You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

982 lines
32KB

  1. /*
  2. * ATRAC9 decoder
  3. * Copyright (c) 2018 Rostislav Pehlivanov <atomnuker@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "internal.h"
  22. #include "get_bits.h"
  23. #include "fft.h"
  24. #include "atrac9tab.h"
  25. #include "libavutil/lfg.h"
  26. #include "libavutil/float_dsp.h"
  27. #define ATRAC9_SF_VLC_BITS 8
  28. typedef struct ATRAC9ChannelData {
  29. int band_ext;
  30. int q_unit_cnt;
  31. int band_ext_data[4];
  32. int32_t scalefactors[31];
  33. int32_t scalefactors_prev[31];
  34. int precision_coarse[30];
  35. int precision_fine[30];
  36. int precision_mask[30];
  37. int codebookset[30];
  38. int32_t q_coeffs_coarse[256];
  39. int32_t q_coeffs_fine[256];
  40. DECLARE_ALIGNED(32, float, coeffs )[256];
  41. DECLARE_ALIGNED(32, float, prev_win)[128];
  42. } ATRAC9ChannelData;
  43. typedef struct ATRAC9BlockData {
  44. ATRAC9ChannelData channel[2];
  45. /* Base */
  46. int band_count;
  47. int q_unit_cnt;
  48. int q_unit_cnt_prev;
  49. /* Stereo block only */
  50. int stereo_q_unit;
  51. /* Band extension only */
  52. int has_band_ext;
  53. int has_band_ext_data;
  54. int band_ext_q_unit;
  55. /* Gradient */
  56. int grad_mode;
  57. int grad_boundary;
  58. int gradient[31];
  59. /* Stereo */
  60. int cpe_base_channel;
  61. int is_signs[30];
  62. int reuseable;
  63. } ATRAC9BlockData;
  64. typedef struct ATRAC9Context {
  65. AVCodecContext *avctx;
  66. AVFloatDSPContext *fdsp;
  67. FFTContext imdct;
  68. ATRAC9BlockData block[5];
  69. AVLFG lfg;
  70. /* Set on init */
  71. int frame_log2;
  72. int avg_frame_size;
  73. int frame_count;
  74. int samplerate_idx;
  75. const ATRAC9BlockConfig *block_config;
  76. /* Generated on init */
  77. VLC sf_vlc[2][8]; /* Signed/unsigned, length */
  78. VLC coeff_vlc[2][8][4]; /* Cookbook, precision, cookbook index */
  79. uint8_t alloc_curve[48][48];
  80. DECLARE_ALIGNED(32, float, imdct_win)[256];
  81. DECLARE_ALIGNED(32, float, temp)[256];
  82. } ATRAC9Context;
  83. static inline int parse_gradient(ATRAC9Context *s, ATRAC9BlockData *b,
  84. GetBitContext *gb)
  85. {
  86. int grad_range[2];
  87. int grad_value[2];
  88. int values, sign, base;
  89. uint8_t *curve;
  90. float scale;
  91. b->grad_mode = get_bits(gb, 2);
  92. if (b->grad_mode) {
  93. grad_range[0] = get_bits(gb, 5);
  94. grad_range[1] = 31;
  95. grad_value[0] = get_bits(gb, 5);
  96. grad_value[1] = 31;
  97. } else {
  98. grad_range[0] = get_bits(gb, 6);
  99. grad_range[1] = get_bits(gb, 6) + 1;
  100. grad_value[0] = get_bits(gb, 5);
  101. grad_value[1] = get_bits(gb, 5);
  102. }
  103. b->grad_boundary = get_bits(gb, 4);
  104. if (grad_range[0] >= grad_range[1] || grad_range[1] > 31)
  105. return AVERROR_INVALIDDATA;
  106. if (b->grad_boundary > b->q_unit_cnt)
  107. return AVERROR_INVALIDDATA;
  108. values = grad_value[1] - grad_value[0];
  109. sign = 1 - 2*(values < 0);
  110. base = grad_value[0] + sign;
  111. scale = (FFABS(values) - 1) / 31.0f;
  112. curve = s->alloc_curve[grad_range[1] - grad_range[0] - 1];
  113. for (int i = 0; i <= b->q_unit_cnt; i++)
  114. b->gradient[i] = grad_value[i >= grad_range[0]];
  115. for (int i = grad_range[0]; i < grad_range[1]; i++)
  116. b->gradient[i] = base + sign*((int)(scale*curve[i - grad_range[0]]));
  117. return 0;
  118. }
  119. static inline void calc_precision(ATRAC9Context *s, ATRAC9BlockData *b,
  120. ATRAC9ChannelData *c)
  121. {
  122. memset(c->precision_mask, 0, sizeof(c->precision_mask));
  123. for (int i = 1; i < b->q_unit_cnt; i++) {
  124. const int delta = FFABS(c->scalefactors[i] - c->scalefactors[i - 1]) - 1;
  125. if (delta > 0) {
  126. const int neg = c->scalefactors[i - 1] > c->scalefactors[i];
  127. c->precision_mask[i - neg] += FFMIN(delta, 5);
