You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1956 lines
70KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/ppc/cpu.h"
  47. #include "libavutil/x86/asm.h"
  48. #include "libavutil/x86/cpu.h"
  49. #include "rgb2rgb.h"
  50. #include "swscale.h"
  51. #include "swscale_internal.h"
  52. static void handle_formats(SwsContext *c);
  53. unsigned swscale_version(void)
  54. {
  55. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  56. return LIBSWSCALE_VERSION_INT;
  57. }
  58. const char *swscale_configuration(void)
  59. {
  60. return FFMPEG_CONFIGURATION;
  61. }
  62. const char *swscale_license(void)
  63. {
  64. #define LICENSE_PREFIX "libswscale license: "
  65. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  66. }
  67. #define RET 0xC3 // near return opcode for x86
  68. typedef struct FormatEntry {
  69. uint8_t is_supported_in :1;
  70. uint8_t is_supported_out :1;
  71. uint8_t is_supported_endianness :1;
  72. } FormatEntry;
  73. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  74. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  75. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  76. [AV_PIX_FMT_RGB24] = { 1, 1 },
  77. [AV_PIX_FMT_BGR24] = { 1, 1 },
  78. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  82. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  83. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  84. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  85. [AV_PIX_FMT_PAL8] = { 1, 0 },
  86. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  90. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  91. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  92. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  93. [AV_PIX_FMT_BGR8] = { 1, 1 },
  94. [AV_PIX_FMT_BGR4] = { 0, 1 },
  95. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  96. [AV_PIX_FMT_RGB8] = { 1, 1 },
  97. [AV_PIX_FMT_RGB4] = { 0, 1 },
  98. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  99. [AV_PIX_FMT_NV12] = { 1, 1 },
  100. [AV_PIX_FMT_NV21] = { 1, 1 },
  101. [AV_PIX_FMT_ARGB] = { 1, 1 },
  102. [AV_PIX_FMT_RGBA] = { 1, 1 },
  103. [AV_PIX_FMT_ABGR] = { 1, 1 },
  104. [AV_PIX_FMT_BGRA] = { 1, 1 },
  105. [AV_PIX_FMT_0RGB] = { 1, 1 },
  106. [AV_PIX_FMT_RGB0] = { 1, 1 },
  107. [AV_PIX_FMT_0BGR] = { 1, 1 },
  108. [AV_PIX_FMT_BGR0] = { 1, 1 },
  109. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  110. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  111. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  133. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  134. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  135. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  136. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  137. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  138. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  140. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  141. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  143. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  144. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  145. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  152. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  153. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  154. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  155. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  156. [AV_PIX_FMT_Y400A] = { 1, 0 },
  157. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  158. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  159. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  160. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  161. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  185. [AV_PIX_FMT_GBRP] = { 1, 1 },
  186. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  189. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  190. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  194. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  195. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  196. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  197. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  198. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  199. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  200. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  201. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  202. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  203. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  204. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  205. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  206. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  207. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  208. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  209. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  212. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  213. };
  214. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  215. {
  216. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  217. format_entries[pix_fmt].is_supported_in : 0;
  218. }
  219. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  220. {
  221. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  222. format_entries[pix_fmt].is_supported_out : 0;
  223. }
  224. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  225. {
  226. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  227. format_entries[pix_fmt].is_supported_endianness : 0;
  228. }
  229. #if FF_API_SWS_FORMAT_NAME
  230. const char *sws_format_name(enum AVPixelFormat format)
  231. {
  232. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  233. if (desc)
  234. return desc->name;
  235. else
  236. return "Unknown format";
  237. }
  238. #endif
  239. static double getSplineCoeff(double a, double b, double c, double d,
  240. double dist)
  241. {
  242. if (dist <= 1.0)
  243. return ((d * dist + c) * dist + b) * dist + a;
  244. else
  245. return getSplineCoeff(0.0,
  246. b + 2.0 * c + 3.0 * d,
  247. c + 3.0 * d,
  248. -b - 3.0 * c - 6.0 * d,
  249. dist - 1.0);
  250. }
  251. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  252. {
  253. if (pos < 0) {
  254. pos = (128 << chr_subsample) - 128;
  255. }
  256. pos += 128; // relative to ideal left edge
  257. return pos >> chr_subsample;
  258. }
  259. typedef struct {
  260. int flag; ///< flag associated to the algorithm
  261. const char *description; ///< human-readable description
  262. int size_factor; ///< size factor used when initing the filters
  263. } ScaleAlgorithm;
  264. static const ScaleAlgorithm scale_algorithms[] = {
  265. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  266. { SWS_BICUBIC, "bicubic", 4 },
  267. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  268. { SWS_BILINEAR, "bilinear", 2 },
  269. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  270. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  271. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  272. { SWS_POINT, "nearest neighbor / point", -1 },
  273. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  274. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  275. { SWS_X, "experimental", 8 },
  276. };
  277. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  278. int *outFilterSize, int xInc, int srcW,
  279. int dstW, int filterAlign, int one,
  280. int flags, int cpu_flags,
  281. SwsVector *srcFilter, SwsVector *dstFilter,
  282. double param[2], int srcPos, int dstPos)
  283. {
  284. int i;
  285. int filterSize;
  286. int filter2Size;
  287. int minFilterSize;
  288. int64_t *filter = NULL;
  289. int64_t *filter2 = NULL;
  290. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  291. int ret = -1;
