You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1730 lines
61KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/x86/asm.h"
  46. #include "libavutil/x86/cpu.h"
  47. #include "rgb2rgb.h"
  48. #include "swscale.h"
  49. #include "swscale_internal.h"
  50. unsigned swscale_version(void)
  51. {
  52. return LIBSWSCALE_VERSION_INT;
  53. }
  54. const char *swscale_configuration(void)
  55. {
  56. return LIBAV_CONFIGURATION;
  57. }
  58. const char *swscale_license(void)
  59. {
  60. #define LICENSE_PREFIX "libswscale license: "
  61. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  62. }
  63. #define RET 0xC3 // near return opcode for x86
  64. typedef struct FormatEntry {
  65. int is_supported_in, is_supported_out;
  66. } FormatEntry;
  67. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  68. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  69. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  70. [AV_PIX_FMT_RGB24] = { 1, 1 },
  71. [AV_PIX_FMT_BGR24] = { 1, 1 },
  72. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  73. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  74. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  76. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  77. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  78. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  79. [AV_PIX_FMT_PAL8] = { 1, 0 },
  80. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  81. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  82. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  83. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  84. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  85. [AV_PIX_FMT_BGR8] = { 1, 1 },
  86. [AV_PIX_FMT_BGR4] = { 0, 1 },
  87. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  88. [AV_PIX_FMT_RGB8] = { 1, 1 },
  89. [AV_PIX_FMT_RGB4] = { 0, 1 },
  90. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  91. [AV_PIX_FMT_NV12] = { 1, 1 },
  92. [AV_PIX_FMT_NV21] = { 1, 1 },
  93. [AV_PIX_FMT_ARGB] = { 1, 1 },
  94. [AV_PIX_FMT_RGBA] = { 1, 1 },
  95. [AV_PIX_FMT_ABGR] = { 1, 1 },
  96. [AV_PIX_FMT_BGRA] = { 1, 1 },
  97. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  98. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  99. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  103. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  111. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  112. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  113. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  114. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  123. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  124. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  125. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  126. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  128. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  129. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  130. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  131. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  133. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  134. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  138. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  140. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  141. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  142. [AV_PIX_FMT_Y400A] = { 1, 0 },
  143. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  144. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  157. [AV_PIX_FMT_GBRP] = { 1, 0 },
  158. [AV_PIX_FMT_GBRP9LE] = { 1, 0 },
  159. [AV_PIX_FMT_GBRP9BE] = { 1, 0 },
  160. [AV_PIX_FMT_GBRP10LE] = { 1, 0 },
  161. [AV_PIX_FMT_GBRP10BE] = { 1, 0 },
  162. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  163. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  164. };
  165. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  166. {
  167. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  168. format_entries[pix_fmt].is_supported_in : 0;
  169. }
  170. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  171. {
  172. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  173. format_entries[pix_fmt].is_supported_out : 0;
  174. }
  175. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  176. const char *sws_format_name(enum AVPixelFormat format)
  177. {
  178. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  179. if (desc)
  180. return desc->name;
  181. else
  182. return "Unknown format";
  183. }
  184. static double getSplineCoeff(double a, double b, double c, double d,
  185. double dist)
  186. {
  187. if (dist <= 1.0)
  188. return ((d * dist + c) * dist + b) * dist + a;
  189. else
  190. return getSplineCoeff(0.0,
  191. b + 2.0 * c + 3.0 * d,
  192. c + 3.0 * d,
  193. -b - 3.0 * c - 6.0 * d,
  194. dist - 1.0);
  195. }
  196. static int initFilter(int16_t **outFilter, int32_t **filterPos,
  197. int *outFilterSize, int xInc, int srcW, int dstW,
  198. int filterAlign, int one, int flags, int cpu_flags,
  199. SwsVector *srcFilter, SwsVector *dstFilter,
  200. double param[2], int is_horizontal)
  201. {
  202. int i;
  203. int filterSize;
  204. int filter2Size;
  205. int minFilterSize;
  206. int64_t *filter = NULL;
  207. int64_t *filter2 = NULL;
  208. const int64_t fone = 1LL << 54;
  209. int ret = -1;
  210. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  211. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  212. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  213. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  214. int i;
  215. filterSize = 1;
  216. FF_ALLOCZ_OR_GOTO(NULL, filter,
  217. dstW * sizeof(*filter) * filterSize, fail);
  218. for (i = 0; i < dstW; i++) {
  219. filter[i * filterSize] = fone;
  220. (*filterPos)[i] = i;
  221. }
  222. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  223. int i;
  224. int xDstInSrc;
  225. filterSize = 1;
  226. FF_ALLOC_OR_GOTO(NULL, filter,
  227. dstW * sizeof(*filter) * filterSize, fail);
  228. xDstInSrc = xInc / 2 - 0x8000;
  229. for (i = 0; i < dstW; i++) {
  230. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  231. (*filterPos)[i] = xx;
  232. filter[i] = fone;
  233. xDstInSrc += xInc;
  234. }
  235. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  236. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  237. int i;
  238. int xDstInSrc;
  239. filterSize = 2;
  240. FF_ALLOC_OR_GOTO(NULL, filter,
  241. dstW * sizeof(*filter) * filterSize, fail);
  242. xDstInSrc = xInc / 2 - 0x8000;
  243. for (i = 0; i < dstW; i++) {
  244. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  245. int j;
  246. (*filterPos)[i] = xx;