  128. }
  129. }
  130. if (b->grad_mode) {
  131. for (int i = 0; i < b->q_unit_cnt; i++) {
  132. c->precision_coarse[i] = c->scalefactors[i];
  133. c->precision_coarse[i] += c->precision_mask[i] - b->gradient[i];
  134. if (c->precision_coarse[i] < 0)
  135. continue;
  136. switch (b->grad_mode) {
  137. case 1:
  138. c->precision_coarse[i] >>= 1;
  139. break;
  140. case 2:
  141. c->precision_coarse[i] = (3 * c->precision_coarse[i]) >> 3;
  142. break;
  143. case 3:
  144. c->precision_coarse[i] >>= 2;
  145. break;
  146. }
  147. }
  148. } else {
  149. for (int i = 0; i < b->q_unit_cnt; i++)
  150. c->precision_coarse[i] = c->scalefactors[i] - b->gradient[i];
  151. }
  152. for (int i = 0; i < b->q_unit_cnt; i++)
  153. c->precision_coarse[i] = FFMAX(c->precision_coarse[i], 1);
  154. for (int i = 0; i < b->grad_boundary; i++)
  155. c->precision_coarse[i]++;
  156. for (int i = 0; i < b->q_unit_cnt; i++) {
  157. c->precision_fine[i] = 0;
  158. if (c->precision_coarse[i] > 15) {
  159. c->precision_fine[i] = FFMIN(c->precision_coarse[i], 30) - 15;
  160. c->precision_coarse[i] = 15;
  161. }
  162. }
  163. }
  164. static inline int parse_band_ext(ATRAC9Context *s, ATRAC9BlockData *b,
  165. GetBitContext *gb, int stereo)
  166. {
  167. int ext_band = 0;
  168. if (b->has_band_ext) {
  169. if (b->q_unit_cnt < 13 || b->q_unit_cnt > 20)
  170. return AVERROR_INVALIDDATA;
  171. ext_band = at9_tab_band_ext_group[b->q_unit_cnt - 13][2];
  172. if (stereo) {
  173. b->channel[1].band_ext = get_bits(gb, 2);
  174. b->channel[1].band_ext = ext_band > 2 ? b->channel[1].band_ext : 4;
  175. } else {
  176. skip_bits1(gb);
  177. }
  178. }
  179. b->has_band_ext_data = get_bits1(gb);
  180. if (!b->has_band_ext_data)
  181. return 0;
  182. if (!b->has_band_ext) {
  183. skip_bits(gb, 2);
  184. skip_bits_long(gb, get_bits(gb, 5));
  185. return 0;
  186. }
  187. b->channel[0].band_ext = get_bits(gb, 2);
  188. b->channel[0].band_ext = ext_band > 2 ? b->channel[0].band_ext : 4;
  189. if (!get_bits(gb, 5)) {
  190. for (int i = 0; i <= stereo; i++) {
  191. ATRAC9ChannelData *c = &b->channel[i];
  192. const int count = at9_tab_band_ext_cnt[c->band_ext][ext_band];
  193. for (int j = 0; j < count; j++) {
  194. int len = at9_tab_band_ext_lengths[c->band_ext][ext_band][j];
  195. c->band_ext_data[j] = av_clip_uintp2_c(c->band_ext_data[j], len);
  196. }
  197. }
  198. return 0;
  199. }
  200. for (int i = 0; i <= stereo; i++) {
  201. ATRAC9ChannelData *c = &b->channel[i];
  202. const int count = at9_tab_band_ext_cnt[c->band_ext][ext_band];
  203. for (int j = 0; j < count; j++) {
  204. int len = at9_tab_band_ext_lengths[c->band_ext][ext_band][j];
  205. c->band_ext_data[j] = get_bits(gb, len);
  206. }
  207. }
  208. return 0;
  209. }
  210. static inline int read_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b,
  211. ATRAC9ChannelData *c, GetBitContext *gb,
  212. int channel_idx, int first_in_pkt)
  213. {
  214. static const uint8_t mode_map[2][4] = { { 0, 1, 2, 3 }, { 0, 2, 3, 4 } };
  215. const int mode = mode_map[channel_idx][get_bits(gb, 2)];
  216. memset(c->scalefactors, 0, sizeof(c->scalefactors));
  217. if (first_in_pkt && (mode == 4 || ((mode == 3) && !channel_idx))) {
  218. av_log(s->avctx, AV_LOG_ERROR, "Invalid scalefactor coding mode!\n");
  219. return AVERROR_INVALIDDATA;
  220. }
  221. switch (mode) {
  222. case 0: { /* VLC delta offset */
  223. const uint8_t *sf_weights = at9_tab_sf_weights[get_bits(gb, 3)];
  224. const int base = get_bits(gb, 5);
  225. const int len = get_bits(gb, 2) + 3;
  226. const VLC *tab = &s->sf_vlc[0][len];
  227. c->scalefactors[0] = get_bits(gb, len);
  228. for (int i = 1; i < b->band_ext_q_unit; i++) {
  229. int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table,
  230. ATRAC9_SF_VLC_BITS, 1);