  292. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  293. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  294. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  295. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  296. int i;
  297. filterSize = 1;
  298. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  299. dstW, sizeof(*filter) * filterSize, fail);
  300. for (i = 0; i < dstW; i++) {
  301. filter[i * filterSize] = fone;
  302. (*filterPos)[i] = i;
  303. }
  304. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  305. int i;
  306. int64_t xDstInSrc;
  307. filterSize = 1;
  308. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  309. dstW, sizeof(*filter) * filterSize, fail);
  310. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  311. for (i = 0; i < dstW; i++) {
  312. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  313. (*filterPos)[i] = xx;
  314. filter[i] = fone;
  315. xDstInSrc += xInc;
  316. }
  317. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  318. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  319. int i;
  320. int64_t xDstInSrc;
  321. filterSize = 2;
  322. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  323. dstW, sizeof(*filter) * filterSize, fail);
  324. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  325. for (i = 0; i < dstW; i++) {
  326. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  327. int j;
  328. (*filterPos)[i] = xx;
  329. // bilinear upscale / linear interpolate / area averaging
  330. for (j = 0; j < filterSize; j++) {
  331. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  332. if (coeff < 0)
  333. coeff = 0;
  334. filter[i * filterSize + j] = coeff;
  335. xx++;
  336. }
  337. xDstInSrc += xInc;
  338. }
  339. } else {
  340. int64_t xDstInSrc;
  341. int sizeFactor = -1;
  342. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  343. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  344. sizeFactor = scale_algorithms[i].size_factor;
  345. break;
  346. }
  347. }
  348. if (flags & SWS_LANCZOS)
  349. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  350. av_assert0(sizeFactor > 0);
  351. if (xInc <= 1 << 16)
  352. filterSize = 1 + sizeFactor; // upscale
  353. else
  354. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  355. filterSize = FFMIN(filterSize, srcW - 2);
  356. filterSize = FFMAX(filterSize, 1);
  357. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  358. dstW, sizeof(*filter) * filterSize, fail);
  359. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  360. for (i = 0; i < dstW; i++) {
  361. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  362. int j;
  363. (*filterPos)[i] = xx;
  364. for (j = 0; j < filterSize; j++) {
  365. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  366. double floatd;
  367. int64_t coeff;
  368. if (xInc > 1 << 16)
  369. d = d * dstW / srcW;
  370. floatd = d * (1.0 / (1 << 30));
  371. if (flags & SWS_BICUBIC) {
  372. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  373. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  374. if (d >= 1LL << 31) {
  375. coeff = 0.0;
  376. } else {
  377. int64_t dd = (d * d) >> 30;
  378. int64_t ddd = (dd * d) >> 30;
  379. if (d < 1LL << 30)
  380. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  381. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  382. (6 * (1 << 24) - 2 * B) * (1 << 30);
  383. else
  384. coeff = (-B - 6 * C) * ddd +
  385. (6 * B + 30 * C) * dd +
  386. (-12 * B - 48 * C) * d +
  387. (8 * B + 24 * C) * (1 << 30);
  388. }
  389. coeff /= (1LL<<54)/fone;
  390. }
  391. #if 0
  392. else if (flags & SWS_X) {
  393. double p = param ? param * 0.01 : 0.3;
  394. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  395. coeff *= pow(2.0, -p * d * d);
  396. }
  397. #endif
  398. else if (flags & SWS_X) {
  399. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  400. double c;
  401. if (floatd < 1.0)
  402. c = cos(floatd * M_PI);
  403. else
  404. c = -1.0;
  405. if (c < 0.0)
  406. c = -pow(-c, A);
  407. else
  408. c = pow(c, A);
  409. coeff = (c * 0.5 + 0.5) * fone;
  410. } else if (flags & SWS_AREA) {
  411. int64_t d2 = d - (1 << 29);
  412. if (d2 * xInc < -(1LL << (29 + 16)))
  413. coeff = 1.0 * (1LL << (30 + 16));
  414. else if (d2 * xInc < (1LL << (29 + 16)))
  415. coeff = -d2 * xInc + (1LL << (29 + 16));
  416. else
  417. coeff = 0.0;
  418. coeff *= fone >> (30 + 16);
  419. } else if (flags & SWS_GAUSS) {
  420. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  421. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  422. } else if (flags & SWS_SINC) {
  423. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  424. } else if (flags & SWS_LANCZOS) {
  425. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  426. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  427. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  428. if (floatd > p)
  429. coeff = 0;
  430. } else if (flags & SWS_BILINEAR) {
  431. coeff = (1 << 30) - d;
  432. if (coeff < 0)
  433. coeff = 0;
  434. coeff *= fone >> 30;
  435. } else if (flags & SWS_SPLINE) {
  436. double p = -2.196152422706632;
  437. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  438. } else {
  439. av_assert0(0);
  440. }
  441. filter[i * filterSize + j] = coeff;
  442. xx++;
  443. }
  444. xDstInSrc += 2 * xInc;
  445. }
  446. }
  447. /* apply src & dst Filter to filter -> filter2
  448. * av_free(filter);
  449. */
  450. av_assert0(filterSize > 0);
  451. filter2Size = filterSize;
  452. if (srcFilter)
  453. filter2Size += srcFilter->length - 1;
  454. if (dstFilter)
  455. filter2Size += dstFilter->length - 1;
  456. av_assert0(filter2Size > 0);
  457. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  458. for (i = 0; i < dstW; i++) {
  459. int j, k;
  460. if (srcFilter) {
  461. for (k = 0; k < srcFilter->length; k++) {
  462. for (j = 0; j < filterSize; j++)
  463. filter2[i * filter2Size + k + j] +=
  464. srcFilter->coeff[k] * filter[i * filterSize + j];
  465. }
  466. } else {
  467. for (j = 0; j < filterSize; j++)
  468. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  469. }
  470. // FIXME dstFilter
  471. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  472. }
  473. av_freep(&filter);
  474. /* try to reduce the filter-size (step1 find size and shift left) */
  475. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  476. minFilterSize = 0;
  477. for (i = dstW - 1; i >= 0; i--) {
  478. int min = filter2Size;
  479. int j;
  480. int64_t cutOff = 0.0;
  481. /* get rid of near zero elements on the left by shifting left */
  482. for (j = 0; j < filter2Size; j++) {
  483. int k;
  484. cutOff += FFABS(filter2[i * filter2Size]);
  485. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  486. break;
  487. /* preserve monotonicity because the core can't handle the
  488. * filter otherwise */
  489. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  490. break;
  491. // move filter coefficients left
  492. for (k = 1; k < filter2Size; k++)
  493. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  494. filter2[i * filter2Size + k - 1] = 0;
  495. (*filterPos)[i]++;
  496. }
  497. cutOff = 0;
  498. /* count near zeros on the right */
  499. for (j = filter2Size - 1; j > 0; j--) {
  500. cutOff += FFABS(filter2[i * filter2Size + j]);
  501. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  502. break;
  503. min--;
  504. }
  505. if (min > minFilterSize)
  506. minFilterSize = min;
  507. }
  508. if (PPC_ALTIVEC(cpu_flags)) {
  509. // we can handle the special case 4, so we don't want to go the full 8
  510. if (minFilterSize < 5)
  511. filterAlign = 4;
  512. /* We really don't want to waste our time doing useless computation, so
  513. * fall back on the scalar C code for very small filters.