  247. // bilinear upscale / linear interpolate / area averaging
  248. for (j = 0; j < filterSize; j++) {
  249. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  250. (fone >> 16);
  251. if (coeff < 0)
  252. coeff = 0;
  253. filter[i * filterSize + j] = coeff;
  254. xx++;
  255. }
  256. xDstInSrc += xInc;
  257. }
  258. } else {
  259. int64_t xDstInSrc;
  260. int sizeFactor;
  261. if (flags & SWS_BICUBIC)
  262. sizeFactor = 4;
  263. else if (flags & SWS_X)
  264. sizeFactor = 8;
  265. else if (flags & SWS_AREA)
  266. sizeFactor = 1; // downscale only, for upscale it is bilinear
  267. else if (flags & SWS_GAUSS)
  268. sizeFactor = 8; // infinite ;)
  269. else if (flags & SWS_LANCZOS)
  270. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  271. else if (flags & SWS_SINC)
  272. sizeFactor = 20; // infinite ;)
  273. else if (flags & SWS_SPLINE)
  274. sizeFactor = 20; // infinite ;)
  275. else if (flags & SWS_BILINEAR)
  276. sizeFactor = 2;
  277. else {
  278. sizeFactor = 0; // GCC warning killer
  279. assert(0);
  280. }
  281. if (xInc <= 1 << 16)
  282. filterSize = 1 + sizeFactor; // upscale
  283. else
  284. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  285. filterSize = FFMIN(filterSize, srcW - 2);
  286. filterSize = FFMAX(filterSize, 1);
  287. FF_ALLOC_OR_GOTO(NULL, filter,
  288. dstW * sizeof(*filter) * filterSize, fail);
  289. xDstInSrc = xInc - 0x10000;
  290. for (i = 0; i < dstW; i++) {
  291. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  292. int j;
  293. (*filterPos)[i] = xx;
  294. for (j = 0; j < filterSize; j++) {
  295. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  296. double floatd;
  297. int64_t coeff;
  298. if (xInc > 1 << 16)
  299. d = d * dstW / srcW;
  300. floatd = d * (1.0 / (1 << 30));
  301. if (flags & SWS_BICUBIC) {
  302. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  303. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  304. if (d >= 1LL << 31) {
  305. coeff = 0.0;
  306. } else {
  307. int64_t dd = (d * d) >> 30;
  308. int64_t ddd = (dd * d) >> 30;
  309. if (d < 1LL << 30)
  310. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  311. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  312. (6 * (1 << 24) - 2 * B) * (1 << 30);
  313. else
  314. coeff = (-B - 6 * C) * ddd +
  315. (6 * B + 30 * C) * dd +
  316. (-12 * B - 48 * C) * d +
  317. (8 * B + 24 * C) * (1 << 30);
  318. }
  319. coeff *= fone >> (30 + 24);
  320. }
  321. #if 0
  322. else if (flags & SWS_X) {
  323. double p = param ? param * 0.01 : 0.3;
  324. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  325. coeff *= pow(2.0, -p * d * d);
  326. }
  327. #endif
  328. else if (flags & SWS_X) {
  329. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  330. double c;
  331. if (floatd < 1.0)
  332. c = cos(floatd * M_PI);
  333. else
  334. c = -1.0;
  335. if (c < 0.0)
  336. c = -pow(-c, A);
  337. else
  338. c = pow(c, A);
  339. coeff = (c * 0.5 + 0.5) * fone;
  340. } else if (flags & SWS_AREA) {
  341. int64_t d2 = d - (1 << 29);
  342. if (d2 * xInc < -(1LL << (29 + 16)))
  343. coeff = 1.0 * (1LL << (30 + 16));
  344. else if (d2 * xInc < (1LL << (29 + 16)))
  345. coeff = -d2 * xInc + (1LL << (29 + 16));
  346. else
  347. coeff = 0.0;
  348. coeff *= fone >> (30 + 16);
  349. } else if (flags & SWS_GAUSS) {
  350. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  351. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  352. } else if (flags & SWS_SINC) {
  353. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  354. } else if (flags & SWS_LANCZOS) {
  355. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  356. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  357. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  358. if (floatd > p)
  359. coeff = 0;
  360. } else if (flags & SWS_BILINEAR) {
  361. coeff = (1 << 30) - d;
  362. if (coeff < 0)
  363. coeff = 0;
  364. coeff *= fone >> 30;
  365. } else if (flags & SWS_SPLINE) {
  366. double p = -2.196152422706632;
  367. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  368. } else {
  369. coeff = 0.0; // GCC warning killer
  370. assert(0);
  371. }
  372. filter[i * filterSize + j] = coeff;
  373. xx++;
  374. }
  375. xDstInSrc += 2 * xInc;
  376. }
  377. }
  378. /* apply src & dst Filter to filter -> filter2
  379. * av_free(filter);
  380. */
  381. assert(filterSize > 0);
  382. filter2Size = filterSize;
  383. if (srcFilter)
  384. filter2Size += srcFilter->length - 1;
  385. if (dstFilter)
  386. filter2Size += dstFilter->length - 1;
  387. assert(filter2Size > 0);
  388. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  389. for (i = 0; i < dstW; i++) {
  390. int j, k;
  391. if (srcFilter) {
  392. for (k = 0; k < srcFilter->length; k++) {
  393. for (j = 0; j < filterSize; j++)
  394. filter2[i * filter2Size + k + j] +=
  395. srcFilter->coeff[k] * filter[i * filterSize + j];
  396. }
  397. } else {
  398. for (j = 0; j < filterSize; j++)
  399. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  400. }
  401. // FIXME dstFilter
  402. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  403. }
  404. av_freep(&filter);
  405. /* try to reduce the filter-size (step1 find size and shift left) */
  406. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  407. minFilterSize = 0;
  408. for (i = dstW - 1; i >= 0; i--) {
  409. int min = filter2Size;
  410. int j;
  411. int64_t cutOff = 0.0;
  412. /* get rid of near zero elements on the left by shifting left */
  413. for (j = 0; j < filter2Size; j++) {
  414. int k;
  415. cutOff += FFABS(filter2[i * filter2Size]);
  416. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  417. break;
  418. /* preserve monotonicity because the core can't handle the
  419. * filter otherwise */
  420. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  421. break;
  422. // move filter coefficients left
  423. for (k = 1; k < filter2Size; k++)
  424. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  425. filter2[i * filter2Size + k - 1] = 0;
  426. (*filterPos)[i]++;
  427. }
  428. cutOff = 0;
  429. /* count near zeros on the right */
  430. for (j = filter2Size - 1; j > 0; j--) {
  431. cutOff += FFABS(filter2[i * filter2Size + j]);
  432. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  433. break;
  434. min--;
  435. }
  436. if (min > minFilterSize)
  437. minFilterSize = min;
  438. }
  439. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  440. // we can handle the special case 4, so we don't want to go the full 8
  441. if (minFilterSize < 5)
  442. filterAlign = 4;
  443. /* We really don't want to waste our time doing useless computation, so
  444. * fall back on the scalar C code for very small filters.