  231. c->scalefactors[i] = val & ((1 << len) - 1);
  232. }
  233. for (int i = 0; i < b->band_ext_q_unit; i++)
  234. c->scalefactors[i] += base - sf_weights[i];
  235. break;
  236. }
  237. case 1: { /* CLC offset */
  238. const int len = get_bits(gb, 2) + 2;
  239. const int base = len < 5 ? get_bits(gb, 5) : 0;
  240. for (int i = 0; i < b->band_ext_q_unit; i++)
  241. c->scalefactors[i] = base + get_bits(gb, len);
  242. break;
  243. }
  244. case 2:
  245. case 4: { /* VLC dist to baseline */
  246. const int *baseline = mode == 4 ? c->scalefactors_prev :
  247. channel_idx ? b->channel[0].scalefactors :
  248. c->scalefactors_prev;
  249. const int baseline_len = mode == 4 ? b->q_unit_cnt_prev :
  250. channel_idx ? b->band_ext_q_unit :
  251. b->q_unit_cnt_prev;
  252. const int len = get_bits(gb, 2) + 2;
  253. const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len);
  254. const VLC *tab = &s->sf_vlc[1][len];
  255. for (int i = 0; i < unit_cnt; i++) {
  256. int dist = get_vlc2(gb, tab->table, ATRAC9_SF_VLC_BITS, 1);
  257. c->scalefactors[i] = baseline[i] + dist;
  258. }
  259. for (int i = unit_cnt; i < b->band_ext_q_unit; i++)
  260. c->scalefactors[i] = get_bits(gb, 5);
  261. break;
  262. }
  263. case 3: { /* VLC offset with baseline */
  264. const int *baseline = channel_idx ? b->channel[0].scalefactors :
  265. c->scalefactors_prev;
  266. const int baseline_len = channel_idx ? b->band_ext_q_unit :
  267. b->q_unit_cnt_prev;
  268. const int base = get_bits(gb, 5) - (1 << (5 - 1));
  269. const int len = get_bits(gb, 2) + 1;
  270. const int unit_cnt = FFMIN(b->band_ext_q_unit, baseline_len);
  271. const VLC *tab = &s->sf_vlc[0][len];
  272. c->scalefactors[0] = get_bits(gb, len);
  273. for (int i = 1; i < unit_cnt; i++) {
  274. int val = c->scalefactors[i - 1] + get_vlc2(gb, tab->table,
  275. ATRAC9_SF_VLC_BITS, 1);
  276. c->scalefactors[i] = val & ((1 << len) - 1);
  277. }
  278. for (int i = 0; i < unit_cnt; i++)
  279. c->scalefactors[i] += base + baseline[i];
  280. for (int i = unit_cnt; i < b->band_ext_q_unit; i++)
  281. c->scalefactors[i] = get_bits(gb, 5);
  282. break;
  283. }
  284. }
  285. for (int i = 0; i < b->band_ext_q_unit; i++)
  286. if (c->scalefactors[i] < 0 || c->scalefactors[i] > 31)
  287. return AVERROR_INVALIDDATA;
  288. memcpy(c->scalefactors_prev, c->scalefactors, sizeof(c->scalefactors));
  289. return 0;
  290. }
  291. static inline void calc_codebook_idx(ATRAC9Context *s, ATRAC9BlockData *b,
  292. ATRAC9ChannelData *c)
  293. {
  294. int avg = 0;
  295. const int last_sf = c->scalefactors[c->q_unit_cnt];
  296. memset(c->codebookset, 0, sizeof(c->codebookset));
  297. if (c->q_unit_cnt <= 1)
  298. return;
  299. if (s->samplerate_idx > 7)
  300. return;
  301. c->scalefactors[c->q_unit_cnt] = c->scalefactors[c->q_unit_cnt - 1];
  302. if (c->q_unit_cnt > 12) {
  303. for (int i = 0; i < 12; i++)
  304. avg += c->scalefactors[i];
  305. avg = (avg + 6) / 12;
  306. }
  307. for (int i = 8; i < c->q_unit_cnt; i++) {
  308. const int prev = c->scalefactors[i - 1];
  309. const int cur = c->scalefactors[i ];
  310. const int next = c->scalefactors[i + 1];
  311. const int min = FFMIN(prev, next);
  312. if ((cur - min >= 3 || 2*cur - prev - next >= 3))
  313. c->codebookset[i] = 1;
  314. }
  315. for (int i = 12; i < c->q_unit_cnt; i++) {
  316. const int cur = c->scalefactors[i];
  317. const int cnd = at9_q_unit_to_coeff_cnt[i] == 16;
  318. const int min = FFMIN(c->scalefactors[i + 1], c->scalefactors[i - 1]);
  319. if (c->codebookset[i])
  320. continue;
  321. c->codebookset[i] = (((cur - min) >= 2) && (cur >= (avg - cnd)));
  322. }
  323. c->scalefactors[c->q_unit_cnt] = last_sf;
  324. }
  325. static inline void read_coeffs_coarse(ATRAC9Context *s, ATRAC9BlockData *b,
  326. ATRAC9ChannelData *c, GetBitContext *gb)
  327. {