  514. * Vectorizing is worth it only if you have a decent-sized vector. */
  515. if (minFilterSize < 3)
  516. filterAlign = 1;
  517. }
  518. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  519. // special case for unscaled vertical filtering
  520. if (minFilterSize == 1 && filterAlign == 2)
  521. filterAlign = 1;
  522. }
  523. av_assert0(minFilterSize > 0);
  524. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  525. av_assert0(filterSize > 0);
  526. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  527. if (!filter)
  528. goto fail;
  529. if (filterSize >= MAX_FILTER_SIZE * 16 /
  530. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  531. av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreme scaling or set --sws-max-filter-size and recompile\n",
  532. FF_CEIL_RSHIFT((filterSize+1) * ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16), 4));
  533. goto fail;
  534. }
  535. *outFilterSize = filterSize;
  536. if (flags & SWS_PRINT_INFO)
  537. av_log(NULL, AV_LOG_VERBOSE,
  538. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  539. filter2Size, filterSize);
  540. /* try to reduce the filter-size (step2 reduce it) */
  541. for (i = 0; i < dstW; i++) {
  542. int j;
  543. for (j = 0; j < filterSize; j++) {
  544. if (j >= filter2Size)
  545. filter[i * filterSize + j] = 0;
  546. else
  547. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  548. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  549. filter[i * filterSize + j] = 0;
  550. }
  551. }
  552. // FIXME try to align filterPos if possible
  553. // fix borders
  554. for (i = 0; i < dstW; i++) {
  555. int j;
  556. if ((*filterPos)[i] < 0) {
  557. // move filter coefficients left to compensate for filterPos
  558. for (j = 1; j < filterSize; j++) {
  559. int left = FFMAX(j + (*filterPos)[i], 0);
  560. filter[i * filterSize + left] += filter[i * filterSize + j];
  561. filter[i * filterSize + j] = 0;
  562. }
  563. (*filterPos)[i]= 0;
  564. }
  565. if ((*filterPos)[i] + filterSize > srcW) {
  566. int shift = (*filterPos)[i] + filterSize - srcW;
  567. // move filter coefficients right to compensate for filterPos
  568. for (j = filterSize - 2; j >= 0; j--) {
  569. int right = FFMIN(j + shift, filterSize - 1);
  570. filter[i * filterSize + right] += filter[i * filterSize + j];
  571. filter[i * filterSize + j] = 0;
  572. }
  573. (*filterPos)[i]= srcW - filterSize;
  574. }
  575. }
  576. // Note the +1 is for the MMX scaler which reads over the end
  577. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  578. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  579. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  580. /* normalize & store in outFilter */
  581. for (i = 0; i < dstW; i++) {
  582. int j;
  583. int64_t error = 0;
  584. int64_t sum = 0;
  585. for (j = 0; j < filterSize; j++) {
  586. sum += filter[i * filterSize + j];
  587. }
  588. sum = (sum + one / 2) / one;
  589. if (!sum) {
  590. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  591. sum = 1;
  592. }
  593. for (j = 0; j < *outFilterSize; j++) {
  594. int64_t v = filter[i * filterSize + j] + error;
  595. int intV = ROUNDED_DIV(v, sum);
  596. (*outFilter)[i * (*outFilterSize) + j] = intV;
  597. error = v - intV * sum;
  598. }
  599. }
  600. (*filterPos)[dstW + 0] =
  601. (*filterPos)[dstW + 1] =
  602. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  603. * read over the end */
  604. for (i = 0; i < *outFilterSize; i++) {
  605. int k = (dstW - 1) * (*outFilterSize) + i;
  606. (*outFilter)[k + 1 * (*outFilterSize)] =
  607. (*outFilter)[k + 2 * (*outFilterSize)] =
  608. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  609. }
  610. ret = 0;
  611. fail:
  612. if(ret < 0)
  613. av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
  614. av_free(filter);
  615. av_free(filter2);
  616. return ret;
  617. }
  618. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  619. {
  620. int64_t W, V, Z, Cy, Cu, Cv;
  621. int64_t vr = table[0];
  622. int64_t ub = table[1];
  623. int64_t ug = -table[2];
  624. int64_t vg = -table[3];
  625. int64_t ONE = 65536;
  626. int64_t cy = ONE;
  627. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  628. int i;
  629. static const int8_t map[] = {
  630. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  631. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  632. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  633. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  634. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  635. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  636. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  637. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  638. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  639. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  640. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  641. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  642. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  643. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  644. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  645. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  646. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  647. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  648. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  649. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  650. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  651. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  652. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  653. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  654. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  655. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  656. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  657. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  658. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  659. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  660. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  661. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  662. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  663. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  664. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  665. };
  666. dstRange = 0; //FIXME range = 1 is handled elsewhere
  667. if (!dstRange) {
  668. cy = cy * 255 / 219;
  669. } else {
  670. vr = vr * 224 / 255;
  671. ub = ub * 224 / 255;
  672. ug = ug * 224 / 255;
  673. vg = vg * 224 / 255;
  674. }
  675. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  676. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  677. Z = ONE*ONE-W-V;
  678. Cy = ROUNDED_DIV(cy*Z, ONE);
  679. Cu = ROUNDED_DIV(ub*Z, ONE);
  680. Cv = ROUNDED_DIV(vr*Z, ONE);
  681. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  682. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  683. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  684. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  685. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  686. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  687. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  688. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  689. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  690. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  691. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  692. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  693. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  694. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  695. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  696. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  697. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  698. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  699. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  700. }