  445. * Vectorizing is worth it only if you have a decent-sized vector. */
  446. if (minFilterSize < 3)
  447. filterAlign = 1;
  448. }
  449. if (INLINE_MMX(cpu_flags)) {
  450. // special case for unscaled vertical filtering
  451. if (minFilterSize == 1 && filterAlign == 2)
  452. filterAlign = 1;
  453. }
  454. assert(minFilterSize > 0);
  455. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  456. assert(filterSize > 0);
  457. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  458. if (filterSize >= MAX_FILTER_SIZE * 16 /
  459. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  460. goto fail;
  461. *outFilterSize = filterSize;
  462. if (flags & SWS_PRINT_INFO)
  463. av_log(NULL, AV_LOG_VERBOSE,
  464. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  465. filter2Size, filterSize);
  466. /* try to reduce the filter-size (step2 reduce it) */
  467. for (i = 0; i < dstW; i++) {
  468. int j;
  469. for (j = 0; j < filterSize; j++) {
  470. if (j >= filter2Size)
  471. filter[i * filterSize + j] = 0;
  472. else
  473. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  474. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  475. filter[i * filterSize + j] = 0;
  476. }
  477. }
  478. // FIXME try to align filterPos if possible
  479. // fix borders
  480. if (is_horizontal) {
  481. for (i = 0; i < dstW; i++) {
  482. int j;
  483. if ((*filterPos)[i] < 0) {
  484. // move filter coefficients left to compensate for filterPos
  485. for (j = 1; j < filterSize; j++) {
  486. int left = FFMAX(j + (*filterPos)[i], 0);
  487. filter[i * filterSize + left] += filter[i * filterSize + j];
  488. filter[i * filterSize + j] = 0;
  489. }
  490. (*filterPos)[i] = 0;
  491. }
  492. if ((*filterPos)[i] + filterSize > srcW) {
  493. int shift = (*filterPos)[i] + filterSize - srcW;
  494. // move filter coefficients right to compensate for filterPos
  495. for (j = filterSize - 2; j >= 0; j--) {
  496. int right = FFMIN(j + shift, filterSize - 1);
  497. filter[i * filterSize + right] += filter[i * filterSize + j];
  498. filter[i * filterSize + j] = 0;
  499. }
  500. (*filterPos)[i] = srcW - filterSize;
  501. }
  502. }
  503. }
  504. // Note the +1 is for the MMX scaler which reads over the end
  505. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  506. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  507. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  508. /* normalize & store in outFilter */
  509. for (i = 0; i < dstW; i++) {
  510. int j;
  511. int64_t error = 0;
  512. int64_t sum = 0;
  513. for (j = 0; j < filterSize; j++) {
  514. sum += filter[i * filterSize + j];
  515. }
  516. sum = (sum + one / 2) / one;
  517. for (j = 0; j < *outFilterSize; j++) {
  518. int64_t v = filter[i * filterSize + j] + error;
  519. int intV = ROUNDED_DIV(v, sum);
  520. (*outFilter)[i * (*outFilterSize) + j] = intV;
  521. error = v - intV * sum;
  522. }
  523. }
  524. (*filterPos)[dstW + 0] =
  525. (*filterPos)[dstW + 1] =
  526. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  527. * read over the end */
  528. for (i = 0; i < *outFilterSize; i++) {
  529. int k = (dstW - 1) * (*outFilterSize) + i;
  530. (*outFilter)[k + 1 * (*outFilterSize)] =
  531. (*outFilter)[k + 2 * (*outFilterSize)] =
  532. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  533. }
  534. ret = 0;
  535. fail:
  536. av_free(filter);
  537. av_free(filter2);
  538. return ret;
  539. }
  540. #if HAVE_MMXEXT_INLINE
  541. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode,
  542. int16_t *filter, int32_t *filterPos, int numSplits)
  543. {
  544. uint8_t *fragmentA;
  545. x86_reg imm8OfPShufW1A;
  546. x86_reg imm8OfPShufW2A;
  547. x86_reg fragmentLengthA;
  548. uint8_t *fragmentB;
  549. x86_reg imm8OfPShufW1B;
  550. x86_reg imm8OfPShufW2B;
  551. x86_reg fragmentLengthB;
  552. int fragmentPos;
  553. int xpos, i;
  554. // create an optimized horizontal scaling routine
  555. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  556. * pshufw instructions. For every four output pixels, if four input pixels
  557. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  558. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  559. */
  560. // code fragment
  561. __asm__ volatile (
  562. "jmp 9f \n\t"
  563. // Begin
  564. "0: \n\t"
  565. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  566. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  567. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  568. "punpcklbw %%mm7, %%mm1 \n\t"
  569. "punpcklbw %%mm7, %%mm0 \n\t"
  570. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  571. "1: \n\t"
  572. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  573. "2: \n\t"
  574. "psubw %%mm1, %%mm0 \n\t"
  575. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  576. "pmullw %%mm3, %%mm0 \n\t"
  577. "psllw $7, %%mm1 \n\t"
  578. "paddw %%mm1, %%mm0 \n\t"
  579. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  580. "add $8, %%"REG_a" \n\t"
  581. // End
  582. "9: \n\t"
  583. // "int $3 \n\t"
  584. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  585. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  586. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  587. "dec %1 \n\t"
  588. "dec %2 \n\t"
  589. "sub %0, %1 \n\t"
  590. "sub %0, %2 \n\t"
  591. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  592. "sub %0, %3 \n\t"
  593. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  594. "=r" (fragmentLengthA)
  595. );
  596. __asm__ volatile (
  597. "jmp 9f \n\t"
  598. // Begin
  599. "0: \n\t"
  600. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  601. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  602. "punpcklbw %%mm7, %%mm0 \n\t"
  603. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  604. "1: \n\t"
  605. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  606. "2: \n\t"
  607. "psubw %%mm1, %%mm0 \n\t"
  608. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  609. "pmullw %%mm3, %%mm0 \n\t"