  328. const int max_prec = s->samplerate_idx > 7 ? 1 : 7;
  329. memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse));
  330. for (int i = 0; i < c->q_unit_cnt; i++) {
  331. int *coeffs = &c->q_coeffs_coarse[at9_q_unit_to_coeff_idx[i]];
  332. const int bands = at9_q_unit_to_coeff_cnt[i];
  333. const int prec = c->precision_coarse[i] + 1;
  334. if (prec <= max_prec) {
  335. const int cb = c->codebookset[i];
  336. const int cbi = at9_q_unit_to_codebookidx[i];
  337. const VLC *tab = &s->coeff_vlc[cb][prec][cbi];
  338. const HuffmanCodebook *huff = &at9_huffman_coeffs[cb][prec][cbi];
  339. const int groups = bands >> huff->value_cnt_pow;
  340. for (int j = 0; j < groups; j++) {
  341. uint16_t val = get_vlc2(gb, tab->table, 9, 2);
  342. for (int k = 0; k < huff->value_cnt; k++) {
  343. coeffs[k] = sign_extend(val, huff->value_bits);
  344. val >>= huff->value_bits;
  345. }
  346. coeffs += huff->value_cnt;
  347. }
  348. } else {
  349. for (int j = 0; j < bands; j++)
  350. coeffs[j] = sign_extend(get_bits(gb, prec), prec);
  351. }
  352. }
  353. }
  354. static inline void read_coeffs_fine(ATRAC9Context *s, ATRAC9BlockData *b,
  355. ATRAC9ChannelData *c, GetBitContext *gb)
  356. {
  357. memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine));
  358. for (int i = 0; i < c->q_unit_cnt; i++) {
  359. const int start = at9_q_unit_to_coeff_idx[i + 0];
  360. const int end = at9_q_unit_to_coeff_idx[i + 1];
  361. const int len = c->precision_fine[i] + 1;
  362. if (c->precision_fine[i] <= 0)
  363. continue;
  364. for (int j = start; j < end; j++)
  365. c->q_coeffs_fine[j] = sign_extend(get_bits(gb, len), len);
  366. }
  367. }
  368. static inline void dequantize(ATRAC9Context *s, ATRAC9BlockData *b,
  369. ATRAC9ChannelData *c)
  370. {
  371. memset(c->coeffs, 0, sizeof(c->coeffs));
  372. for (int i = 0; i < c->q_unit_cnt; i++) {
  373. const int start = at9_q_unit_to_coeff_idx[i + 0];
  374. const int end = at9_q_unit_to_coeff_idx[i + 1];
  375. const float coarse_c = at9_quant_step_coarse[c->precision_coarse[i]];
  376. const float fine_c = at9_quant_step_fine[c->precision_fine[i]];
  377. for (int j = start; j < end; j++) {
  378. const float vc = c->q_coeffs_coarse[j] * coarse_c;
  379. const float vf = c->q_coeffs_fine[j] * fine_c;
  380. c->coeffs[j] = vc + vf;
  381. }
  382. }
  383. }
  384. static inline void apply_intensity_stereo(ATRAC9Context *s, ATRAC9BlockData *b,
  385. const int stereo)
  386. {
  387. float *src = b->channel[ b->cpe_base_channel].coeffs;
  388. float *dst = b->channel[!b->cpe_base_channel].coeffs;
  389. if (!stereo)
  390. return;
  391. if (b->q_unit_cnt <= b->stereo_q_unit)
  392. return;
  393. for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++) {
  394. const int sign = b->is_signs[i];
  395. const int start = at9_q_unit_to_coeff_idx[i + 0];
  396. const int end = at9_q_unit_to_coeff_idx[i + 1];
  397. for (int j = start; j < end; j++)
  398. dst[j] = sign*src[j];
  399. }
  400. }
  401. static inline void apply_scalefactors(ATRAC9Context *s, ATRAC9BlockData *b,
  402. const int stereo)
  403. {
  404. for (int i = 0; i <= stereo; i++) {
  405. float *coeffs = b->channel[i].coeffs;
  406. for (int j = 0; j < b->q_unit_cnt; j++) {
  407. const int start = at9_q_unit_to_coeff_idx[j + 0];
  408. const int end = at9_q_unit_to_coeff_idx[j + 1];
  409. const int scalefactor = b->channel[i].scalefactors[j];
  410. const float scale = at9_scalefactor_c[scalefactor];
  411. for (int k = start; k < end; k++)
  412. coeffs[k] *= scale;
  413. }
  414. }
  415. }
  416. static inline void fill_with_noise(ATRAC9Context *s, ATRAC9ChannelData *c,
  417. int start, int count)
  418. {
  419. float maxval = 0.0f;
  420. for (int i = 0; i < count; i += 2) {
  421. double tmp[2];
  422. av_bmg_get(&s->lfg, tmp);