  701. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  702. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  703. }
  704. static void fill_xyztables(struct SwsContext *c)
  705. {
  706. int i;
  707. double xyzgamma = XYZ_GAMMA;
  708. double rgbgamma = 1.0 / RGB_GAMMA;
  709. double xyzgammainv = 1.0 / XYZ_GAMMA;
  710. double rgbgammainv = RGB_GAMMA;
  711. static const int16_t xyz2rgb_matrix[3][4] = {
  712. {13270, -6295, -2041},
  713. {-3969, 7682, 170},
  714. { 228, -835, 4329} };
  715. static const int16_t rgb2xyz_matrix[3][4] = {
  716. {1689, 1464, 739},
  717. { 871, 2929, 296},
  718. { 79, 488, 3891} };
  719. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  720. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  721. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  722. c->xyzgamma = xyzgamma_tab;
  723. c->rgbgamma = rgbgamma_tab;
  724. c->xyzgammainv = xyzgammainv_tab;
  725. c->rgbgammainv = rgbgammainv_tab;
  726. if (rgbgamma_tab[4095])
  727. return;
  728. /* set gamma vectors */
  729. for (i = 0; i < 4096; i++) {
  730. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  731. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  732. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  733. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  734. }
  735. }
  736. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  737. int srcRange, const int table[4], int dstRange,
  738. int brightness, int contrast, int saturation)
  739. {
  740. const AVPixFmtDescriptor *desc_dst;
  741. const AVPixFmtDescriptor *desc_src;
  742. int need_reinit = 0;
  743. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  744. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  745. handle_formats(c);
  746. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  747. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  748. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  749. dstRange = 0;
  750. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  751. srcRange = 0;
  752. c->brightness = brightness;
  753. c->contrast = contrast;
  754. c->saturation = saturation;
  755. if (c->srcRange != srcRange || c->dstRange != dstRange)
  756. need_reinit = 1;
  757. c->srcRange = srcRange;
  758. c->dstRange = dstRange;
  759. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  760. //and what we have in ticket 2939 looks better with this check
  761. if (need_reinit && c->srcBpc == 8)
  762. ff_sws_init_range_convert(c);
  763. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  764. return -1;
  765. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  766. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  767. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  768. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  769. contrast, saturation);
  770. // FIXME factorize
  771. if (ARCH_PPC)
  772. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  773. contrast, saturation);
  774. }
  775. fill_rgb2yuv_table(c, table, dstRange);
  776. return 0;
  777. }
  778. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  779. int *srcRange, int **table, int *dstRange,
  780. int *brightness, int *contrast, int *saturation)
  781. {
  782. if (!c )
  783. return -1;
  784. *inv_table = c->srcColorspaceTable;
  785. *table = c->dstColorspaceTable;
  786. *srcRange = c->srcRange;
  787. *dstRange = c->dstRange;
  788. *brightness = c->brightness;
  789. *contrast = c->contrast;
  790. *saturation = c->saturation;
  791. return 0;
  792. }
  793. static int handle_jpeg(enum AVPixelFormat *format)
  794. {
  795. switch (*format) {
  796. case AV_PIX_FMT_YUVJ420P:
  797. *format = AV_PIX_FMT_YUV420P;
  798. return 1;
  799. case AV_PIX_FMT_YUVJ411P:
  800. *format = AV_PIX_FMT_YUV411P;
  801. return 1;
  802. case AV_PIX_FMT_YUVJ422P:
  803. *format = AV_PIX_FMT_YUV422P;
  804. return 1;
  805. case AV_PIX_FMT_YUVJ444P:
  806. *format = AV_PIX_FMT_YUV444P;
  807. return 1;
  808. case AV_PIX_FMT_YUVJ440P:
  809. *format = AV_PIX_FMT_YUV440P;
  810. return 1;
  811. case AV_PIX_FMT_GRAY8:
  812. case AV_PIX_FMT_GRAY16LE:
  813. case AV_PIX_FMT_GRAY16BE:
  814. return 1;
  815. default:
  816. return 0;
  817. }
  818. }
  819. static int handle_0alpha(enum AVPixelFormat *format)
  820. {
  821. switch (*format) {
  822. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  823. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  824. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  825. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  826. default: return 0;
  827. }
  828. }
  829. static int handle_xyz(enum AVPixelFormat *format)
  830. {
  831. switch (*format) {
  832. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  833. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  834. default: return 0;
  835. }
  836. }
  837. static void handle_formats(SwsContext *c)
  838. {
  839. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  840. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  841. c->srcXYZ |= handle_xyz(&c->srcFormat);
  842. c->dstXYZ |= handle_xyz(&c->dstFormat);
  843. if (c->srcXYZ || c->dstXYZ)
  844. fill_xyztables(c);
  845. }
  846. SwsContext *sws_alloc_context(void)
  847. {
  848. SwsContext *c = av_mallocz(sizeof(SwsContext));
  849. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  850. if (c) {
  851. c->av_class = &sws_context_class;
  852. av_opt_set_defaults(c);
  853. }
  854. return c;
  855. }
  856. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  857. SwsFilter *dstFilter)
  858. {
  859. int i, j;
  860. int usesVFilter, usesHFilter;
  861. int unscaled;
  862. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  863. int srcW = c->srcW;
  864. int srcH = c->srcH;
  865. int dstW = c->dstW;
  866. int dstH = c->dstH;
  867. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  868. int flags, cpu_flags;
  869. enum AVPixelFormat srcFormat = c->srcFormat;
  870. enum AVPixelFormat dstFormat = c->dstFormat;
  871. const AVPixFmtDescriptor *desc_src;
  872. const AVPixFmtDescriptor *desc_dst;
  873. cpu_flags = av_get_cpu_flags();
  874. flags = c->flags;
  875. emms_c();
  876. if (!rgb15to16)
  877. sws_rgb2rgb_init();
  878. unscaled = (srcW == dstW && srcH == dstH);
  879. c->srcRange |= handle_jpeg(&c->srcFormat);
  880. c->dstRange |= handle_jpeg(&c->dstFormat);
  881. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  882. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  883. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  884. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  885. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  886. c->dstRange, 0, 1 << 16, 1 << 16);
  887. handle_formats(c);
  888. srcFormat = c->srcFormat;
  889. dstFormat = c->dstFormat;
  890. desc_src = av_pix_fmt_desc_get(srcFormat);
  891. desc_dst = av_pix_fmt_desc_get(dstFormat);
  892. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  893. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  894. if (!sws_isSupportedInput(srcFormat)) {
  895. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  896. av_get_pix_fmt_name(srcFormat));
  897. return AVERROR(EINVAL);
  898. }
  899. if (!sws_isSupportedOutput(dstFormat)) {
  900. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  901. av_get_pix_fmt_name(dstFormat));
  902. return AVERROR(EINVAL);
  903. }
  904. }
  905. i = flags & (SWS_POINT |
  906. SWS_AREA |
  907. SWS_BILINEAR |
  908. SWS_FAST_BILINEAR |
  909. SWS_BICUBIC |
  910. SWS_X |
  911. SWS_GAUSS |
  912. SWS_LANCZOS |
  913. SWS_SINC |
  914. SWS_SPLINE |
  915. SWS_BICUBLIN);
  916. /* provide a default scaler if not set by caller */
