat == PIX_FMT_UYVY422)
  2441. c->swScale= yv12touyvy_unscaled_altivec;
  2442. }
  2443. #endif
  2444. /* simple copy */
  2445. if ( srcFormat == dstFormat
  2446. || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
  2447. || (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P)
  2448. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2449. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  2450. || (isGray(dstFormat) && isGray(srcFormat))
  2451. || (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat)
  2452. && c->chrDstHSubSample == c->chrSrcHSubSample
  2453. && c->chrDstVSubSample == c->chrSrcVSubSample))
  2454. {
  2455. if (isPacked(c->srcFormat))
  2456. c->swScale= packedCopy;
  2457. else /* Planar YUV or gray */
  2458. c->swScale= planarCopy;
  2459. }
  2460. #if ARCH_BFIN
  2461. if (flags & SWS_CPU_CAPS_BFIN)
  2462. ff_bfin_get_unscaled_swscale (c);
  2463. #endif
  2464. if (c->swScale){
  2465. if (flags&SWS_PRINT_INFO)
  2466. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2467. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2468. return c;
  2469. }
  2470. }
  2471. if (flags & SWS_CPU_CAPS_MMX2)
  2472. {
  2473. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2474. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2475. {
  2476. if (flags&SWS_PRINT_INFO)
  2477. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  2478. }
  2479. if (usesHFilter) c->canMMX2BeUsed=0;
  2480. }
  2481. else
  2482. c->canMMX2BeUsed=0;
  2483. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2484. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2485. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2486. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2487. // n-2 is the last chrominance sample available
  2488. // this is not perfect, but no one should notice the difference, the more correct variant
  2489. // would be like the vertical one, but that would require some special code for the
  2490. // first and last pixel
  2491. if (flags&SWS_FAST_BILINEAR)
  2492. {
  2493. if (c->canMMX2BeUsed)
  2494. {
  2495. c->lumXInc+= 20;
  2496. c->chrXInc+= 20;
  2497. }
  2498. //we don't use the x86 asm scaler if MMX is available
  2499. else if (flags & SWS_CPU_CAPS_MMX)
  2500. {
  2501. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2502. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2503. }
  2504. }
  2505. /* precalculate horizontal scaler filter coefficients */
  2506. {
  2507. const int filterAlign=
  2508. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2509. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2510. 1;
  2511. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2512. srcW , dstW, filterAlign, 1<<14,
  2513. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2514. srcFilter->lumH, dstFilter->lumH, c->param);
  2515. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2516. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2517. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2518. srcFilter->chrH, dstFilter->chrH, c->param);
  2519. #define MAX_FUNNY_CODE_SIZE 10000
  2520. #if defined(COMPILE_MMX2)
  2521. // can't downscale !!!
  2522. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2523. {
  2524. #ifdef MAP_ANONYMOUS
  2525. c->funnyYCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2526. c->funnyUVCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2527. #elif HAVE_VIRTUALALLOC
  2528. c->funnyYCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2529. c->funnyUVCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2530. #else
  2531. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2532. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2533. #endif
  2534. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2535. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2536. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2537. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2538. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2539. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2540. }
  2541. #endif /* defined(COMPILE_MMX2) */
  2542. } // initialize horizontal stuff
  2543. /* precalculate vertical scaler filter coefficients */
  2544. {
  2545. const int filterAlign=
  2546. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2547. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2548. 1;
  2549. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2550. srcH , dstH, filterAlign, (1<<12),
  2551. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2552. srcFilter->lumV, dstFilter->lumV, c->param);
  2553. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2554. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2555. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2556. srcFilter->chrV, dstFilter->chrV, c->param);
  2557. #if HAVE_ALTIVEC
  2558. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2559. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2560. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2561. int j;
  2562. short *p = (short *)&c->vYCoeffsBank[i];
  2563. for (j=0;j<8;j++)
  2564. p[j] = c->vLumFilter[i];
  2565. }
  2566. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2567. int j;
  2568. short *p = (short *)&c->vCCoeffsBank[i];
  2569. for (j=0;j<8;j++)
  2570. p[j] = c->vChrFilter[i];
  2571. }
  2572. #endif
  2573. }
  2574. // calculate buffer sizes so that they won't run out while handling these damn slices
  2575. c->vLumBufSize= c->vLumFilterSize;
  2576. c->vChrBufSize= c->vChrFilterSize;
  2577. for (i=0; i<dstH; i++)
  2578. {
  2579. int chrI= i*c->chrDstH / dstH;
  2580. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2581. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2582. nextSlice>>= c->chrSrcVSubSample;
  2583. nextSlice<<= c->chrSrcVSubSample;
  2584. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2585. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2586. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2587. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2588. }