  423. c->coeffs[start + i + 0] = tmp[0];
  424. c->coeffs[start + i + 1] = tmp[1];
  425. maxval = FFMAX(FFMAX(FFABS(tmp[0]), FFABS(tmp[1])), maxval);
  426. }
  427. /* Normalize */
  428. for (int i = 0; i < count; i++)
  429. c->coeffs[start + i] /= maxval;
  430. }
  431. static inline void scale_band_ext_coeffs(ATRAC9ChannelData *c, float sf[6],
  432. const int s_unit, const int e_unit)
  433. {
  434. for (int i = s_unit; i < e_unit; i++) {
  435. const int start = at9_q_unit_to_coeff_idx[i + 0];
  436. const int end = at9_q_unit_to_coeff_idx[i + 1];
  437. for (int j = start; j < end; j++)
  438. c->coeffs[j] *= sf[i - s_unit];
  439. }
  440. }
  441. static inline void apply_band_extension(ATRAC9Context *s, ATRAC9BlockData *b,
  442. const int stereo)
  443. {
  444. const int g_units[4] = { /* A, B, C, total units */
  445. b->q_unit_cnt,
  446. at9_tab_band_ext_group[b->q_unit_cnt - 13][0],
  447. at9_tab_band_ext_group[b->q_unit_cnt - 13][1],
  448. FFMAX(g_units[2], 22),
  449. };
  450. const int g_bins[4] = { /* A, B, C, total bins */
  451. at9_q_unit_to_coeff_idx[g_units[0]],
  452. at9_q_unit_to_coeff_idx[g_units[1]],
  453. at9_q_unit_to_coeff_idx[g_units[2]],
  454. at9_q_unit_to_coeff_idx[g_units[3]],
  455. };
  456. for (int ch = 0; ch <= stereo; ch++) {
  457. ATRAC9ChannelData *c = &b->channel[ch];
  458. /* Mirror the spectrum */
  459. for (int i = 0; i < 3; i++)
  460. for (int j = 0; j < (g_bins[i + 1] - g_bins[i + 0]); j++)
  461. c->coeffs[g_bins[i] + j] = c->coeffs[g_bins[i] - j - 1];
  462. switch (c->band_ext) {
  463. case 0: {
  464. float sf[6] = { 0.0f };
  465. const int l = g_units[3] - g_units[0] - 1;
  466. const int n_start = at9_q_unit_to_coeff_idx[g_units[3] - 1];
  467. const int n_cnt = at9_q_unit_to_coeff_cnt[g_units[3] - 1];
  468. switch (at9_tab_band_ext_group[b->q_unit_cnt - 13][2]) {
  469. case 3:
  470. sf[0] = at9_band_ext_scales_m0[0][0][c->band_ext_data[0]];
  471. sf[1] = at9_band_ext_scales_m0[0][1][c->band_ext_data[0]];
  472. sf[2] = at9_band_ext_scales_m0[0][2][c->band_ext_data[1]];
  473. sf[3] = at9_band_ext_scales_m0[0][3][c->band_ext_data[2]];
  474. sf[4] = at9_band_ext_scales_m0[0][4][c->band_ext_data[3]];
  475. break;
  476. case 4:
  477. sf[0] = at9_band_ext_scales_m0[1][0][c->band_ext_data[0]];
  478. sf[1] = at9_band_ext_scales_m0[1][1][c->band_ext_data[0]];
  479. sf[2] = at9_band_ext_scales_m0[1][2][c->band_ext_data[1]];
  480. sf[3] = at9_band_ext_scales_m0[1][3][c->band_ext_data[2]];
  481. sf[4] = at9_band_ext_scales_m0[1][4][c->band_ext_data[3]];
  482. break;
  483. case 5:
  484. sf[0] = at9_band_ext_scales_m0[2][0][c->band_ext_data[0]];
  485. sf[1] = at9_band_ext_scales_m0[2][1][c->band_ext_data[1]];
  486. sf[2] = at9_band_ext_scales_m0[2][2][c->band_ext_data[1]];
  487. break;
  488. }
  489. sf[l] = at9_scalefactor_c[c->scalefactors[g_units[0]]];
  490. fill_with_noise(s, c, n_start, n_cnt);
  491. scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]);
  492. break;
  493. }
  494. case 1: {
  495. float sf[6];
  496. for (int i = g_units[0]; i < g_units[3]; i++)
  497. sf[i - g_units[0]] = at9_scalefactor_c[c->scalefactors[i]];
  498. fill_with_noise(s, c, g_bins[0], g_bins[3] - g_bins[0]);
  499. scale_band_ext_coeffs(c, sf, g_units[0], g_units[3]);
  500. break;
  501. }
  502. case 2: {
  503. const float g_sf[2] = {
  504. at9_band_ext_scales_m2[c->band_ext_data[0]],
  505. at9_band_ext_scales_m2[c->band_ext_data[1]],
  506. };
  507. for (int i = 0; i < 2; i++)
  508. for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++)
  509. c->coeffs[j] *= g_sf[i];
  510. break;
  511. }
  512. case 3: {
  513. float scale = at9_band_ext_scales_m3[c->band_ext_data[0]][0];
  514. float rate = at9_band_ext_scales_m3[c->band_ext_data[1]][1];
  515. rate = pow(2, rate);
  516. for (int i = g_bins[0]; i < g_bins[3]; i++) {