  917. if (!i) {
  918. if (dstW < srcW && dstH < srcH)
  919. flags |= SWS_BICUBIC;
  920. else if (dstW > srcW && dstH > srcH)
  921. flags |= SWS_BICUBIC;
  922. else
  923. flags |= SWS_BICUBIC;
  924. c->flags = flags;
  925. } else if (i & (i - 1)) {
  926. av_log(c, AV_LOG_ERROR,
  927. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  928. return AVERROR(EINVAL);
  929. }
  930. /* sanity check */
  931. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  932. /* FIXME check if these are enough and try to lower them after
  933. * fixing the relevant parts of the code */
  934. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  935. srcW, srcH, dstW, dstH);
  936. return AVERROR(EINVAL);
  937. }
  938. if (!dstFilter)
  939. dstFilter = &dummyFilter;
  940. if (!srcFilter)
  941. srcFilter = &dummyFilter;
  942. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  943. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  944. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  945. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  946. c->vRounder = 4 * 0x0001000100010001ULL;
  947. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  948. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  949. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  950. (dstFilter->chrV && dstFilter->chrV->length > 1);
  951. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  952. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  953. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  954. (dstFilter->chrH && dstFilter->chrH->length > 1);
  955. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  956. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  957. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  958. if (dstW&1) {
  959. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  960. flags |= SWS_FULL_CHR_H_INT;
  961. c->flags = flags;
  962. }
  963. if ( c->chrSrcHSubSample == 0
  964. && c->chrSrcVSubSample == 0
  965. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  966. && !(c->flags & SWS_FAST_BILINEAR)
  967. ) {
  968. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  969. flags |= SWS_FULL_CHR_H_INT;
  970. c->flags = flags;
  971. }
  972. }
  973. if (c->dither == SWS_DITHER_AUTO) {
  974. if (flags & SWS_ERROR_DIFFUSION)
  975. c->dither = SWS_DITHER_ED;
  976. }
  977. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  978. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  979. dstFormat == AV_PIX_FMT_BGR8 ||
  980. dstFormat == AV_PIX_FMT_RGB8) {
  981. if (c->dither == SWS_DITHER_AUTO)
  982. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  983. if (!(flags & SWS_FULL_CHR_H_INT)) {
  984. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  985. av_log(c, AV_LOG_DEBUG,
  986. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  987. av_get_pix_fmt_name(dstFormat));
  988. flags |= SWS_FULL_CHR_H_INT;
  989. c->flags = flags;
  990. }
  991. }
  992. if (flags & SWS_FULL_CHR_H_INT) {
  993. if (c->dither == SWS_DITHER_BAYER) {
  994. av_log(c, AV_LOG_DEBUG,
  995. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  996. av_get_pix_fmt_name(dstFormat));
  997. c->dither = SWS_DITHER_ED;
  998. }
  999. }
  1000. }
  1001. if (isPlanarRGB(dstFormat)) {
  1002. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1003. av_log(c, AV_LOG_DEBUG,
  1004. "%s output is not supported with half chroma resolution, switching to full\n",
  1005. av_get_pix_fmt_name(dstFormat));
  1006. flags |= SWS_FULL_CHR_H_INT;
  1007. c->flags = flags;
  1008. }
  1009. }
  1010. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1011. * chroma interpolation */
  1012. if (flags & SWS_FULL_CHR_H_INT &&
  1013. isAnyRGB(dstFormat) &&
  1014. !isPlanarRGB(dstFormat) &&
  1015. dstFormat != AV_PIX_FMT_RGBA &&
  1016. dstFormat != AV_PIX_FMT_ARGB &&
  1017. dstFormat != AV_PIX_FMT_BGRA &&
  1018. dstFormat != AV_PIX_FMT_ABGR &&
  1019. dstFormat != AV_PIX_FMT_RGB24 &&
  1020. dstFormat != AV_PIX_FMT_BGR24 &&
  1021. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1022. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1023. dstFormat != AV_PIX_FMT_BGR8 &&
  1024. dstFormat != AV_PIX_FMT_RGB8
  1025. ) {
  1026. av_log(c, AV_LOG_WARNING,
  1027. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1028. av_get_pix_fmt_name(dstFormat));
  1029. flags &= ~SWS_FULL_CHR_H_INT;
  1030. c->flags = flags;
  1031. }
  1032. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1033. c->chrDstHSubSample = 1;
  1034. // drop some chroma lines if the user wants it
  1035. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1036. SWS_SRC_V_CHR_DROP_SHIFT;
  1037. c->chrSrcVSubSample += c->vChrDrop;
  1038. /* drop every other pixel for chroma calculation unless user
  1039. * wants full chroma */
  1040. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1041. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1042. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1043. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1044. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1045. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1046. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1047. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1048. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1049. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1050. (flags & SWS_FAST_BILINEAR)))
  1051. c->chrSrcHSubSample = 1;
  1052. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1053. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1054. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1055. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1056. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1057. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1058. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1059. if (c->srcBpc < 8)
  1060. c->srcBpc = 8;
  1061. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1062. if (c->dstBpc < 8)
  1063. c->dstBpc = 8;
  1064. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1065. c->srcBpc = 16;
  1066. if (c->dstBpc == 16)
  1067. dst_stride <<= 1;
  1068. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1069. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1070. c->chrDstW >= c->chrSrcW &&
  1071. (srcW & 15) == 0;
  1072. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1073. && (flags & SWS_FAST_BILINEAR)) {
  1074. if (flags & SWS_PRINT_INFO)
  1075. av_log(c, AV_LOG_INFO,
  1076. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1077. }
  1078. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1079. c->canMMXEXTBeUsed = 0;
  1080. } else
  1081. c->canMMXEXTBeUsed = 0;
  1082. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1083. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1084. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1085. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1086. * correct scaling.
  1087. * n-2 is the last chrominance sample available.
  1088. * This is not perfect, but no one should notice the difference, the more
  1089. * correct variant would be like the vertical one, but that would require
  1090. * some special code for the first and last pixel */
  1091. if (flags & SWS_FAST_BILINEAR) {
  1092. if (c->canMMXEXTBeUsed) {
  1093. c->lumXInc += 20;
  1094. c->chrXInc += 20;
  1095. }
  1096. // we don't use the x86 asm scaler if MMX is available
  1097. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1098. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1099. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1100. }
  1101. }
  1102. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1103. /* precalculate horizontal scaler filter coefficients */
  1104. {
  1105. #if HAVE_MMXEXT_INLINE
  1106. // can't downscale !!!