  610. "psllw $7, %%mm1 \n\t"
  611. "paddw %%mm1, %%mm0 \n\t"
  612. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  613. "add $8, %%"REG_a" \n\t"
  614. // End
  615. "9: \n\t"
  616. // "int $3 \n\t"
  617. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  618. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  619. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  620. "dec %1 \n\t"
  621. "dec %2 \n\t"
  622. "sub %0, %1 \n\t"
  623. "sub %0, %2 \n\t"
  624. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  625. "sub %0, %3 \n\t"
  626. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  627. "=r" (fragmentLengthB)
  628. );
  629. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  630. fragmentPos = 0;
  631. for (i = 0; i < dstW / numSplits; i++) {
  632. int xx = xpos >> 16;
  633. if ((i & 3) == 0) {
  634. int a = 0;
  635. int b = ((xpos + xInc) >> 16) - xx;
  636. int c = ((xpos + xInc * 2) >> 16) - xx;
  637. int d = ((xpos + xInc * 3) >> 16) - xx;
  638. int inc = (d + 1 < 4);
  639. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  640. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  641. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  642. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  643. int maxShift = 3 - (d + inc);
  644. int shift = 0;
  645. if (filterCode) {
  646. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  647. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  648. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  649. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  650. filterPos[i / 2] = xx;
  651. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  652. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  653. ((b + inc) << 2) |
  654. ((c + inc) << 4) |
  655. ((d + inc) << 6);
  656. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  657. (c << 4) |
  658. (d << 6);
  659. if (i + 4 - inc >= dstW)
  660. shift = maxShift; // avoid overread
  661. else if ((filterPos[i / 2] & 3) <= maxShift)
  662. shift = filterPos[i / 2] & 3; // align
  663. if (shift && i >= shift) {
  664. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  665. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  666. filterPos[i / 2] -= shift;
  667. }
  668. }
  669. fragmentPos += fragmentLength;
  670. if (filterCode)
  671. filterCode[fragmentPos] = RET;
  672. }
  673. xpos += xInc;
  674. }
  675. if (filterCode)
  676. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  677. return fragmentPos + 1;
  678. }
  679. #endif /* HAVE_MMXEXT_INLINE */
  680. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  681. {
  682. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  683. *h = desc->log2_chroma_w;
  684. *v = desc->log2_chroma_h;
  685. }
  686. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  687. int srcRange, const int table[4], int dstRange,
  688. int brightness, int contrast, int saturation)
  689. {
  690. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  691. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  692. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  693. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  694. c->brightness = brightness;
  695. c->contrast = contrast;
  696. c->saturation = saturation;
  697. c->srcRange = srcRange;
  698. c->dstRange = dstRange;
  699. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  700. return -1;
  701. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  702. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  703. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  704. contrast, saturation);
  705. // FIXME factorize
  706. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  707. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  708. contrast, saturation);
  709. return 0;
  710. }
  711. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  712. int *srcRange, int **table, int *dstRange,
  713. int *brightness, int *contrast, int *saturation)
  714. {
  715. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  716. return -1;
  717. *inv_table = c->srcColorspaceTable;
  718. *table = c->dstColorspaceTable;
  719. *srcRange = c->srcRange;
  720. *dstRange = c->dstRange;
  721. *brightness = c->brightness;
  722. *contrast = c->contrast;
  723. *saturation = c->saturation;
  724. return 0;
  725. }
  726. static int handle_jpeg(enum AVPixelFormat *format)
  727. {
  728. switch (*format) {
  729. case AV_PIX_FMT_YUVJ420P:
  730. *format = AV_PIX_FMT_YUV420P;
  731. return 1;
  732. case AV_PIX_FMT_YUVJ422P:
  733. *format = AV_PIX_FMT_YUV422P;
  734. return 1;
  735. case AV_PIX_FMT_YUVJ444P:
  736. *format = AV_PIX_FMT_YUV444P;
  737. return 1;
  738. case AV_PIX_FMT_YUVJ440P:
  739. *format = AV_PIX_FMT_YUV440P;
  740. return 1;
  741. default:
  742. return 0;
  743. }
  744. }
  745. SwsContext *sws_alloc_context(void)
  746. {
  747. SwsContext *c = av_mallocz(sizeof(SwsContext));
  748. c->av_class = &sws_context_class;
  749. av_opt_set_defaults(c);
  750. return c;
  751. }
  752. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  753. SwsFilter *dstFilter)
  754. {
  755. int i;
  756. int usesVFilter, usesHFilter;
  757. int unscaled;
  758. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  759. int srcW = c->srcW;
  760. int srcH = c->srcH;
  761. int dstW = c->dstW;
  762. int dstH = c->dstH;
  763. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  764. int dst_stride_px = dst_stride >> 1;
  765. int flags, cpu_flags;
  766. enum AVPixelFormat srcFormat = c->srcFormat;
  767. enum AVPixelFormat dstFormat = c->dstFormat;
  768. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  769. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  770. cpu_flags = av_get_cpu_flags();
  771. flags = c->flags;
  772. emms_c();
  773. if (!rgb15to16)
  774. sws_rgb2rgb_init();
  775. unscaled = (srcW == dstW && srcH == dstH);
  776. if (!sws_isSupportedInput(srcFormat)) {
  777. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  778. sws_format_name(srcFormat));