  517. scale *= rate;
  518. c->coeffs[i] *= scale;
  519. }
  520. break;
  521. }
  522. case 4: {
  523. const float m = at9_band_ext_scales_m4[c->band_ext_data[0]];
  524. const float g_sf[3] = { 0.7079468f*m, 0.5011902f*m, 0.3548279f*m };
  525. for (int i = 0; i < 3; i++)
  526. for (int j = g_bins[i + 0]; j < g_bins[i + 1]; j++)
  527. c->coeffs[j] *= g_sf[i];
  528. break;
  529. }
  530. }
  531. }
  532. }
  533. static int atrac9_decode_block(ATRAC9Context *s, GetBitContext *gb,
  534. ATRAC9BlockData *b, AVFrame *frame,
  535. int frame_idx, int block_idx)
  536. {
  537. const int first_in_pkt = !get_bits1(gb);
  538. const int reuse_params = get_bits1(gb);
  539. const int stereo = s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_CPE;
  540. if (s->block_config->type[block_idx] == ATRAC9_BLOCK_TYPE_LFE) {
  541. ATRAC9ChannelData *c = &b->channel[0];
  542. const int precision = reuse_params ? 8 : 4;
  543. c->q_unit_cnt = b->q_unit_cnt = 2;
  544. memset(c->scalefactors, 0, sizeof(c->scalefactors));
  545. memset(c->q_coeffs_fine, 0, sizeof(c->q_coeffs_fine));
  546. memset(c->q_coeffs_coarse, 0, sizeof(c->q_coeffs_coarse));
  547. for (int i = 0; i < b->q_unit_cnt; i++) {
  548. c->scalefactors[i] = get_bits(gb, 5);
  549. c->precision_coarse[i] = precision;
  550. c->precision_fine[i] = 0;
  551. }
  552. for (int i = 0; i < c->q_unit_cnt; i++) {
  553. const int start = at9_q_unit_to_coeff_idx[i + 0];
  554. const int end = at9_q_unit_to_coeff_idx[i + 1];
  555. for (int j = start; j < end; j++)
  556. c->q_coeffs_coarse[j] = get_bits(gb, c->precision_coarse[i] + 1);
  557. }
  558. dequantize (s, b, c);
  559. apply_scalefactors(s, b, 0);
  560. goto imdct;
  561. }
  562. if (first_in_pkt && reuse_params) {
  563. av_log(s->avctx, AV_LOG_ERROR, "Invalid block flags!\n");
  564. return AVERROR_INVALIDDATA;
  565. }
  566. /* Band parameters */
  567. if (!reuse_params) {
  568. int stereo_band, ext_band;
  569. const int min_band_count = s->samplerate_idx > 7 ? 1 : 3;
  570. b->reuseable = 0;
  571. b->band_count = get_bits(gb, 4) + min_band_count;
  572. b->q_unit_cnt = at9_tab_band_q_unit_map[b->band_count];
  573. b->band_ext_q_unit = b->stereo_q_unit = b->q_unit_cnt;
  574. if (b->band_count > at9_tab_sri_max_bands[s->samplerate_idx]) {
  575. av_log(s->avctx, AV_LOG_ERROR, "Invalid band count %i!\n",
  576. b->band_count);
  577. return AVERROR_INVALIDDATA;
  578. }
  579. if (stereo) {
  580. stereo_band = get_bits(gb, 4) + min_band_count;
  581. if (stereo_band > b->band_count) {
  582. av_log(s->avctx, AV_LOG_ERROR, "Invalid stereo band %i!\n",
  583. stereo_band);
  584. return AVERROR_INVALIDDATA;
  585. }
  586. b->stereo_q_unit = at9_tab_band_q_unit_map[stereo_band];
  587. }
  588. b->has_band_ext = get_bits1(gb);
  589. if (b->has_band_ext) {
  590. ext_band = get_bits(gb, 4) + min_band_count;
  591. if (ext_band < b->band_count) {
  592. av_log(s->avctx, AV_LOG_ERROR, "Invalid extension band %i!\n",
  593. ext_band);
  594. return AVERROR_INVALIDDATA;
  595. }
  596. b->band_ext_q_unit = at9_tab_band_q_unit_map[ext_band];
  597. }
  598. b->reuseable = 1;
  599. }
  600. if (!b->reuseable) {
  601. av_log(s->avctx, AV_LOG_ERROR, "invalid block reused!\n");
  602. return AVERROR_INVALIDDATA;
  603. }
  604. /* Calculate bit alloc gradient */
  605. if (parse_gradient(s, b, gb))
  606. return AVERROR_INVALIDDATA;
  607. /* IS data */
  608. b->cpe_base_channel = 0;
  609. if (stereo) {
  610. b->cpe_base_channel = get_bits1(gb);
  611. if (get_bits1(gb)) {
  612. for (int i = b->stereo_q_unit; i < b->q_unit_cnt; i++)
  613. b->is_signs[i] = 1 - 2*get_bits1(gb);
  614. } else {
  615. for (int i = 0; i < FF_ARRAY_ELEMS(b->is_signs); i++)
  616. b->is_signs[i] = 1;
  617. }
  618. }
  619. /* Band extension */
  620. if (parse_band_ext(s, b, gb, stereo))