  1107. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1108. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1109. NULL, NULL, 8);
  1110. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1111. NULL, NULL, NULL, 4);
  1112. #if USE_MMAP
  1113. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1114. PROT_READ | PROT_WRITE,
  1115. MAP_PRIVATE | MAP_ANONYMOUS,
  1116. -1, 0);
  1117. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1118. PROT_READ | PROT_WRITE,
  1119. MAP_PRIVATE | MAP_ANONYMOUS,
  1120. -1, 0);
  1121. #elif HAVE_VIRTUALALLOC
  1122. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1123. c->lumMmxextFilterCodeSize,
  1124. MEM_COMMIT,
  1125. PAGE_EXECUTE_READWRITE);
  1126. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1127. c->chrMmxextFilterCodeSize,
  1128. MEM_COMMIT,
  1129. PAGE_EXECUTE_READWRITE);
  1130. #else
  1131. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1132. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1133. #endif
  1134. #ifdef MAP_ANONYMOUS
  1135. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1136. #else
  1137. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1138. #endif
  1139. {
  1140. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1141. return AVERROR(ENOMEM);
  1142. }
  1143. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1144. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1145. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1146. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1147. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1148. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1149. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1150. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1151. #if USE_MMAP
  1152. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1153. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1154. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1155. goto fail;
  1156. }
  1157. #endif
  1158. } else
  1159. #endif /* HAVE_MMXEXT_INLINE */
  1160. {
  1161. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1162. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1163. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1164. &c->hLumFilterSize, c->lumXInc,
  1165. srcW, dstW, filterAlign, 1 << 14,
  1166. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1167. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1168. c->param,
  1169. get_local_pos(c, 0, 0, 0),
  1170. get_local_pos(c, 0, 0, 0)) < 0)
  1171. goto fail;
  1172. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1173. &c->hChrFilterSize, c->chrXInc,
  1174. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1175. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1176. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1177. c->param,
  1178. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1179. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0)) < 0)
  1180. goto fail;
  1181. }
  1182. } // initialize horizontal stuff
  1183. /* precalculate vertical scaler filter coefficients */
  1184. {
  1185. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1186. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1187. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1188. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1189. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1190. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1191. c->param,
  1192. get_local_pos(c, 0, 0, 1),
  1193. get_local_pos(c, 0, 0, 1)) < 0)
  1194. goto fail;
  1195. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1196. c->chrYInc, c->chrSrcH, c->chrDstH,
  1197. filterAlign, (1 << 12),
  1198. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1199. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1200. c->param,
  1201. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1202. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1)) < 0)
  1203. goto fail;
  1204. #if HAVE_ALTIVEC
  1205. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1206. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1207. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1208. int j;
  1209. short *p = (short *)&c->vYCoeffsBank[i];
  1210. for (j = 0; j < 8; j++)
  1211. p[j] = c->vLumFilter[i];
  1212. }
  1213. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1214. int j;
  1215. short *p = (short *)&c->vCCoeffsBank[i];
  1216. for (j = 0; j < 8; j++)
  1217. p[j] = c->vChrFilter[i];
  1218. }
  1219. #endif
  1220. }
  1221. // calculate buffer sizes so that they won't run out while handling these damn slices
  1222. c->vLumBufSize = c->vLumFilterSize;
  1223. c->vChrBufSize = c->vChrFilterSize;
  1224. for (i = 0; i < dstH; i++) {
  1225. int chrI = (int64_t)i * c->chrDstH / dstH;
  1226. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1227. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1228. << c->chrSrcVSubSample));
  1229. nextSlice >>= c->chrSrcVSubSample;
  1230. nextSlice <<= c->chrSrcVSubSample;
  1231. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1232. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1233. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1234. (nextSlice >> c->chrSrcVSubSample))
  1235. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1236. c->vChrFilterPos[chrI];
  1237. }
  1238. for (i = 0; i < 4; i++)
  1239. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1240. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1241. * need to allocate several megabytes to handle all possible cases) */
  1242. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1243. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1244. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1245. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1246. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1247. /* Note we need at least one pixel more at the end because of the MMX code
  1248. * (just in case someone wants to replace the 4000/8000). */
  1249. /* align at 16 bytes for AltiVec */
  1250. for (i = 0; i < c->vLumBufSize; i++) {
  1251. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1252. dst_stride + 16, fail);
  1253. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1254. }
  1255. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1256. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1257. c->uv_offx2 = dst_stride + 16;
  1258. for (i = 0; i < c->vChrBufSize; i++) {
  1259. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1260. dst_stride * 2 + 32, fail);
  1261. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1262. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1263. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1264. }
  1265. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1266. for (i = 0; i < c->vLumBufSize; i++) {
  1267. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1268. dst_stride + 16, fail);
  1269. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1270. }
  1271. // try to avoid drawing green stuff between the right end and the stride end
  1272. for (i = 0; i < c->vChrBufSize; i++)
  1273. if(desc_dst->comp[0].depth_minus1 == 15){