  2589. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2590. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2591. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2592. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  2593. c->alpPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2594. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  2595. /* align at 16 bytes for AltiVec */
  2596. for (i=0; i<c->vLumBufSize; i++)
  2597. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2598. for (i=0; i<c->vChrBufSize; i++)
  2599. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2600. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  2601. for (i=0; i<c->vLumBufSize; i++)
  2602. c->alpPixBuf[i]= c->alpPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2603. //try to avoid drawing green stuff between the right end and the stride end
  2604. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2605. assert(2*VOFW == VOF);
  2606. assert(c->chrDstH <= dstH);
  2607. if (flags&SWS_PRINT_INFO)
  2608. {
  2609. #ifdef DITHER1XBPP
  2610. const char *dither= " dithered";
  2611. #else
  2612. const char *dither= "";
  2613. #endif
  2614. if (flags&SWS_FAST_BILINEAR)
  2615. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2616. else if (flags&SWS_BILINEAR)
  2617. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2618. else if (flags&SWS_BICUBIC)
  2619. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2620. else if (flags&SWS_X)
  2621. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2622. else if (flags&SWS_POINT)
  2623. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2624. else if (flags&SWS_AREA)
  2625. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2626. else if (flags&SWS_BICUBLIN)
  2627. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2628. else if (flags&SWS_GAUSS)
  2629. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2630. else if (flags&SWS_SINC)
  2631. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2632. else if (flags&SWS_LANCZOS)
  2633. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2634. else if (flags&SWS_SPLINE)
  2635. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2636. else
  2637. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2638. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2639. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2640. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2641. else
  2642. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2643. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2644. if (flags & SWS_CPU_CAPS_MMX2)
  2645. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2646. else if (flags & SWS_CPU_CAPS_3DNOW)
  2647. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2648. else if (flags & SWS_CPU_CAPS_MMX)
  2649. av_log(c, AV_LOG_INFO, "using MMX\n");
  2650. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2651. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2652. else
  2653. av_log(c, AV_LOG_INFO, "using C\n");
  2654. }
  2655. if (flags & SWS_PRINT_INFO)
  2656. {
  2657. if (flags & SWS_CPU_CAPS_MMX)
  2658. {
  2659. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2660. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2661. else
  2662. {
  2663. if (c->hLumFilterSize==4)
  2664. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2665. else if (c->hLumFilterSize==8)
  2666. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2667. else
  2668. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2669. if (c->hChrFilterSize==4)
  2670. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2671. else if (c->hChrFilterSize==8)
  2672. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2673. else
  2674. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2675. }
  2676. }
  2677. else
  2678. {
  2679. #if ARCH_X86
  2680. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  2681. #else
  2682. if (flags & SWS_FAST_BILINEAR)
  2683. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2684. else
  2685. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2686. #endif
  2687. }
  2688. if (isPlanarYUV(dstFormat))
  2689. {
  2690. if (c->vLumFilterSize==1)
  2691. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2692. else
  2693. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2694. }
  2695. else
  2696. {
  2697. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2698. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2699. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2700. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2701. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2702. else
  2703. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2704. }
  2705. if (dstFormat==PIX_FMT_BGR24)
  2706. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  2707. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2708. else if (dstFormat==PIX_FMT_RGB32)
  2709. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2710. else if (dstFormat==PIX_FMT_BGR565)
  2711. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2712. else if (dstFormat==PIX_FMT_BGR555)
  2713. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2714. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2715. }
  2716. if (flags & SWS_PRINT_INFO)
  2717. {
  2718. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2719. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2720. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2721. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2722. }
  2723. c->swScale= getSwsFunc(c);
  2724. return c;
  2725. }
  2726. static void reset_ptr(uint8_t* src[], int format){
  2727. if(!isALPHA(format))
  2728. src[3]=NULL;
  2729. if(!isPlanarYUV(format)){
  2730. src[3]=src[2]=NULL;
  2731. if( format != PIX_FMT_PAL8
  2732. && format != PIX_FMT_RGB8
  2733. && format != PIX_FMT_BGR8
  2734. && format != PIX_FMT_RGB4_BYTE
  2735. && format != PIX_FMT_BGR4_BYTE
  2736. )
  2737. src[1]= NULL;
  2738. }
  2739. }
  2740. /**
  2741. * swscale wrapper, so we don't need to export the SwsContext.