  621. return AVERROR_INVALIDDATA;
  622. /* Scalefactors */
  623. for (int i = 0; i <= stereo; i++) {
  624. ATRAC9ChannelData *c = &b->channel[i];
  625. c->q_unit_cnt = i == b->cpe_base_channel ? b->q_unit_cnt :
  626. b->stereo_q_unit;
  627. if (read_scalefactors(s, b, c, gb, i, first_in_pkt))
  628. return AVERROR_INVALIDDATA;
  629. calc_precision (s, b, c);
  630. calc_codebook_idx (s, b, c);
  631. read_coeffs_coarse(s, b, c, gb);
  632. read_coeffs_fine (s, b, c, gb);
  633. dequantize (s, b, c);
  634. }
  635. b->q_unit_cnt_prev = b->has_band_ext ? b->band_ext_q_unit : b->q_unit_cnt;
  636. apply_intensity_stereo(s, b, stereo);
  637. apply_scalefactors (s, b, stereo);
  638. if (b->has_band_ext && b->has_band_ext_data)
  639. apply_band_extension (s, b, stereo);
  640. imdct:
  641. for (int i = 0; i <= stereo; i++) {
  642. ATRAC9ChannelData *c = &b->channel[i];
  643. const int dst_idx = s->block_config->plane_map[block_idx][i];
  644. const int wsize = 1 << s->frame_log2;
  645. const ptrdiff_t offset = wsize*frame_idx*sizeof(float);
  646. float *dst = (float *)(frame->extended_data[dst_idx] + offset);
  647. s->imdct.imdct_half(&s->imdct, s->temp, c->coeffs);
  648. s->fdsp->vector_fmul_window(dst, c->prev_win, s->temp,
  649. s->imdct_win, wsize >> 1);
  650. memcpy(c->prev_win, s->temp + (wsize >> 1), sizeof(float)*wsize >> 1);
  651. }
  652. return 0;
  653. }
  654. static int atrac9_decode_frame(AVCodecContext *avctx, void *data,
  655. int *got_frame_ptr, AVPacket *avpkt)
  656. {
  657. int ret;
  658. GetBitContext gb;
  659. AVFrame *frame = data;
  660. ATRAC9Context *s = avctx->priv_data;
  661. const int frames = FFMIN(avpkt->size / s->avg_frame_size, s->frame_count);
  662. frame->nb_samples = (1 << s->frame_log2) * frames;
  663. ret = ff_get_buffer(avctx, frame, 0);
  664. if (ret < 0)
  665. return ret;
  666. init_get_bits8(&gb, avpkt->data, avpkt->size);
  667. for (int i = 0; i < frames; i++) {
  668. for (int j = 0; j < s->block_config->count; j++) {
  669. ret = atrac9_decode_block(s, &gb, &s->block[j], frame, i, j);
  670. if (ret)
  671. return ret;
  672. align_get_bits(&gb);
  673. }
  674. }
  675. *got_frame_ptr = 1;
  676. return avctx->block_align;
  677. }
  678. static void atrac9_decode_flush(AVCodecContext *avctx)
  679. {
  680. ATRAC9Context *s = avctx->priv_data;
  681. for (int j = 0; j < s->block_config->count; j++) {
  682. ATRAC9BlockData *b = &s->block[j];
  683. const int stereo = s->block_config->type[j] == ATRAC9_BLOCK_TYPE_CPE;
  684. for (int i = 0; i <= stereo; i++) {
  685. ATRAC9ChannelData *c = &b->channel[i];
  686. memset(c->prev_win, 0, sizeof(c->prev_win));
  687. }
  688. }
  689. }
  690. static av_cold int atrac9_decode_close(AVCodecContext *avctx)
  691. {
  692. ATRAC9Context *s = avctx->priv_data;
  693. for (int i = 1; i < 7; i++)
  694. ff_free_vlc(&s->sf_vlc[0][i]);
  695. for (int i = 2; i < 6; i++)
  696. ff_free_vlc(&s->sf_vlc[1][i]);
  697. for (int i = 0; i < 2; i++)
  698. for (int j = 0; j < 8; j++)
  699. for (int k = 0; k < 4; k++)
  700. ff_free_vlc(&s->coeff_vlc[i][j][k]);
  701. ff_mdct_end(&s->imdct);
  702. av_free(s->fdsp);
  703. return 0;
  704. }
  705. static av_cold int atrac9_decode_init(AVCodecContext *avctx)
  706. {
  707. GetBitContext gb;
  708. ATRAC9Context *s = avctx->priv_data;
  709. int version, block_config_idx, superframe_idx, alloc_c_len;
  710. s->avctx = avctx;
  711. av_lfg_init(&s->lfg, 0xFBADF00D);
  712. if (avctx->block_align <= 0) {
  713. av_log(avctx, AV_LOG_ERROR, "Invalid block align\n");
  714. return AVERROR_INVALIDDATA;
  715. }
  716. if (avctx->extradata_size != 12) {
  717. av_log(avctx, AV_LOG_ERROR, "Invalid extradata length!\n");
  718. return AVERROR_INVALIDDATA;
  719. }
  720. version = AV_RL32(avctx->extradata);
  721. if (version > 2) {