  779. return AVERROR(EINVAL);
  780. }
  781. if (!sws_isSupportedOutput(dstFormat)) {
  782. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  783. sws_format_name(dstFormat));
  784. return AVERROR(EINVAL);
  785. }
  786. i = flags & (SWS_POINT |
  787. SWS_AREA |
  788. SWS_BILINEAR |
  789. SWS_FAST_BILINEAR |
  790. SWS_BICUBIC |
  791. SWS_X |
  792. SWS_GAUSS |
  793. SWS_LANCZOS |
  794. SWS_SINC |
  795. SWS_SPLINE |
  796. SWS_BICUBLIN);
  797. if (!i || (i & (i - 1))) {
  798. av_log(c, AV_LOG_ERROR,
  799. "Exactly one scaler algorithm must be chosen\n");
  800. return AVERROR(EINVAL);
  801. }
  802. /* sanity check */
  803. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  804. /* FIXME check if these are enough and try to lower them after
  805. * fixing the relevant parts of the code */
  806. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  807. srcW, srcH, dstW, dstH);
  808. return AVERROR(EINVAL);
  809. }
  810. if (!dstFilter)
  811. dstFilter = &dummyFilter;
  812. if (!srcFilter)
  813. srcFilter = &dummyFilter;
  814. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  815. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  816. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  817. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  818. c->vRounder = 4 * 0x0001000100010001ULL;
  819. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  820. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  821. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  822. (dstFilter->chrV && dstFilter->chrV->length > 1);
  823. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  824. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  825. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  826. (dstFilter->chrH && dstFilter->chrH->length > 1);
  827. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  828. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  829. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  830. * chroma interpolation */
  831. if (flags & SWS_FULL_CHR_H_INT &&
  832. isAnyRGB(dstFormat) &&
  833. dstFormat != AV_PIX_FMT_RGBA &&
  834. dstFormat != AV_PIX_FMT_ARGB &&
  835. dstFormat != AV_PIX_FMT_BGRA &&
  836. dstFormat != AV_PIX_FMT_ABGR &&
  837. dstFormat != AV_PIX_FMT_RGB24 &&
  838. dstFormat != AV_PIX_FMT_BGR24) {
  839. av_log(c, AV_LOG_ERROR,
  840. "full chroma interpolation for destination format '%s' not yet implemented\n",
  841. sws_format_name(dstFormat));
  842. flags &= ~SWS_FULL_CHR_H_INT;
  843. c->flags = flags;
  844. }
  845. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  846. c->chrDstHSubSample = 1;
  847. // drop some chroma lines if the user wants it
  848. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  849. SWS_SRC_V_CHR_DROP_SHIFT;
  850. c->chrSrcVSubSample += c->vChrDrop;
  851. /* drop every other pixel for chroma calculation unless user
  852. * wants full chroma */
  853. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  854. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  855. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  856. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  857. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  858. (flags & SWS_FAST_BILINEAR)))
  859. c->chrSrcHSubSample = 1;
  860. // Note the -((-x)>>y) is so that we always round toward +inf.
  861. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  862. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  863. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  864. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  865. /* unscaled special cases */
  866. if (unscaled && !usesHFilter && !usesVFilter &&
  867. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  868. ff_get_unscaled_swscale(c);
  869. if (c->swScale) {
  870. if (flags & SWS_PRINT_INFO)
  871. av_log(c, AV_LOG_INFO,
  872. "using unscaled %s -> %s special converter\n",
  873. sws_format_name(srcFormat), sws_format_name(dstFormat));
  874. return 0;
  875. }
  876. }
  877. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  878. if (c->srcBpc < 8)
  879. c->srcBpc = 8;
  880. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  881. if (c->dstBpc < 8)
  882. c->dstBpc = 8;
  883. if (c->dstBpc == 16)
  884. dst_stride <<= 1;
  885. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  886. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  887. fail);
  888. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  889. c->canMMX2BeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  890. (srcW & 15) == 0) ? 1 : 0;
  891. if (!c->canMMX2BeUsed && dstW >= srcW && (srcW & 15) == 0
  892. && (flags & SWS_FAST_BILINEAR)) {
  893. if (flags & SWS_PRINT_INFO)
  894. av_log(c, AV_LOG_INFO,
  895. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  896. }
  897. if (usesHFilter)
  898. c->canMMX2BeUsed = 0;
  899. } else
  900. c->canMMX2BeUsed = 0;
  901. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  902. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  903. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  904. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  905. * correct scaling.
  906. * n-2 is the last chrominance sample available.
  907. * This is not perfect, but no one should notice the difference, the more
  908. * correct variant would be like the vertical one, but that would require
  909. * some special code for the first and last pixel */
  910. if (flags & SWS_FAST_BILINEAR) {
  911. if (c->canMMX2BeUsed) {
  912. c->lumXInc += 20;
  913. c->chrXInc += 20;
  914. }
  915. // we don't use the x86 asm scaler if MMX is available
  916. else if (INLINE_MMX(cpu_flags)) {
  917. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  918. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  919. }
  920. }
  921. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  922. /* precalculate horizontal scaler filter coefficients */
  923. {
  924. #if HAVE_MMXEXT_INLINE
  925. // can't downscale !!!