  2742. * Assumes planar YUV to be in YUV order instead of YVU.
  2743. */
  2744. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2745. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2746. int i;
  2747. uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
  2748. uint8_t* dst2[4]= {dst[0], dst[1], dst[2], dst[3]};
  2749. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2750. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2751. return 0;
  2752. }
  2753. if (c->sliceDir == 0) {
  2754. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2755. }
  2756. if (usePal(c->srcFormat)){
  2757. for (i=0; i<256; i++){
  2758. int p, r, g, b,y,u,v;
  2759. if(c->srcFormat == PIX_FMT_PAL8){
  2760. p=((uint32_t*)(src[1]))[i];
  2761. r= (p>>16)&0xFF;
  2762. g= (p>> 8)&0xFF;
  2763. b= p &0xFF;
  2764. }else if(c->srcFormat == PIX_FMT_RGB8){
  2765. r= (i>>5 )*36;
  2766. g= ((i>>2)&7)*36;
  2767. b= (i&3 )*85;
  2768. }else if(c->srcFormat == PIX_FMT_BGR8){
  2769. b= (i>>6 )*85;
  2770. g= ((i>>3)&7)*36;
  2771. r= (i&7 )*36;
  2772. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2773. r= (i>>3 )*255;
  2774. g= ((i>>1)&3)*85;
  2775. b= (i&1 )*255;
  2776. }else {
  2777. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2778. b= (i>>3 )*255;
  2779. g= ((i>>1)&3)*85;
  2780. r= (i&1 )*255;
  2781. }
  2782. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2783. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2784. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2785. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2786. switch(c->dstFormat) {
  2787. case PIX_FMT_BGR32:
  2788. #ifndef WORDS_BIGENDIAN
  2789. case PIX_FMT_RGB24:
  2790. #endif
  2791. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2792. break;
  2793. case PIX_FMT_BGR32_1:
  2794. #ifdef WORDS_BIGENDIAN
  2795. case PIX_FMT_BGR24:
  2796. #endif
  2797. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2798. break;
  2799. case PIX_FMT_RGB32_1:
  2800. #ifdef WORDS_BIGENDIAN
  2801. case PIX_FMT_RGB24:
  2802. #endif
  2803. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2804. break;
  2805. case PIX_FMT_RGB32:
  2806. #ifndef WORDS_BIGENDIAN
  2807. case PIX_FMT_BGR24:
  2808. #endif
  2809. default:
  2810. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2811. }
  2812. }
  2813. }
  2814. // copy strides, so they can safely be modified
  2815. if (c->sliceDir == 1) {
  2816. // slices go from top to bottom
  2817. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
  2818. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
  2819. reset_ptr(src2, c->srcFormat);
  2820. reset_ptr(dst2, c->dstFormat);
  2821. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2, dstStride2);
  2822. } else {
  2823. // slices go from bottom to top => we flip the image internally
  2824. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
  2825. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
  2826. src2[0] += (srcSliceH-1)*srcStride[0];
  2827. if (!usePal(c->srcFormat))
  2828. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2829. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2830. src2[3] += (srcSliceH-1)*srcStride[3];
  2831. dst2[0] += ( c->dstH -1)*dstStride[0];
  2832. dst2[1] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1];
  2833. dst2[2] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2];
  2834. dst2[3] += ( c->dstH -1)*dstStride[3];
  2835. reset_ptr(src2, c->srcFormat);
  2836. reset_ptr(dst2, c->dstFormat);
  2837. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2838. }
  2839. }