  722. av_log(avctx, AV_LOG_ERROR, "Unsupported version (%i)!\n", version);
  723. return AVERROR_INVALIDDATA;
  724. }
  725. init_get_bits8(&gb, avctx->extradata + 4, avctx->extradata_size);
  726. if (get_bits(&gb, 8) != 0xFE) {
  727. av_log(avctx, AV_LOG_ERROR, "Incorrect magic byte!\n");
  728. return AVERROR_INVALIDDATA;
  729. }
  730. s->samplerate_idx = get_bits(&gb, 4);
  731. avctx->sample_rate = at9_tab_samplerates[s->samplerate_idx];
  732. block_config_idx = get_bits(&gb, 3);
  733. if (block_config_idx > 5) {
  734. av_log(avctx, AV_LOG_ERROR, "Incorrect block config!\n");
  735. return AVERROR_INVALIDDATA;
  736. }
  737. s->block_config = &at9_block_layout[block_config_idx];
  738. avctx->channel_layout = s->block_config->channel_layout;
  739. avctx->channels = av_get_channel_layout_nb_channels(avctx->channel_layout);
  740. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  741. if (get_bits1(&gb)) {
  742. av_log(avctx, AV_LOG_ERROR, "Incorrect verification bit!\n");
  743. return AVERROR_INVALIDDATA;
  744. }
  745. /* Average frame size in bytes */
  746. s->avg_frame_size = get_bits(&gb, 11) + 1;
  747. superframe_idx = get_bits(&gb, 2);
  748. if (superframe_idx & 1) {
  749. av_log(avctx, AV_LOG_ERROR, "Invalid superframe index!\n");
  750. return AVERROR_INVALIDDATA;
  751. }
  752. s->frame_count = 1 << superframe_idx;
  753. s->frame_log2 = at9_tab_sri_frame_log2[s->samplerate_idx];
  754. if (ff_mdct_init(&s->imdct, s->frame_log2 + 1, 1, 1.0f / 32768.0f))
  755. return AVERROR(ENOMEM);
  756. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  757. if (!s->fdsp)
  758. return AVERROR(ENOMEM);
  759. /* iMDCT window */
  760. for (int i = 0; i < (1 << s->frame_log2); i++) {
  761. const int len = 1 << s->frame_log2;
  762. const float sidx = ( i + 0.5f) / len;
  763. const float eidx = (len - i - 0.5f) / len;
  764. const float s_c = sinf(sidx*M_PI - M_PI_2)*0.5f + 0.5f;
  765. const float e_c = sinf(eidx*M_PI - M_PI_2)*0.5f + 0.5f;
  766. s->imdct_win[i] = s_c / ((s_c * s_c) + (e_c * e_c));
  767. }
  768. /* Allocation curve */
  769. alloc_c_len = FF_ARRAY_ELEMS(at9_tab_b_dist);
  770. for (int i = 1; i <= alloc_c_len; i++)
  771. for (int j = 0; j < i; j++)
  772. s->alloc_curve[i - 1][j] = at9_tab_b_dist[(j * alloc_c_len) / i];
  773. /* Unsigned scalefactor VLCs */
  774. for (int i = 1; i < 7; i++) {
  775. const HuffmanCodebook *hf = &at9_huffman_sf_unsigned[i];
  776. init_vlc(&s->sf_vlc[0][i], ATRAC9_SF_VLC_BITS, hf->size,
  777. hf->bits, 1, 1, hf->codes,
  778. 2, 2, 0);
  779. }
  780. /* Signed scalefactor VLCs */
  781. for (int i = 2; i < 6; i++) {
  782. const HuffmanCodebook *hf = &at9_huffman_sf_signed[i];
  783. int nums = hf->size;
  784. int16_t sym[32];
  785. for (int j = 0; j < nums; j++)
  786. sym[j] = sign_extend(j, hf->value_bits);
  787. ff_init_vlc_sparse(&s->sf_vlc[1][i], ATRAC9_SF_VLC_BITS, hf->size, hf->bits, 1, 1,
  788. hf->codes, 2, 2, sym, sizeof(*sym), sizeof(*sym), 0);
  789. }
  790. /* Coefficient VLCs */
  791. for (int i = 0; i < 2; i++) {
  792. for (int j = 0; j < 8; j++) {
  793. for (int k = 0; k < 4; k++) {
  794. const HuffmanCodebook *hf = &at9_huffman_coeffs[i][j][k];
  795. init_vlc(&s->coeff_vlc[i][j][k], 9, hf->size, hf->bits, 1, 1,
  796. hf->codes, 2, 2, 0);
  797. }
  798. }
  799. }
  800. return 0;
  801. }
  802. AVCodec ff_atrac9_decoder = {
  803. .name = "atrac9",
  804. .long_name = NULL_IF_CONFIG_SMALL("ATRAC9 (Adaptive TRansform Acoustic Coding 9)"),
  805. .type = AVMEDIA_TYPE_AUDIO,
  806. .id = AV_CODEC_ID_ATRAC9,
  807. .priv_data_size = sizeof(ATRAC9Context),
  808. .init = atrac9_decode_init,
  809. .close = atrac9_decode_close,
  810. .decode = atrac9_decode_frame,
  811. .flush = atrac9_decode_flush,
  812. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
  813. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  814. };