  926. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  927. c->lumMmx2FilterCodeSize = initMMX2HScaler(dstW, c->lumXInc, NULL,
  928. NULL, NULL, 8);
  929. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc,
  930. NULL, NULL, NULL, 4);
  931. #if USE_MMAP
  932. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  933. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  934. #elif HAVE_VIRTUALALLOC
  935. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  936. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  937. #else
  938. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  939. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  940. #endif
  941. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  942. return AVERROR(ENOMEM);
  943. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  944. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  945. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  946. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  947. initMMX2HScaler(dstW, c->lumXInc, c->lumMmx2FilterCode,
  948. c->hLumFilter, c->hLumFilterPos, 8);
  949. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode,
  950. c->hChrFilter, c->hChrFilterPos, 4);
  951. #if USE_MMAP
  952. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  953. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  954. #endif
  955. } else
  956. #endif /* HAVE_MMXEXT_INLINE */
  957. {
  958. const int filterAlign =
  959. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  960. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  961. 1;
  962. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  963. &c->hLumFilterSize, c->lumXInc,
  964. srcW, dstW, filterAlign, 1 << 14,
  965. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  966. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  967. c->param, 1) < 0)
  968. goto fail;
  969. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  970. &c->hChrFilterSize, c->chrXInc,
  971. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  972. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  973. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  974. c->param, 1) < 0)
  975. goto fail;
  976. }
  977. } // initialize horizontal stuff
  978. /* precalculate vertical scaler filter coefficients */
  979. {
  980. const int filterAlign =
  981. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  982. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  983. 1;
  984. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  985. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  986. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  987. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  988. c->param, 0) < 0)
  989. goto fail;
  990. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  991. c->chrYInc, c->chrSrcH, c->chrDstH,
  992. filterAlign, (1 << 12),
  993. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  994. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  995. c->param, 0) < 0)
  996. goto fail;
  997. #if HAVE_ALTIVEC
  998. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  999. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1000. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1001. int j;
  1002. short *p = (short *)&c->vYCoeffsBank[i];
  1003. for (j = 0; j < 8; j++)
  1004. p[j] = c->vLumFilter[i];
  1005. }
  1006. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1007. int j;
  1008. short *p = (short *)&c->vCCoeffsBank[i];
  1009. for (j = 0; j < 8; j++)
  1010. p[j] = c->vChrFilter[i];
  1011. }
  1012. #endif
  1013. }
  1014. // calculate buffer sizes so that they won't run out while handling these damn slices
  1015. c->vLumBufSize = c->vLumFilterSize;
  1016. c->vChrBufSize = c->vChrFilterSize;
  1017. for (i = 0; i < dstH; i++) {
  1018. int chrI = (int64_t)i * c->chrDstH / dstH;
  1019. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1020. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1021. << c->chrSrcVSubSample));
  1022. nextSlice >>= c->chrSrcVSubSample;
  1023. nextSlice <<= c->chrSrcVSubSample;
  1024. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1025. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1026. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1027. (nextSlice >> c->chrSrcVSubSample))
  1028. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1029. c->vChrFilterPos[chrI];
  1030. }
  1031. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1032. * need to allocate several megabytes to handle all possible cases) */
  1033. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1034. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1035. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1036. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1037. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1038. /* Note we need at least one pixel more at the end because of the MMX code
  1039. * (just in case someone wants to replace the 4000/8000). */
  1040. /* align at 16 bytes for AltiVec */
  1041. for (i = 0; i < c->vLumBufSize; i++) {
  1042. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1043. dst_stride + 16, fail);
  1044. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1045. }
  1046. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1047. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1048. c->uv_off_byte = dst_stride + 16;
  1049. for (i = 0; i < c->vChrBufSize; i++) {
  1050. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1051. dst_stride * 2 + 32, fail);
  1052. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1053. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1054. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1055. }
  1056. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1057. for (i = 0; i < c->vLumBufSize; i++) {
  1058. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1059. dst_stride + 16, fail);
  1060. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1061. }
  1062. // try to avoid drawing green stuff between the right end and the stride end
  1063. for (i = 0; i < c->vChrBufSize; i++)
  1064. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1065. assert(c->chrDstH <= dstH);
  1066. if (flags & SWS_PRINT_INFO) {
  1067. if (flags & SWS_FAST_BILINEAR)
  1068. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1069. else if (flags & SWS_BILINEAR)
  1070. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1071. else if (flags & SWS_BICUBIC)
  1072. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1073. else if (flags & SWS_X)
  1074. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1075. else if (flags & SWS_POINT)
  1076. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1077. else if (flags & SWS_AREA)
  1078. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1079. else if (flags & SWS_BICUBLIN)
  1080. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1081. else if (flags & SWS_GAUSS)
  1082. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1083. else if (flags & SWS_SINC)