  1274. av_assert0(c->dstBpc > 14);
  1275. for(j=0; j<dst_stride/2+1; j++)
  1276. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1277. } else
  1278. for(j=0; j<dst_stride+1; j++)
  1279. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1280. av_assert0(c->chrDstH <= dstH);
  1281. if (flags & SWS_PRINT_INFO) {
  1282. const char *scaler = NULL, *cpucaps;
  1283. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1284. if (flags & scale_algorithms[i].flag) {
  1285. scaler = scale_algorithms[i].description;
  1286. break;
  1287. }
  1288. }
  1289. if (!scaler)
  1290. scaler = "ehh flags invalid?!";
  1291. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1292. scaler,
  1293. av_get_pix_fmt_name(srcFormat),
  1294. #ifdef DITHER1XBPP
  1295. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1296. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1297. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1298. "dithered " : "",
  1299. #else
  1300. "",
  1301. #endif
  1302. av_get_pix_fmt_name(dstFormat));
  1303. if (INLINE_MMXEXT(cpu_flags))
  1304. cpucaps = "MMXEXT";
  1305. else if (INLINE_AMD3DNOW(cpu_flags))
  1306. cpucaps = "3DNOW";
  1307. else if (INLINE_MMX(cpu_flags))
  1308. cpucaps = "MMX";
  1309. else if (PPC_ALTIVEC(cpu_flags))
  1310. cpucaps = "AltiVec";
  1311. else
  1312. cpucaps = "C";
  1313. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1314. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1315. av_log(c, AV_LOG_DEBUG,
  1316. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1317. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1318. av_log(c, AV_LOG_DEBUG,
  1319. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1320. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1321. c->chrXInc, c->chrYInc);
  1322. }
  1323. /* unscaled special cases */
  1324. if (unscaled && !usesHFilter && !usesVFilter &&
  1325. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1326. ff_get_unscaled_swscale(c);
  1327. if (c->swscale) {
  1328. if (flags & SWS_PRINT_INFO)
  1329. av_log(c, AV_LOG_INFO,
  1330. "using unscaled %s -> %s special converter\n",
  1331. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1332. return 0;
  1333. }
  1334. }
  1335. c->swscale = ff_getSwsFunc(c);
  1336. return 0;
  1337. fail: // FIXME replace things by appropriate error codes
  1338. return -1;
  1339. }
  1340. #if FF_API_SWS_GETCONTEXT
  1341. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1342. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1343. int flags, SwsFilter *srcFilter,
  1344. SwsFilter *dstFilter, const double *param)
  1345. {
  1346. SwsContext *c;
  1347. if (!(c = sws_alloc_context()))
  1348. return NULL;
  1349. c->flags = flags;
  1350. c->srcW = srcW;
  1351. c->srcH = srcH;
  1352. c->dstW = dstW;
  1353. c->dstH = dstH;
  1354. c->srcFormat = srcFormat;
  1355. c->dstFormat = dstFormat;
  1356. if (param) {
  1357. c->param[0] = param[0];
  1358. c->param[1] = param[1];
  1359. }
  1360. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1361. sws_freeContext(c);
  1362. return NULL;
  1363. }
  1364. return c;
  1365. }
  1366. #endif
  1367. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1368. float lumaSharpen, float chromaSharpen,
  1369. float chromaHShift, float chromaVShift,
  1370. int verbose)
  1371. {
  1372. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1373. if (!filter)
  1374. return NULL;
  1375. if (lumaGBlur != 0.0) {
  1376. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1377. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1378. } else {
  1379. filter->lumH = sws_getIdentityVec();
  1380. filter->lumV = sws_getIdentityVec();
  1381. }
  1382. if (chromaGBlur != 0.0) {
  1383. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1384. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1385. } else {
  1386. filter->chrH = sws_getIdentityVec();
  1387. filter->chrV = sws_getIdentityVec();
  1388. }
  1389. if (chromaSharpen != 0.0) {
  1390. SwsVector *id = sws_getIdentityVec();
  1391. sws_scaleVec(filter->chrH, -chromaSharpen);
  1392. sws_scaleVec(filter->chrV, -chromaSharpen);
  1393. sws_addVec(filter->chrH, id);
  1394. sws_addVec(filter->chrV, id);
  1395. sws_freeVec(id);
  1396. }
  1397. if (lumaSharpen != 0.0) {
  1398. SwsVector *id = sws_getIdentityVec();
  1399. sws_scaleVec(filter->lumH, -lumaSharpen);
  1400. sws_scaleVec(filter->lumV, -lumaSharpen);
  1401. sws_addVec(filter->lumH, id);
  1402. sws_addVec(filter->lumV, id);
  1403. sws_freeVec(id);
  1404. }
  1405. if (chromaHShift != 0.0)
  1406. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1407. if (chromaVShift != 0.0)
  1408. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1409. sws_normalizeVec(filter->chrH, 1.0);
  1410. sws_normalizeVec(filter->chrV, 1.0);
  1411. sws_normalizeVec(filter->lumH, 1.0);
  1412. sws_normalizeVec(filter->lumV, 1.0);
  1413. if (verbose)
  1414. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1415. if (verbose)
  1416. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1417. return filter;
  1418. }
  1419. SwsVector *sws_allocVec(int length)
  1420. {
  1421. SwsVector *vec;
  1422. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1423. return NULL;
  1424. vec = av_malloc(sizeof(SwsVector));
  1425. if (!vec)
  1426. return NULL;
  1427. vec->length = length;
  1428. vec->coeff = av_malloc(sizeof(double) * length);
  1429. if (!vec->coeff)
  1430. av_freep(&vec);
  1431. return vec;
  1432. }
  1433. SwsVector *sws_getGaussianVec(double variance, double quality)
  1434. {
  1435. const int length = (int)(variance * quality + 0.5) | 1;
  1436. int i;
  1437. double middle = (length - 1) * 0.5;
  1438. SwsVector *vec;
  1439. if(variance < 0 || quality < 0)
  1440. return NULL;
  1441. vec = sws_allocVec(length);
  1442. if (!vec)
  1443. return NULL;
  1444. for (i = 0; i < length; i++) {
  1445. double dist = i - middle;
  1446. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1447. sqrt(2 * variance * M_PI);
  1448. }
  1449. sws_normalizeVec(vec, 1.0);
  1450. return vec;
  1451. }
  1452. SwsVector *sws_getConstVec(double c, int length)
  1453. {
  1454. int i;
  1455. SwsVector *vec = sws_allocVec(length);
  1456. if (!vec)
  1457. return NULL;
  1458. for (i = 0; i < length; i++)
  1459. vec->coeff[i] = c;
  1460. return vec;
  1461. }
  1462. SwsVector *sws_getIdentityVec(void)
  1463. {
  1464. return sws_getConstVec(1.0, 1);
  1465. }
  1466. static double sws_dcVec(SwsVector *a)
  1467. {
  1468. int i;
  1469. double sum = 0;
  1470. for (i = 0; i < a->length; i++)
  1471. sum += a->coeff[i];
  1472. return sum;
  1473. }
  1474. void sws_scaleVec(SwsVector *a, double scalar)
  1475. {
  1476. int i;
  1477. for (i = 0; i < a->length; i++)
  1478. a->coeff[i] *= scalar;
  1479. }
  1480. void sws_normalizeVec(SwsVector *a, double height)
  1481. {
  1482. sws_scaleVec(a, height / sws_dcVec(a));
  1483. }
  1484. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1485. {
  1486. int length = a->length + b->length - 1;
  1487. int i, j;
  1488. SwsVector *vec = sws_getConstVec(0.0, length);