  2840. #if LIBSWSCALE_VERSION_MAJOR < 1
  2841. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2842. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2843. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2844. }
  2845. #endif
  2846. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2847. float lumaSharpen, float chromaSharpen,
  2848. float chromaHShift, float chromaVShift,
  2849. int verbose)
  2850. {
  2851. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2852. if (lumaGBlur!=0.0){
  2853. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2854. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2855. }else{
  2856. filter->lumH= sws_getIdentityVec();
  2857. filter->lumV= sws_getIdentityVec();
  2858. }
  2859. if (chromaGBlur!=0.0){
  2860. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2861. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2862. }else{
  2863. filter->chrH= sws_getIdentityVec();
  2864. filter->chrV= sws_getIdentityVec();
  2865. }
  2866. if (chromaSharpen!=0.0){
  2867. SwsVector *id= sws_getIdentityVec();
  2868. sws_scaleVec(filter->chrH, -chromaSharpen);
  2869. sws_scaleVec(filter->chrV, -chromaSharpen);
  2870. sws_addVec(filter->chrH, id);
  2871. sws_addVec(filter->chrV, id);
  2872. sws_freeVec(id);
  2873. }
  2874. if (lumaSharpen!=0.0){
  2875. SwsVector *id= sws_getIdentityVec();
  2876. sws_scaleVec(filter->lumH, -lumaSharpen);
  2877. sws_scaleVec(filter->lumV, -lumaSharpen);
  2878. sws_addVec(filter->lumH, id);
  2879. sws_addVec(filter->lumV, id);
  2880. sws_freeVec(id);
  2881. }
  2882. if (chromaHShift != 0.0)
  2883. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2884. if (chromaVShift != 0.0)
  2885. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2886. sws_normalizeVec(filter->chrH, 1.0);
  2887. sws_normalizeVec(filter->chrV, 1.0);
  2888. sws_normalizeVec(filter->lumH, 1.0);
  2889. sws_normalizeVec(filter->lumV, 1.0);
  2890. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  2891. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  2892. return filter;
  2893. }
  2894. SwsVector *sws_getGaussianVec(double variance, double quality){
  2895. const int length= (int)(variance*quality + 0.5) | 1;
  2896. int i;
  2897. double *coeff= av_malloc(length*sizeof(double));
  2898. double middle= (length-1)*0.5;
  2899. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2900. vec->coeff= coeff;
  2901. vec->length= length;
  2902. for (i=0; i<length; i++)
  2903. {
  2904. double dist= i-middle;
  2905. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2906. }
  2907. sws_normalizeVec(vec, 1.0);
  2908. return vec;
  2909. }
  2910. SwsVector *sws_getConstVec(double c, int length){
  2911. int i;
  2912. double *coeff= av_malloc(length*sizeof(double));
  2913. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2914. vec->coeff= coeff;
  2915. vec->length= length;
  2916. for (i=0; i<length; i++)
  2917. coeff[i]= c;
  2918. return vec;
  2919. }
  2920. SwsVector *sws_getIdentityVec(void){
  2921. return sws_getConstVec(1.0, 1);
  2922. }
  2923. double sws_dcVec(SwsVector *a){
  2924. int i;
  2925. double sum=0;
  2926. for (i=0; i<a->length; i++)
  2927. sum+= a->coeff[i];
  2928. return sum;
  2929. }
  2930. void sws_scaleVec(SwsVector *a, double scalar){
  2931. int i;
  2932. for (i=0; i<a->length; i++)
  2933. a->coeff[i]*= scalar;
  2934. }
  2935. void sws_normalizeVec(SwsVector *a, double height){
  2936. sws_scaleVec(a, height/sws_dcVec(a));
  2937. }
  2938. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2939. int length= a->length + b->length - 1;