  1084. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1085. else if (flags & SWS_LANCZOS)
  1086. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1087. else if (flags & SWS_SPLINE)
  1088. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1089. else
  1090. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1091. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1092. sws_format_name(srcFormat),
  1093. #ifdef DITHER1XBPP
  1094. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1095. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1096. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1097. "dithered " : "",
  1098. #else
  1099. "",
  1100. #endif
  1101. sws_format_name(dstFormat));
  1102. if (INLINE_MMXEXT(cpu_flags))
  1103. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1104. else if (INLINE_AMD3DNOW(cpu_flags))
  1105. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1106. else if (INLINE_MMX(cpu_flags))
  1107. av_log(c, AV_LOG_INFO, "using MMX\n");
  1108. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1109. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1110. else
  1111. av_log(c, AV_LOG_INFO, "using C\n");
  1112. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1113. av_log(c, AV_LOG_DEBUG,
  1114. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1115. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1116. av_log(c, AV_LOG_DEBUG,
  1117. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1118. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1119. c->chrXInc, c->chrYInc);
  1120. }
  1121. c->swScale = ff_getSwsFunc(c);
  1122. return 0;
  1123. fail: // FIXME replace things by appropriate error codes
  1124. return -1;
  1125. }
  1126. #if FF_API_SWS_GETCONTEXT
  1127. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1128. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1129. int flags, SwsFilter *srcFilter,
  1130. SwsFilter *dstFilter, const double *param)
  1131. {
  1132. SwsContext *c;
  1133. if (!(c = sws_alloc_context()))
  1134. return NULL;
  1135. c->flags = flags;
  1136. c->srcW = srcW;
  1137. c->srcH = srcH;
  1138. c->dstW = dstW;
  1139. c->dstH = dstH;
  1140. c->srcRange = handle_jpeg(&srcFormat);
  1141. c->dstRange = handle_jpeg(&dstFormat);
  1142. c->srcFormat = srcFormat;
  1143. c->dstFormat = dstFormat;
  1144. if (param) {
  1145. c->param[0] = param[0];
  1146. c->param[1] = param[1];
  1147. }
  1148. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1149. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1150. c->dstRange, 0, 1 << 16, 1 << 16);
  1151. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1152. sws_freeContext(c);
  1153. return NULL;
  1154. }
  1155. return c;
  1156. }
  1157. #endif
  1158. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1159. float lumaSharpen, float chromaSharpen,
  1160. float chromaHShift, float chromaVShift,
  1161. int verbose)
  1162. {
  1163. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1164. if (!filter)
  1165. return NULL;
  1166. if (lumaGBlur != 0.0) {
  1167. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1168. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1169. } else {
  1170. filter->lumH = sws_getIdentityVec();
  1171. filter->lumV = sws_getIdentityVec();
  1172. }
  1173. if (chromaGBlur != 0.0) {
  1174. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1175. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1176. } else {
  1177. filter->chrH = sws_getIdentityVec();
  1178. filter->chrV = sws_getIdentityVec();
  1179. }
  1180. if (chromaSharpen != 0.0) {
  1181. SwsVector *id = sws_getIdentityVec();
  1182. sws_scaleVec(filter->chrH, -chromaSharpen);
  1183. sws_scaleVec(filter->chrV, -chromaSharpen);
  1184. sws_addVec(filter->chrH, id);
  1185. sws_addVec(filter->chrV, id);
  1186. sws_freeVec(id);
  1187. }
  1188. if (lumaSharpen != 0.0) {
  1189. SwsVector *id = sws_getIdentityVec();
  1190. sws_scaleVec(filter->lumH, -lumaSharpen);
  1191. sws_scaleVec(filter->lumV, -lumaSharpen);
  1192. sws_addVec(filter->lumH, id);
  1193. sws_addVec(filter->lumV, id);
  1194. sws_freeVec(id);
  1195. }
  1196. if (chromaHShift != 0.0)
  1197. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1198. if (chromaVShift != 0.0)
  1199. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1200. sws_normalizeVec(filter->chrH, 1.0);
  1201. sws_normalizeVec(filter->chrV, 1.0);
  1202. sws_normalizeVec(filter->lumH, 1.0);
  1203. sws_normalizeVec(filter->lumV, 1.0);
  1204. if (verbose)
  1205. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1206. if (verbose)
  1207. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1208. return filter;
  1209. }
  1210. SwsVector *sws_allocVec(int length)
  1211. {
  1212. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1213. if (!vec)
  1214. return NULL;
  1215. vec->length = length;
  1216. vec->coeff = av_malloc(sizeof(double) * length);
  1217. if (!vec->coeff)
  1218. av_freep(&vec);
  1219. return vec;
  1220. }
  1221. SwsVector *sws_getGaussianVec(double variance, double quality)
  1222. {
  1223. const int length = (int)(variance * quality + 0.5) | 1;
  1224. int i;
  1225. double middle = (length - 1) * 0.5;
  1226. SwsVector *vec = sws_allocVec(length);
  1227. if (!vec)
  1228. return NULL;
  1229. for (i = 0; i < length; i++) {
  1230. double dist = i - middle;
  1231. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1232. sqrt(2 * variance * M_PI);
  1233. }
  1234. sws_normalizeVec(vec, 1.0);
  1235. return vec;
  1236. }
  1237. SwsVector *sws_getConstVec(double c, int length)
  1238. {
  1239. int i;
  1240. SwsVector *vec = sws_allocVec(length);
  1241. if (!vec)
  1242. return NULL;
  1243. for (i = 0; i < length; i++)
  1244. vec->coeff[i] = c;
  1245. return vec;
  1246. }
  1247. SwsVector *sws_getIdentityVec(void)
  1248. {
  1249. return sws_getConstVec(1.0, 1);
  1250. }
  1251. static double sws_dcVec(SwsVector *a)
  1252. {
  1253. int i;
  1254. double sum = 0;
  1255. for (i = 0; i < a->length; i++)
  1256. sum += a->coeff[i];
  1257. return sum;
  1258. }
  1259. void sws_scaleVec(SwsVector *a, double scalar)
  1260. {
  1261. int i;
  1262. for (i = 0; i < a->length; i++)
  1263. a->coeff[i] *= scalar;
  1264. }
  1265. void sws_normalizeVec(SwsVector *a, double height)
  1266. {
  1267. sws_scaleVec(a, height / sws_dcVec(a));
  1268. }
  1269. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1270. {
  1271. int length = a->length + b->length - 1;
  1272. int i, j;
  1273. SwsVector *vec = sws_getConstVec(0.0, length);
  1274. if (!vec)
  1275. return NULL;
  1276. for (i = 0; i < a->length; i++) {
  1277. for (j = 0; j < b->length; j++) {
  1278. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1279. }
  1280. }
  1281. return vec;
  1282. }
  1283. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1284. {
  1285. int length = FFMAX(a->length, b->length);
  1286. int i;
  1287. SwsVector *vec = sws_getConstVec(0.0, length);
  1288. if (!vec)
  1289. return NULL;