  1489. if (!vec)
  1490. return NULL;
  1491. for (i = 0; i < a->length; i++) {
  1492. for (j = 0; j < b->length; j++) {
  1493. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1494. }
  1495. }
  1496. return vec;
  1497. }
  1498. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1499. {
  1500. int length = FFMAX(a->length, b->length);
  1501. int i;
  1502. SwsVector *vec = sws_getConstVec(0.0, length);
  1503. if (!vec)
  1504. return NULL;
  1505. for (i = 0; i < a->length; i++)
  1506. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1507. for (i = 0; i < b->length; i++)
  1508. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1509. return vec;
  1510. }
  1511. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1512. {
  1513. int length = FFMAX(a->length, b->length);
  1514. int i;
  1515. SwsVector *vec = sws_getConstVec(0.0, length);
  1516. if (!vec)
  1517. return NULL;
  1518. for (i = 0; i < a->length; i++)
  1519. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1520. for (i = 0; i < b->length; i++)
  1521. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1522. return vec;
  1523. }
  1524. /* shift left / or right if "shift" is negative */
  1525. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1526. {
  1527. int length = a->length + FFABS(shift) * 2;
  1528. int i;
  1529. SwsVector *vec = sws_getConstVec(0.0, length);
  1530. if (!vec)
  1531. return NULL;
  1532. for (i = 0; i < a->length; i++) {
  1533. vec->coeff[i + (length - 1) / 2 -
  1534. (a->length - 1) / 2 - shift] = a->coeff[i];
  1535. }
  1536. return vec;
  1537. }
  1538. void sws_shiftVec(SwsVector *a, int shift)
  1539. {
  1540. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1541. av_free(a->coeff);
  1542. a->coeff = shifted->coeff;
  1543. a->length = shifted->length;
  1544. av_free(shifted);
  1545. }
  1546. void sws_addVec(SwsVector *a, SwsVector *b)
  1547. {
  1548. SwsVector *sum = sws_sumVec(a, b);
  1549. av_free(a->coeff);
  1550. a->coeff = sum->coeff;
  1551. a->length = sum->length;
  1552. av_free(sum);
  1553. }
  1554. void sws_subVec(SwsVector *a, SwsVector *b)
  1555. {
  1556. SwsVector *diff = sws_diffVec(a, b);
  1557. av_free(a->coeff);
  1558. a->coeff = diff->coeff;
  1559. a->length = diff->length;
  1560. av_free(diff);
  1561. }
  1562. void sws_convVec(SwsVector *a, SwsVector *b)
  1563. {
  1564. SwsVector *conv = sws_getConvVec(a, b);
  1565. av_free(a->coeff);
  1566. a->coeff = conv->coeff;
  1567. a->length = conv->length;
  1568. av_free(conv);
  1569. }
  1570. SwsVector *sws_cloneVec(SwsVector *a)
  1571. {
  1572. SwsVector *vec = sws_allocVec(a->length);
  1573. if (!vec)
  1574. return NULL;
  1575. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1576. return vec;
  1577. }
  1578. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1579. {
  1580. int i;
  1581. double max = 0;
  1582. double min = 0;
  1583. double range;
  1584. for (i = 0; i < a->length; i++)
  1585. if (a->coeff[i] > max)
  1586. max = a->coeff[i];
  1587. for (i = 0; i < a->length; i++)
  1588. if (a->coeff[i] < min)
  1589. min = a->coeff[i];
  1590. range = max - min;
  1591. for (i = 0; i < a->length; i++) {
  1592. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1593. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1594. for (; x > 0; x--)
  1595. av_log(log_ctx, log_level, " ");
  1596. av_log(log_ctx, log_level, "|\n");
  1597. }
  1598. }
  1599. void sws_freeVec(SwsVector *a)
  1600. {
  1601. if (!a)
  1602. return;
  1603. av_freep(&a->coeff);
  1604. a->length = 0;
  1605. av_free(a);
  1606. }
  1607. void sws_freeFilter(SwsFilter *filter)
  1608. {
  1609. if (!filter)
  1610. return;
  1611. sws_freeVec(filter->lumH);
  1612. sws_freeVec(filter->lumV);
  1613. sws_freeVec(filter->chrH);
  1614. sws_freeVec(filter->chrV);
  1615. av_free(filter);
  1616. }
  1617. void sws_freeContext(SwsContext *c)
  1618. {
  1619. int i;
  1620. if (!c)
  1621. return;
  1622. if (c->lumPixBuf) {
  1623. for (i = 0; i < c->vLumBufSize; i++)
  1624. av_freep(&c->lumPixBuf[i]);
  1625. av_freep(&c->lumPixBuf);
  1626. }
  1627. if (c->chrUPixBuf) {
  1628. for (i = 0; i < c->vChrBufSize; i++)
  1629. av_freep(&c->chrUPixBuf[i]);
  1630. av_freep(&c->chrUPixBuf);
  1631. av_freep(&c->chrVPixBuf);
  1632. }
  1633. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1634. for (i = 0; i < c->vLumBufSize; i++)
  1635. av_freep(&c->alpPixBuf[i]);
  1636. av_freep(&c->alpPixBuf);
  1637. }
  1638. for (i = 0; i < 4; i++)
  1639. av_freep(&c->dither_error[i]);
  1640. av_freep(&c->vLumFilter);
  1641. av_freep(&c->vChrFilter);
  1642. av_freep(&c->hLumFilter);
  1643. av_freep(&c->hChrFilter);
  1644. #if HAVE_ALTIVEC
  1645. av_freep(&c->vYCoeffsBank);
  1646. av_freep(&c->vCCoeffsBank);
  1647. #endif
  1648. av_freep(&c->vLumFilterPos);
  1649. av_freep(&c->vChrFilterPos);
  1650. av_freep(&c->hLumFilterPos);
  1651. av_freep(&c->hChrFilterPos);
  1652. #if HAVE_MMX_INLINE
  1653. #if USE_MMAP
  1654. if (c->lumMmxextFilterCode)
  1655. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1656. if (c->chrMmxextFilterCode)
  1657. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1658. #elif HAVE_VIRTUALALLOC
  1659. if (c->lumMmxextFilterCode)
  1660. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1661. if (c->chrMmxextFilterCode)
  1662. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1663. #else
  1664. av_free(c->lumMmxextFilterCode);
  1665. av_free(c->chrMmxextFilterCode);
  1666. #endif
  1667. c->lumMmxextFilterCode = NULL;
  1668. c->chrMmxextFilterCode = NULL;
  1669. #endif /* HAVE_MMX_INLINE */
  1670. av_freep(&c->yuvTable);
  1671. av_freep(&c->formatConvBuffer);
  1672. av_free(c);
  1673. }
  1674. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1675. int srcH, enum AVPixelFormat srcFormat,
  1676. int dstW, int dstH,
  1677. enum AVPixelFormat dstFormat, int flags,
  1678. SwsFilter *srcFilter,
  1679. SwsFilter *dstFilter,
  1680. const double *param)
  1681. {
  1682. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1683. SWS_PARAM_DEFAULT };
  1684. if (!param)
  1685. param = default_param;
  1686. if (context &&
  1687. (context->srcW != srcW ||
  1688. context->srcH != srcH ||
  1689. context->srcFormat != srcFormat ||
  1690. context->dstW != dstW ||
  1691. context->dstH != dstH ||
  1692. context->dstFormat != dstFormat ||
  1693. context->flags != flags ||
  1694. context->param[0] != param[0] ||
  1695. context->param[1] != param[1])) {
  1696. sws_freeContext(context);
  1697. context = NULL;
  1698. }
  1699. if (!context) {
  1700. if (!(context = sws_alloc_context()))
  1701. return NULL;
  1702. context->srcW = srcW;
  1703. context->srcH = srcH;
  1704. context->srcFormat = srcFormat;
  1705. context->dstW = dstW;
  1706. context->dstH = dstH;
  1707. context->dstFormat = dstFormat;
  1708. context->flags = flags;
  1709. context->param[0] = param[0];
  1710. context->param[1] = param[1];
  1711. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1712. sws_freeContext(context);
  1713. return NULL;
  1714. }
  1715. }
  1716. return context;
  1717. }