  2940. double *coeff= av_malloc(length*sizeof(double));
  2941. int i, j;
  2942. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2943. vec->coeff= coeff;
  2944. vec->length= length;
  2945. for (i=0; i<length; i++) coeff[i]= 0.0;
  2946. for (i=0; i<a->length; i++)
  2947. {
  2948. for (j=0; j<b->length; j++)
  2949. {
  2950. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2951. }
  2952. }
  2953. return vec;
  2954. }
  2955. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2956. int length= FFMAX(a->length, b->length);
  2957. double *coeff= av_malloc(length*sizeof(double));
  2958. int i;
  2959. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2960. vec->coeff= coeff;
  2961. vec->length= length;
  2962. for (i=0; i<length; i++) coeff[i]= 0.0;
  2963. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2964. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2965. return vec;
  2966. }
  2967. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2968. int length= FFMAX(a->length, b->length);
  2969. double *coeff= av_malloc(length*sizeof(double));
  2970. int i;
  2971. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2972. vec->coeff= coeff;
  2973. vec->length= length;
  2974. for (i=0; i<length; i++) coeff[i]= 0.0;
  2975. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2976. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2977. return vec;
  2978. }
  2979. /* shift left / or right if "shift" is negative */
  2980. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2981. int length= a->length + FFABS(shift)*2;
  2982. double *coeff= av_malloc(length*sizeof(double));
  2983. int i;
  2984. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2985. vec->coeff= coeff;
  2986. vec->length= length;
  2987. for (i=0; i<length; i++) coeff[i]= 0.0;
  2988. for (i=0; i<a->length; i++)
  2989. {
  2990. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2991. }
  2992. return vec;
  2993. }
  2994. void sws_shiftVec(SwsVector *a, int shift){
  2995. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2996. av_free(a->coeff);
  2997. a->coeff= shifted->coeff;
  2998. a->length= shifted->length;
  2999. av_free(shifted);
  3000. }
  3001. void sws_addVec(SwsVector *a, SwsVector *b){
  3002. SwsVector *sum= sws_sumVec(a, b);
  3003. av_free(a->coeff);
  3004. a->coeff= sum->coeff;
  3005. a->length= sum->length;
  3006. av_free(sum);
  3007. }
  3008. void sws_subVec(SwsVector *a, SwsVector *b){
  3009. SwsVector *diff= sws_diffVec(a, b);
  3010. av_free(a->coeff);
  3011. a->coeff= diff->coeff;
  3012. a->length= diff->length;
  3013. av_free(diff);
  3014. }
  3015. void sws_convVec(SwsVector *a, SwsVector *b){
  3016. SwsVector *conv= sws_getConvVec(a, b);
  3017. av_free(a->coeff);
  3018. a->coeff= conv->coeff;
  3019. a->length= conv->length;
  3020. av_free(conv);
  3021. }
  3022. SwsVector *sws_cloneVec(SwsVector *a){
  3023. double *coeff= av_malloc(a->length*sizeof(double));
  3024. int i;
  3025. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3026. vec->coeff= coeff;
  3027. vec->length= a->length;
  3028. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  3029. return vec;
  3030. }
  3031. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
  3032. int i;
  3033. double max=0;
  3034. double min=0;
  3035. double range;
  3036. for (i=0; i<a->length; i++)
  3037. if (a->coeff[i]>max) max= a->coeff[i];
  3038. for (i=0; i<a->length; i++)
  3039. if (a->coeff[i]<min) min= a->coeff[i];
  3040. range= max - min;
  3041. for (i=0; i<a->length; i++)
  3042. {