  1290. for (i = 0; i < a->length; i++)
  1291. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1292. for (i = 0; i < b->length; i++)
  1293. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1294. return vec;
  1295. }
  1296. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1297. {
  1298. int length = FFMAX(a->length, b->length);
  1299. int i;
  1300. SwsVector *vec = sws_getConstVec(0.0, length);
  1301. if (!vec)
  1302. return NULL;
  1303. for (i = 0; i < a->length; i++)
  1304. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1305. for (i = 0; i < b->length; i++)
  1306. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1307. return vec;
  1308. }
  1309. /* shift left / or right if "shift" is negative */
  1310. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1311. {
  1312. int length = a->length + FFABS(shift) * 2;
  1313. int i;
  1314. SwsVector *vec = sws_getConstVec(0.0, length);
  1315. if (!vec)
  1316. return NULL;
  1317. for (i = 0; i < a->length; i++) {
  1318. vec->coeff[i + (length - 1) / 2 -
  1319. (a->length - 1) / 2 - shift] = a->coeff[i];
  1320. }
  1321. return vec;
  1322. }
  1323. void sws_shiftVec(SwsVector *a, int shift)
  1324. {
  1325. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1326. av_free(a->coeff);
  1327. a->coeff = shifted->coeff;
  1328. a->length = shifted->length;
  1329. av_free(shifted);
  1330. }
  1331. void sws_addVec(SwsVector *a, SwsVector *b)
  1332. {
  1333. SwsVector *sum = sws_sumVec(a, b);
  1334. av_free(a->coeff);
  1335. a->coeff = sum->coeff;
  1336. a->length = sum->length;
  1337. av_free(sum);
  1338. }
  1339. void sws_subVec(SwsVector *a, SwsVector *b)
  1340. {
  1341. SwsVector *diff = sws_diffVec(a, b);
  1342. av_free(a->coeff);
  1343. a->coeff = diff->coeff;
  1344. a->length = diff->length;
  1345. av_free(diff);
  1346. }
  1347. void sws_convVec(SwsVector *a, SwsVector *b)
  1348. {
  1349. SwsVector *conv = sws_getConvVec(a, b);
  1350. av_free(a->coeff);
  1351. a->coeff = conv->coeff;
  1352. a->length = conv->length;
  1353. av_free(conv);
  1354. }
  1355. SwsVector *sws_cloneVec(SwsVector *a)
  1356. {
  1357. int i;
  1358. SwsVector *vec = sws_allocVec(a->length);
  1359. if (!vec)
  1360. return NULL;
  1361. for (i = 0; i < a->length; i++)
  1362. vec->coeff[i] = a->coeff[i];
  1363. return vec;
  1364. }
  1365. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1366. {
  1367. int i;
  1368. double max = 0;
  1369. double min = 0;
  1370. double range;
  1371. for (i = 0; i < a->length; i++)
  1372. if (a->coeff[i] > max)
  1373. max = a->coeff[i];
  1374. for (i = 0; i < a->length; i++)
  1375. if (a->coeff[i] < min)
  1376. min = a->coeff[i];
  1377. range = max - min;
  1378. for (i = 0; i < a->length; i++) {
  1379. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1380. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1381. for (; x > 0; x--)
  1382. av_log(log_ctx, log_level, " ");
  1383. av_log(log_ctx, log_level, "|\n");
  1384. }
  1385. }
  1386. void sws_freeVec(SwsVector *a)
  1387. {
  1388. if (!a)
  1389. return;
  1390. av_freep(&a->coeff);
  1391. a->length = 0;
  1392. av_free(a);
  1393. }
  1394. void sws_freeFilter(SwsFilter *filter)
  1395. {
  1396. if (!filter)
  1397. return;
  1398. if (filter->lumH)
  1399. sws_freeVec(filter->lumH);
  1400. if (filter->lumV)
  1401. sws_freeVec(filter->lumV);
  1402. if (filter->chrH)
  1403. sws_freeVec(filter->chrH);
  1404. if (filter->chrV)
  1405. sws_freeVec(filter->chrV);
  1406. av_free(filter);
  1407. }
  1408. void sws_freeContext(SwsContext *c)
  1409. {
  1410. int i;
  1411. if (!c)
  1412. return;
  1413. if (c->lumPixBuf) {
  1414. for (i = 0; i < c->vLumBufSize; i++)
  1415. av_freep(&c->lumPixBuf[i]);
  1416. av_freep(&c->lumPixBuf);
  1417. }
  1418. if (c->chrUPixBuf) {
  1419. for (i = 0; i < c->vChrBufSize; i++)
  1420. av_freep(&c->chrUPixBuf[i]);
  1421. av_freep(&c->chrUPixBuf);
  1422. av_freep(&c->chrVPixBuf);
  1423. }
  1424. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1425. for (i = 0; i < c->vLumBufSize; i++)
  1426. av_freep(&c->alpPixBuf[i]);
  1427. av_freep(&c->alpPixBuf);
  1428. }
  1429. av_freep(&c->vLumFilter);
  1430. av_freep(&c->vChrFilter);
  1431. av_freep(&c->hLumFilter);
  1432. av_freep(&c->hChrFilter);
  1433. #if HAVE_ALTIVEC
  1434. av_freep(&c->vYCoeffsBank);
  1435. av_freep(&c->vCCoeffsBank);
  1436. #endif
  1437. av_freep(&c->vLumFilterPos);
  1438. av_freep(&c->vChrFilterPos);
  1439. av_freep(&c->hLumFilterPos);
  1440. av_freep(&c->hChrFilterPos);
  1441. #if HAVE_MMX_INLINE
  1442. #if USE_MMAP
  1443. if (c->lumMmx2FilterCode)
  1444. munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1445. if (c->chrMmx2FilterCode)
  1446. munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1447. #elif HAVE_VIRTUALALLOC
  1448. if (c->lumMmx2FilterCode)
  1449. VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1450. if (c->chrMmx2FilterCode)
  1451. VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1452. #else
  1453. av_free(c->lumMmx2FilterCode);
  1454. av_free(c->chrMmx2FilterCode);
  1455. #endif
  1456. c->lumMmx2FilterCode = NULL;
  1457. c->chrMmx2FilterCode = NULL;
  1458. #endif /* HAVE_MMX_INLINE */
  1459. av_freep(&c->yuvTable);
  1460. av_free(c->formatConvBuffer);
  1461. av_free(c);
  1462. }
  1463. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1464. int srcH, enum AVPixelFormat srcFormat,
  1465. int dstW, int dstH,
  1466. enum AVPixelFormat dstFormat, int flags,
  1467. SwsFilter *srcFilter,
  1468. SwsFilter *dstFilter,
  1469. const double *param)
  1470. {
  1471. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1472. SWS_PARAM_DEFAULT };
  1473. if (!param)
  1474. param = default_param;
  1475. if (context &&
  1476. (context->srcW != srcW ||
  1477. context->srcH != srcH ||
  1478. context->srcFormat != srcFormat ||
  1479. context->dstW != dstW ||
  1480. context->dstH != dstH ||
  1481. context->dstFormat != dstFormat ||
  1482. context->flags != flags ||
  1483. context->param[0] != param[0] ||
  1484. context->param[1] != param[1])) {
  1485. sws_freeContext(context);
  1486. context = NULL;
  1487. }
  1488. if (!context) {
  1489. if (!(context = sws_alloc_context()))
  1490. return NULL;
  1491. context->srcW = srcW;
  1492. context->srcH = srcH;
  1493. context->srcRange = handle_jpeg(&srcFormat);
  1494. context->srcFormat = srcFormat;
  1495. context->dstW = dstW;
  1496. context->dstH = dstH;
  1497. context->dstRange = handle_jpeg(&dstFormat);
  1498. context->dstFormat = dstFormat;
  1499. context->flags = flags;
  1500. context->param[0] = param[0];
  1501. context->param[1] = param[1];
  1502. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1503. context->srcRange,
  1504. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1505. context->dstRange, 0, 1 << 16, 1 << 16);
  1506. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1507. sws_freeContext(context);
  1508. return NULL;
  1509. }
  1510. }
  1511. return context;
  1512. }