  3043. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  3044. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  3045. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  3046. av_log(log_ctx, log_level, "|\n");
  3047. }
  3048. }
  3049. #if LIBSWSCALE_VERSION_MAJOR < 1
  3050. void sws_printVec(SwsVector *a){
  3051. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  3052. }
  3053. #endif
  3054. void sws_freeVec(SwsVector *a){
  3055. if (!a) return;
  3056. av_freep(&a->coeff);
  3057. a->length=0;
  3058. av_free(a);
  3059. }
  3060. void sws_freeFilter(SwsFilter *filter){
  3061. if (!filter) return;
  3062. if (filter->lumH) sws_freeVec(filter->lumH);
  3063. if (filter->lumV) sws_freeVec(filter->lumV);
  3064. if (filter->chrH) sws_freeVec(filter->chrH);
  3065. if (filter->chrV) sws_freeVec(filter->chrV);
  3066. av_free(filter);
  3067. }
  3068. void sws_freeContext(SwsContext *c){
  3069. int i;
  3070. if (!c) return;
  3071. if (c->lumPixBuf)
  3072. {
  3073. for (i=0; i<c->vLumBufSize; i++)
  3074. av_freep(&c->lumPixBuf[i]);
  3075. av_freep(&c->lumPixBuf);
  3076. }
  3077. if (c->chrPixBuf)
  3078. {
  3079. for (i=0; i<c->vChrBufSize; i++)
  3080. av_freep(&c->chrPixBuf[i]);
  3081. av_freep(&c->chrPixBuf);
  3082. }
  3083. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  3084. for (i=0; i<c->vLumBufSize; i++)
  3085. av_freep(&c->alpPixBuf[i]);
  3086. av_freep(&c->alpPixBuf);
  3087. }
  3088. av_freep(&c->vLumFilter);
  3089. av_freep(&c->vChrFilter);
  3090. av_freep(&c->hLumFilter);
  3091. av_freep(&c->hChrFilter);
  3092. #if HAVE_ALTIVEC
  3093. av_freep(&c->vYCoeffsBank);
  3094. av_freep(&c->vCCoeffsBank);
  3095. #endif
  3096. av_freep(&c->vLumFilterPos);
  3097. av_freep(&c->vChrFilterPos);
  3098. av_freep(&c->hLumFilterPos);
  3099. av_freep(&c->hChrFilterPos);
  3100. #if ARCH_X86 && CONFIG_GPL
  3101. #ifdef MAP_ANONYMOUS
  3102. if (c->funnyYCode ) munmap(c->funnyYCode , MAX_FUNNY_CODE_SIZE);
  3103. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  3104. #elif HAVE_VIRTUALALLOC
  3105. if (c->funnyYCode ) VirtualFree(c->funnyYCode , MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  3106. if (c->funnyUVCode) VirtualFree(c->funnyUVCode, MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  3107. #else
  3108. av_free(c->funnyYCode );
  3109. av_free(c->funnyUVCode);
  3110. #endif
  3111. c->funnyYCode=NULL;
  3112. c->funnyUVCode=NULL;
  3113. #endif /* ARCH_X86 && CONFIG_GPL */
  3114. av_freep(&c->lumMmx2Filter);
  3115. av_freep(&c->chrMmx2Filter);
  3116. av_freep(&c->lumMmx2FilterPos);
  3117. av_freep(&c->chrMmx2FilterPos);
  3118. av_freep(&c->yuvTable);
  3119. av_free(c);
  3120. }
  3121. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  3122. int srcW, int srcH, enum PixelFormat srcFormat,
  3123. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  3124. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  3125. {
  3126. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  3127. if (!param)
  3128. param = default_param;
  3129. if (context) {
  3130. if (context->srcW != srcW || context->srcH != srcH ||
  3131. context->srcFormat != srcFormat ||
  3132. context->dstW != dstW || context->dstH != dstH ||
  3133. context->dstFormat != dstFormat || context->flags != flags ||
  3134. context->param[0] != param[0] || context->param[1] != param[1])
  3135. {
  3136. sws_freeContext(context);
  3137. context = NULL;
  3138. }
  3139. }
  3140. if (!context) {
  3141. return sws_getContext(srcW, srcH, srcFormat,
  3142. dstW, dstH, dstFormat, flags,
  3143. srcFilter, dstFilter, param);
  3144. }
  3145. return context;
  3146. }